CFD and state-to-state of hypersonic flows using GPUs

<u>Francesco Bonellia</u>, Michele Tuttafestab, Gianpiero Colonnac, Luigi Cutroned, Giuseppe Pascazioa

^aDMMM,Politecnico di Bari via Re David 200, 70125, Bari, Italy ^bLiceo Scientifico Statale "L. da Vinci", Via Cala dell'Arciprete 1 - 76011 Bisceglie (BT), Italy ^cCNR-IMIP, via Amendola 122/D - 70126 Bari (Italy) ^dCentro Italiano Ricerche Aerospaziali (CIRA), Capua, 81043, Italy

bonellifra@alice.it

Objective and Outline

Objective:

Development of a High Performance Computing (HPC) CFD code for the investigation of high enthalpy flows

Outline:

- Motivation: the atmospheric entry problem
- Governing equations
- Numerical method
- Thermochemical non-equilibrium models
- GPU and multi-GPUs parallel computing with CUDA and MPI-CUDA
- Results
- Conclusions

Why hypersonic flows?

Space exploration: the atmospheric entry problem

- a strong shock wave is formed in front of the vehicle
- kinetic energy of the incoming molecules is converted into internal energy
- a tremendous heat load weighs on the vehicle
- a suitable Thermal Protection System (TPS) is needed

Figure taken from http://class.tamu.edu/media/22851/pecos.gif

Atmospheric entry: a multi-physics problem

- a mixture of vibrationally/electronically excited and chemical reacting non-equilibrium flow is formed;
- de-excitation of the electronic mode causes a significant amount of radiation;
- temperature drops in the boundary layer are strong enough to cause recombination;
- at the surface of the vehicle a huge amount of heat is transferred.

Figure taken from: D.F. Potter, Modelling of radiating shock layers for atmospheric entry at Earth and Mars, PhD thesis, The University of Queensland, Australia, 2011

In order to properly predict such phenomena a key role is played by the thermochemical non-equilibrium model. Two different approaches can be followed:

- the classical multi-temperature approach: based on simplified hypothesis; not computational demanding (17 reactions for a neutral air mixture)
- the State-to-State (StS) approach: no simplified hypothesis; very computational demanding (thousand of reactions)

Does StS need parallel computing? YES

Single core CPU computational time to complete a simulation for a hypersonic flow of a 5 species neutral air mixture past a sphere: 2D 512x256 mesh

Governing equations

Compressible Navier-Stokes (N-S) equations for a multicomponent mixture of reacting gases in thermochemical non-equilibrium for both Park and StS models

$$\frac{\partial}{\partial t} \int_{V_0} \mathbf{U} dV + \oint_{S_0} \mathbf{F} \cdot \mathbf{n} dS = \int_{V_0} \mathbf{W} dV$$

$$\mathbf{U} = [\rho_{1,1}, \dots, \rho_{1,V_1}, \dots, \rho_{S,1}, \dots, \rho_{S,V_S}, \rho u, \rho v, \rho e, \rho_1 e_{vib,1}, \dots, \rho e_{vib,M}]^T$$

$$\mathbf{F} = (\mathbf{F}_E - \mathbf{F}_V, \mathbf{G}_E - \mathbf{G}_V)$$

$$\mathbf{F}_E = [\rho_{1,1} u, \dots, \rho_{1,V_1} u, \dots, \rho_{S,1} u, \dots, \rho_{S,V_S} u, \rho u^2 + p, \rho u v, (\rho e + p) u, \rho_1 e_{vib,1} u, \dots, \rho e_{vib,M} u]^T$$

$$\mathbf{G}_E = [\rho_{1,1} v, \dots, \rho_{1,V_1} v, \dots, \rho_{S,1} v, \dots, \rho_{S,V_S} v, \rho u v, \rho v^2 + p, (\rho e + p) v, \rho_1 e_{vib,1} v, \dots, \rho e_{vib,M} v]^T$$

$$\mathbf{W} = [\dot{\omega}_{1,1}, \dots, \dot{\omega}_{1,V_1}, \dots, \dot{\omega}_{S,V_1}, \dots, \dot{\omega}_{S,V_s}, 0, 0, 0, 0, \dot{\omega}_{vib,1}, \dots, \dot{\omega}_{vib,M}]^T$$

U is the vector of the conservative variables, F_E / F_v and G_E / G_v are the inviscid/viscous flux vectors and W is the source terms vector.

5 is the number of chemical components, the sth one having **Vs** internal

levels, the state-to-state approach considers $N = \sum_{s=1}^{\infty} V_s$ independent species, whereas Vs=1 in the case of the Park's model so that N=S

Governing equations

$$(\mathbf{F}_{\mathbf{V}}, \mathbf{G}_{\mathbf{V}}) = \begin{bmatrix} -\rho_{i}\mathbf{u}_{i}, \underline{\tau}, \mathbf{u} \cdot \underline{\tau} - \mathbf{q}, -\mathbf{q}_{vib,1}, \dots, -\mathbf{q}_{vib,M} \end{bmatrix}^{T}$$

$$-\rho_{i}\mathbf{u}_{i} = -\rho D_{i} \nabla Y_{i}$$

$$\underline{\tau} = \mu \begin{bmatrix} \nabla \mathbf{u} + (\nabla \mathbf{u})^{T} \end{bmatrix} - \frac{2}{3} \mu \nabla \cdot \mathbf{u} \mathbf{I}$$

$$\mathbf{q} = -\lambda_{t} \nabla T - \lambda_{vib} \nabla T_{vib} + \sum_{i} h_{i} \rho_{i} \mathbf{u}_{i}$$

$$\mathbf{q}_{vib,m} = -\lambda_{vib} \nabla T_{vib} + e_{vib,m} \rho_{m} \mathbf{u}_{m}$$

F_V and G_V are the viscous flux vectors

In the present implementation transport properties of single species are evaluated by using Gupta's curve fits*. Classical mixing rules are used for mixture properties

^{*}Gupta et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K, NASA. Reference. Publication. 1232. 1990

Numerical method

$$V_{i,j} \frac{d\mathbf{U}_{i,j}}{dt} + \sum_{Faces} \mathbf{F}_{num} \cdot \mathbf{n} \Delta S = V_{i,j} \mathbf{W}_{i,j}$$

Cell-centered Finite Volume Space discretization on a Multi-block structured mesh

$$\mathbf{F}_{num} = \mathbf{F}_{E,num} - \mathbf{F}_{V,num}$$

Reactive Navier-Stokes equations:

- Advection and pressure term (hyperbolic)
- Shear-stress, heat flux terms (diffusive)
- Chemical source terms (stiffness)

Numerical method

$$V_{i,j} \frac{d\mathbf{U}_{i,j}}{dt} + \sum_{Faces} \mathbf{F}_{num} \cdot \mathbf{n} \Delta S = V_{i,j} \mathbf{W}_{i,j}$$

$$\mathbf{F}_{num} = \mathbf{F}_{E,num} - \mathbf{F}_{V,num}$$

Solution strategy:

- Operator splitting approach: Frozen step + Chemical step
 - ✓ Frozen step: Method of Lines:
 - Space discretization + Time integration
 - Space dicretization: Inviscid & Viscous terms scheme
 - Time integration: Runge-Kutta scheme
 - ✓ Chemical step: implicit scheme for stiff terms

Frozen step

$$V_{i,j} \frac{d\mathbf{U}_{i,j}}{dt} + \sum_{Faces} \mathbf{F}_{num} \cdot \mathbf{n} \Delta S = 0$$

Frozen equation

Semi-Discrete Schemes or Method of Lines

$$\frac{d\mathbf{U}_{i,j}}{dt} = -\frac{1}{V_{i,j}} \sum_{Faces} (\mathbf{F}_{E,num} - \mathbf{F}_{V,num}) \cdot \mathbf{n} \Delta S$$

ODE solved with an explicit Runge-Kutta schemes

 $\mathbf{F}_{E,num}$ Methods for solving non-linear hyperbolic conservation laws

Frozen step: inviscid flux space discretization

Steger and Warming Flux Vector Splitting

The discretisation of the equations on a mesh is performed according to the direction of propagation of information on that mesh.

Upwinding is performed by splitting the flux in positive and negative components.

$$\mathbf{U}_{t} + \mathbf{F}_{x}(\mathbf{U}) = 0 \longrightarrow \mathbf{U}_{t} + \frac{\partial \mathbf{F}}{\partial \mathbf{U}} \frac{\partial \mathbf{U}}{\partial \mathbf{X}} = 0 \longrightarrow \mathbf{U}_{t} + \mathbf{A}\mathbf{U}_{x} = 0$$

$$\mathbf{F} = \mathbf{A}\mathbf{U} \qquad \text{homogeneous function of degree one}$$

$$\mathbf{F} = \mathbf{K}\Lambda\mathbf{K}^{-1}\mathbf{U} = \mathbf{K}(\Lambda^{+} + \Lambda^{-})\mathbf{K}^{-1}\mathbf{U} = (\mathbf{A}^{+} + \mathbf{A}^{-})\mathbf{U} = \mathbf{F}^{+} + \mathbf{F}^{-}$$

$$\lambda_{i}^{-} = \min(\lambda_{i}, 0) = \frac{1}{2}(\lambda_{i} - |\lambda_{i}|) \qquad \lambda_{i}^{+} = \max(\lambda_{i}, 0) = \frac{1}{2}(\lambda_{i} + |\lambda_{i}|)$$

$$\mathbf{F}_{1/2}^{\pm} = \frac{\rho}{2\gamma} \begin{bmatrix} 2(\gamma - 1)\lambda_{1}^{\pm} + \lambda_{2}^{\pm} + \lambda_{3}^{\pm} \\ 2(\gamma - 1)\lambda_{1}^{\pm}u + \lambda_{2}^{\pm}(u + a) + \lambda_{3}^{\pm}(u - a) \\ (\gamma - 1)\lambda_{1}^{\pm}u^{2} + \frac{\lambda_{2}^{\pm}}{2}(u + a)^{2} + \frac{\lambda_{3}^{\pm}}{2}(u - a)^{2} + \frac{(3 - \gamma)(\lambda_{2}^{\pm} + \lambda_{3}^{\pm})a^{2}}{2(\gamma - 1)} \end{bmatrix}$$

J.L. Steger, R.F. Warming, Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods, Journal of Computational Physics 40 (2) 263-293, 1981

Frozen step: viscous schemes

- Viscous terms involve gradients that have to be determined on the cell faces
- Due to their dissipative nature central differences are used

A good procedure for generalized curvilinear coordinates is to apply the Gauss divergence theorem

Control volume and Gauss cell (shaded area) for cell-faces derivatives

$$\int_{V_0} \nabla u dV = \oint_{S_0} u d\mathbf{S}$$

$$\nabla u = \frac{1}{V} \sum_{i=faces} u_i d\mathbf{S}_i$$

$$\begin{pmatrix} u_{x} \\ u_{y} \end{pmatrix} = \frac{1}{V} \begin{pmatrix} \sum_{i=faces}^{u_{i}} dS_{x,i} \\ \sum_{i=faces}^{u_{i}} dS_{y,i} \end{pmatrix}$$

Figure taken from: John C. Tannehill, Dale Anderson, Richard H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Taylor & Francis 1997

Numerical method

Operator splitting approach

$$\frac{\partial}{\partial t} \int_{V_0} \mathbf{U} dV + \oint_{S_0} \mathbf{F} \cdot \mathbf{n} dS = 0$$
 Frozen step

Inviscid flux: Flux Vector Splitting of Steger and Warming or AUSM with

MUSCL approach for higher order accuracy;

Viscous flux: gradients of the primitive variables are evaluated by applying

Gauss theorem

Time integration: Runge-Kutta scheme up to third order for time integration

Numerical method

Operator splitting approach

$$\frac{\partial}{\partial t} \int_{V_0} \mathbf{U} dV = \int_{V_0} \mathbf{W} dV$$
 Chemical step

$$\Delta t_c^{(v)} = \Delta t_f / n$$

$$\frac{\partial \mathbf{y}}{\partial t} = \mathbf{P} - \mathbf{L}\mathbf{y} \qquad \mathbf{y} = \left\{ \rho_i \right\}_{0 \le i \le N}$$

$$y_i^k(t + \Delta t_c^{(v)}) = \frac{\Delta t_c^{(v)} P_i(\mathbf{y}^{k-1}) + y_i(t)}{1 + \Delta t_c^{(v)} L(\mathbf{y}^{k-1})}$$

Sub-time step

P is a vector and L a diagonal matrix. P_i and $L_i y_i$ are non-negative and represent, respectively, production and loss terms for component y_i

Gauss-Seidel iterative scheme

Thermochemical non-equilibrium models for a 5 species neutral air mixture

MULTI-TEMPERATURE 5 SPECIES PARK MODEL¹

- 17 reactions + 3 transport equations for the vibrational energies
- Arrhenius type rate coefficients function of an effective temperature calculated as a geometrical mean of translational (T) and vibrational temperatures (Tv)
- Vibrational levels follow a Boltzmann distribution at temperature Tv
- Tuned on experimental measures
- Not computationally demanding
- It may fail when the conditions are far from those for which it was tuned

5 SPECIES State-to-State (StS) MODEL²

- Detailed vibrational kinetics of molecules.
- 68 and 47 vibrational levels for N₂ and O₂ respectively
- Thousands of elementary processes → High accuracy but huge computational cost

¹ C. Park, Nonequilibrium Hypersonic Aerothermodynamics, Wiley, New York, 1990

² M. Capitelli et al., Fundamentals Aspects of Plasma Chemical Physics: Kinetics, Springer Science & Business Media, 2015

Multi-temperature 5 species Park model

REACTIONS:

Dissociation

$$N_2+X \leftarrow \rightarrow 2N+X$$

 $O_2+X \leftarrow \rightarrow 2O+X$
 $NO+X \leftarrow \rightarrow N+O+X$

Zeldovich exchange reactions

$$N_2+O \leftrightarrow N+NO$$

 $O_2+N \leftrightarrow NO+O$

with $X=N_2$, O_2 , NO, N, O

$$\sum_{k=1}^{K} \upsilon'_{ki} \chi_k \Leftrightarrow \sum_{k=1}^{K} \upsilon''_{ki} \chi_k$$

$$\dot{\omega}_k = M_k \sum_{i=1}^I \upsilon_{ki} q_i$$

$$\upsilon_{ki} = \upsilon''_{ki} - \upsilon'_{ki}$$

$$q_{i} = k_{fi} \prod_{k=1}^{K} [X_{k}]^{\upsilon'_{ki}} - k_{ri} \prod_{k=1}^{K} [X_{k}]^{\upsilon''_{ki}}$$

Generic ith reaction

Chemical production rate of the k^{th} species

Net stoichiometric coefficient

Rate of progress of the *i*th reaction

Multi-temperature 5 species Park model

The two-temperature Park model assumes that the Arrhenius rate constants are functions of a geometrically averaged between the translational-rotational temperature (T_v) in the form:

$$T_a = T_v^q T^{1-q}$$

with q between 0.3 and 0.7

$$k_{fi} = A_i T^{\beta_i} \exp\left(\frac{-E_i}{R_c T_a}\right)$$

Arrhenius forward rate constant

$$k_{ri} = \frac{k_{fi}(T_a)}{K_{C_i}(T_a)}$$

reverse rate constant

$$\dot{\omega}_{LT,m} = \rho_m \frac{e_{vib,m}(T) - e_{vib,m}(T_{V,m})}{\tau_m}$$

Landau Teller evolution of the vibrational energy

 τ_m Vibrational energy relaxation time (Millikan-White expression)

5 species State-to-State (StS) model

The State-to-State approach write a relaxation equation for each vibrational level so that it is possible to calculate the distribution of internal states when it departs from the Boltzmann one.

Pure N ₂		Pure O ₂	
$N_2(v) + N_2 \leftrightarrow N_2(v-1) + N_2$	vTm	$O_2(v) + O_2 \leftrightarrow O_2(v-1) + O_2$	vTm
$N_2(v) + N \longleftrightarrow N_2(v - \Delta v) + N$	vTa	$O_2(v) + O \longleftrightarrow O_2(v - \Delta v) + O$	vTa
$N_2(v) + \tilde{N}_2(w-1) \leftrightarrow \tilde{N}_2(v-1) + N_2(w)$		$O_2(v) + \tilde{O_2}(w-1) \leftrightarrow \tilde{O_2}(v-1) + O_2(w)$	VV
$N_2(v) + N_2 \leftrightarrow 2N + N_2$	drm	$O_2(v) + O_2 \leftrightarrow 2O + O_2$	drm
$N_2(v) + N \leftrightarrow 2N + N$	dra	$O_2(v) + O \leftrightarrow 2O + O$	dra
Mixed N ₂		Mixed O ₂	
$N_2(v) + O_2 \longleftrightarrow N_2(v-1) + O_2$	vTm	$\begin{array}{c} \text{Mixed } \mathbf{O_2} \\ O_2(v) + N_2 \longleftrightarrow O_2(v-1) + N_2 \end{array}$	vTm
<u> </u>	vTm LC	_	vTm LC
$N_2(v) + O_2 \leftrightarrow N_2(v-1) + O_2$		$O_2(v) + N_2 \leftrightarrow O_2(v-1) + N_2$	
$N_2(v) + O_2 \leftrightarrow N_2(v-1) + O_2$ $N_2(v_{\text{max}}) + O_2 \leftrightarrow 2N + O_2$	LC	$O_2(v) + N_2 \leftrightarrow O_2(v-1) + N_2$ $O_2(v_{\text{max}}) + N_2 \leftrightarrow 2O + N_2$	LC

Zeldovich exchange reactions

$$O_2(v) + N \leftrightarrow NO + O$$

 $N_2(v) + O \leftrightarrow NO + N$

vTm/vTa:vibrational translational energy exchange with molecules/atoms;

vv: vibrational vibrational energy exchange

drm/dra: dissociation-recombination with molecules/atoms

LC: ladder climbing

Does StS need parallel computing? YES

Single core CPU computational time to complete a simulation for a hypersonic flow of a 5 species neutral air mixture over a sphere: 2D 512x256 mesh

Multi-GPUs parallelization by using an MPI-CUDA approach

Why GPU for HPC? Why CUDA? Why Message Passing Interface (MPI)?

GPUs:

- Many-core chips
- Huge amount of Flops
- High memory bandwidth
- High energy efficiency

CUDA:

• the NVIDIA CUDA architecture was released in November 2006. It is not only a new hardware architecture but above all it provides a programming language (C / C ++ extension) that allows easy use of GPUs for general purpose computing

MPI:

It allows to scale the application across a multiple-nodes GPU cluster

GPU vs CPU performance

	CPU 2016	NVIDIA Tesla P100
Theoretical GFLOP/s double precision	700	4700 - 5300
Theoretical Peak Memory Bandwidth GB/s	80	732
Theoretical GFLOP/s per Watt double precision	6	17.7 – 18.8

In the first 15 positions of the June 2017 green 500 list 13 clusters are powered with NVIDIA GPUs

CUDA C PROGRAMMING GUIDE PG-02829-001_v9.0 | September 2017
Tesla P100 | Data Sheet | Oct16
Tesla P100 PCle | Data Sheet | Oct 16
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/https://www.top500.org/green500/list/2017/06/

Software implementation tries to be a mirror of the hardware structure

Figure taken from: J. Cheng, M. Grossman, T. McKercher, Professional CUDA® C Programming, John Wiley & Sons, Inc.

CUDA C parallel programming example: vectors sum

Task: sum vectors a and b (with N components) in a third vector c

```
void add( int *a, int *b, int *c ) {
   for (i=0; i < N; i++) {
      c[i] = a[i] + b[i];
   }
}

void add( int *a, int *b, int *c ) {
   int tid = 0; // this is CPU zero, so we start at zero
   while (tid < N) {
      c[tid] = a[tid] + b[tid];
      tid += 1; // we have one CPU, so we increment by one
   }
}</pre>
```

Serial CPU code

An easy trick to write a parallel code

```
CPU 1
```

```
void add( int *a, int *b, int *c ){
  int tid = 0;
  while (tid < N) {
    c[tid] = a[tid] + b[tid];
    tid += 2;
  }
}</pre>
```

CPU₂

```
void add( int *a, int *b, int *c ){
  int tid = 1;
  while (tid < N) {
    c[tid] = a[tid] + b[tid];
    tid += 2;
  }
}</pre>
```

J. Sanders, E. Kandrot, CUDA by example, Addison-Wesley, New-York, 2011.

CUDA C parallel programming example: vectors sum

```
add<<N, 1>>(dev_a, dev_c, dev_d)

Blocks Threads per block
```

GPU kernel: N parallel blocks are launched

Built-in variable that gives the number of block that is running

BLOCK 1

BLOCK 2

```
__global__ void
add( int *a, int *b, int *c ) {
   int tid = 0;
   if (tid < N)
      c[tid] = a[tid] + b[tid];
}</pre>
```

```
__global__ void
add( int *a, int *b, int *c ) {
  int tid = 1;
  if (tid < N)
    c[tid] = a[tid] + b[tid];
}
```

this is what happens at runtime in the two blocks after the software substitutes the appropriate block index for blockldx.x:

CUDA C parallel programming example: vectors sum

Splitting parallel blocks: needed to exploit all the GPU capacities

```
add<<B, T>>(dev_a, dev_c, dev_d)
```

BxT total number of threads; B blocks; T threads per block

```
global__ void add( int *a, int *b, int *c ) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  while (tid < N) {
    c[tid] = a[tid] + b[tid];
    tid += blockDim.x * gridDim.x;
  }
}</pre>
Needed if BxT<N</p>
```

Block 0	Thread 0	Thread 1	Thread 2	Thread 3
Block 1	Thread 0	Thread 1	Thread 2	Thread 3

Example of 2 blocks with 4 threads per block: blockDim.x=4 gridDim.x=2

Multi-GPU: MPI-CUDA

Initialize MPI environment

Creation of a 2D topology with neighbor relations

Associate each MPI process to a single GPU

Creation of derived datatypes for transfers

Allocate arrays

Set input parameters on CPUs

COPY arrays from CPUs to GPUs

START time integration loop

Frozen+kinetic step

BC + data transfer

MPI Init

MPI Comm rank MPI Comm size

MPI Cart create

MPI_Cart_coords

MPI_Cart_shift

cudaGetDeviceCount(&devCount) cudaSetDevice(myrank%devcount)

MPI_Type_indexed MPI_Type_contiguous

malloc, cudaMalloc

init()

cudaMemcpy

generic_routines()

bc() cudaMemcpy **MPI Sendrecv** cudaMemcpy

END time integration loop

Classical domain decomposition approach

Poliba GPU cluster scheme

GPU-CPU communications

MPI infiniband communications among nodes

Code profiling (Euler eq.)

Code profiling on a NVIDIA Tesla K40: Mach 6 **AIR** flow over a sphere; 256x128 computational cells; 4 chemical sub-step; 8 Gauss-Seidel inner iterations.

Time per iterations:

Frozen = $4.72*10^{-3}$ s

Park = $2.78*10^{-2}$ s

StS = 51.1 s

Iterations required for a full simulation 10000-20000 ---> 6-12 days for StS (for 512x256 cells 48-96 days)

F. Bonelli, M. Tuttafesta, G. Colonna, L. Cutrone, G. Pascazio, An MPI-CUDA approach for hypersonic flows with detailed state-to-state air kinetics using a GPU cluster, Comput. Phys. Comm., 219, pp. 178-195, 2017; M. Tuttafesta, G. Colonna, G. Pascazio, Comput. Phys. Comm. 184 (6) (2013) 1497–1510.

MPI-CUDA: GPU vs CPU computational performance

NVIDIA Tesla K40 (235 W) VS Intel Xeon CPU E5-2630 (6 cores) v2 2.60 GHz (80 W)

StS	Fluid cells	12 GPUsTime per iteration (s) (Energy (J))	12 CPUs Time per iteration (s) (Energy(J))	Speed up (1 GPU vs 1 core)
	64x32	6.33 (1.8*104)	8.17 (7.8*10 ³)	1.29 (7.7)
	128x64	6.36 (1.8*104)	26.71 (2.56*10 ⁴)	4.2 (25.2)
	256x128	6.90 (1.9*104)	105.9 (10.2*10 ⁴)	15.3 (91.8)
	512x256	15.91 (4.5*10 ⁴)	419.5 (40.3*10 ⁴)	26.4 (158.4)
	1024x512	68.72 (19.4*10 ⁴)	1702.1 (163.4*104)	24.8 (148.8)
Park				
	64x32	7.50*10 ⁻³ (21)	1.59*10 ⁻³ (1.5)	0.21 (1.3)
	128x64	7.77*10 ⁻³ (22)	4.55*10 ⁻³ (4.3)	0.59 (3.5)
	256x128	7.24*10 ⁻³ (20)	1.68*10 ⁻² (16)	2.32 (13.9)
	512x256	1.36*10 ⁻² (38)	6.53*10 ⁻² (63)	4.8 (28.8)
	1024x512	3.48*10 ⁻² (98)	2.46*10 ⁻¹ (236)	7.1 (42.6)

MPI-CUDA strong scaling

StS

Park

F. Bonelli, M. Tuttafesta, G. Colonna, L. Cutrone, G. Pascazio, *An MPI-CUDA approach for hypersonic flows with detailed state-to-state air kinetics using a GPU cluster*, Computer Physics Communications, 219, pp. 178-195, 2017

Flow past a sphere: Nonaka4 test case (Euler eqs.)

 4 R= 7mm; u_{∞} =3490 m/s T_{∞} =293 K P_{∞} = 4825 Pa Y_{N2} =0.767 Y_{O2} =0.233

Computational domain, with an example of 4 x4 MPI partitioning, along with boundary conditions (left). 228x392 computational grid shown every 10 grid points (right).

⁴S. Nonaka et al. ,JTHT 14 (2), pp. 225-229, 2000

Nonaka4 test case (Euler eqs.)

F. Bonelli, M. Tuttafesta, G. Colonna, L. Cutrone, G. Pascazio, *An MPI-CUDA approach for hypersonic flows with detailed state-to-state air kinetics using a GPU cluster*, Computer Physics Communications, 219, pp. 178-195, 2017

0.8

0.6

¥_{0.4}

0.2

-0.2

0.2 X/R 0.6

0.4

Nonaka⁴ test case (Euler eqs.): stagnation line profiles

F. Bonelli, M. Tuttafesta, G. Colonna, L. Cutrone, G. Pascazio, An MPI-CUDA approach for hypersonic flows with detailed state-to-state air kinetics using a GPU cluster, Computer Physics Communications, 219, pp. 178-195, 2017

Nonaka4 test case (Euler eqs.): stagnation line profiles

F. Bonelli, M. Tuttafesta, G. Colonna, L. Cutrone, G. Pascazio, An MPI-CUDA approach for hypersonic flows with detailed state-to-state air kinetics using a GPU cluster, Computer Physics Communications, 219, pp. 178-195, 2017

Nonaka4 test case (Euler eqs.): temperature wall line profiles

Nonaka4 test case (Euler eqs.): vibrational distributions wall profiles

Nonaka⁴ test case (Navier-Stokes): stagnation line profiles

Normalized density

Conclusions

- We developed an efficient multi-GPU code for two-dimensional fluid dynamics
- A second-order accurate finite-volume space discretization scheme has been used, in conjunction
 with an explicit Runge-Kutta time integration scheme and an operator-splitting approach with
 implicit chemical source term treatment
- We demonstrated the accuracy and the feasibility of fluid dynamic computations of thermochemical non-equilibrium flows by means of detailed state-to-state (StS) vibrationally resolved air kinetics
- The MPI-CUDA approach allowed us to efficiently scale the code across a multiple-nodes GPU cluster with good scalability performance: comparing the single GPU against the single core CPU performance speed-up values up to 150 were found.

Current and future work

- Extensive validation of the Navier-Stokes solver with StS model;
- Extension to 3D with Immersed Boundary method
- Introduction of ionized species
- Flow-wall boundary treatment: models for catalysis and ablation