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Motivations for CFD

Lecture based on incompressible flows
Solve non-linear equations
Euler inviscid
Navier-Stokes viscous

Atmosphere NCAR

Nuclear Los Alamos

Finite differences (easy)

In the 70th psudospectral (complex)

Finite elements complex geometries

From continuous to discrete space

Compact operators staggered variables

High Reynolds conservation properties
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CFD in Italy

Absence of teaching in 60th and 70th

Few groups

Torino (compressible) linked to Moretti

Roma (incompressible) isolated
Bari (compressible and incompressible)

Laminar 2D flows no HPC
Attempts to turbulence RANS
No classes in turbulence
Absence of interaction among groups
Absence of contacts with foreign groups
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CFD in the world

HPC available at NCAR, NASA, Los Alamos ...

England Germany RANS
France spectral closures

CFD for LES and DNS
Large use of pseudospectral (Orszag)
Competition MIT (Orszag) Stanford,NASA (Reynolds)

Luck to be in Stanford,NASA for one year

Moin, Kim, Mansour ... Ph.D students

Rogallo , Wray, researchers

I learnt and enjoyed the physics of turbulence

For lack of HPC in Italy I worked on RANS

In 1981 I attended the OLYMPIC in turbulence
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Turbulence

RANS unable to be universal

An efficient interpolation scheme (several constants)

Unsatisfactory to homogeneous turbulence

At the Stanford OLYMPICS Rogallo presented

1283 DNS homogeneous turbulence

Possible with ILLIAC IV

Vectoral compiler (Rogallo Wray)

Decrease interest in LES (constant adjustable)
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Stanford cultural revolution

Proof N-S solves turbulence
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From RANS to Spectral

For lack of HPC in Italy I did not enter in LES or DNS

Frustration to play with constants

Impossibility to enter in RANS community (England
Germany)

Crocco offered me to enjoy spectral closures

Crocco transformation for EDQNM

Difficulty to apply spectral to homogeneous flows

Crocco died 1985

From this I learnt physics of turbulence
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CFD of flows past complex geometries

With Cunsolo N-S in general curvilinear coordinates (2D)

Flow past airfoil (1977)

Flow in a 2D elbow
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Flow past airfoil
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Flow in a 2D elbow
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Complex boundaries

NASA was interested in drag reduction by riblets
Invited me to spend summers to develop
3D code for flows past complex 2D bodies
Four years struggling with iterative methods
General curvilinear coordinates
The code was later on used by several scholars at the CTR
I was again frustrated
In Stanford by pseudospectral DNS of
Channel KMM
Minimal channel Jimenez
Boundary layers Spalart
Mixing layers Moser Rogers
Wakes Rogers Moser
Was the center of the world for turbulence
Moin and Reynolds created the Center for Turbulence
Research
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Vortex dynamics

In Roma interaction with Carnevale and van Heijst

2D dipole rebound Orlandi rebound

Physics of Fluids A 1990 218 citations
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Dipole and walls
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Cylindrical coordinates

The frustration with iterative schemes

The use of FFT to solve elliptic equations

The interest for vortex rings

The use of staggered variables

The trick to treat the geometrical singularity at r = 0

Good students (Verzicco , Fatica)
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Use of cylindrical coordinates

Large number citations of JCP 496

Today adapted to HPC

Turbulent rotating pipe

3D tripole formation

Stability vortex rings

Vortex rings interacting walls

DNS of transitional circular jets

Thermal convection in cylindrical cells

Drag reduction turbulent MHD pipes

Code available in

Fluid Flow Phenomena: a numerical toolkit
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Comments of finite differences

Widely accepted for cylindrical

Criticised several paper rejected

Large effort for validation

Spectral and finite difference solutions of the Burgers
equation

Isotropic turbulence decay

Statistics of KMM and Jimenez channel

Time-reversibility of the Euler equations

Turbulent channel flow simulations in convecting reference
frames

Appreciated

More paper accepted
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Burgers equation

Computers & Fluids Vol. 14, No. I, pp. 23.-41, 1986
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Decay isotropic turbulence

FFP (Pg.160)
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Validation turbulent channel vorticity rms

Results for Rτ = 900

Comparison with pseudospectral DNS by Jimenez’s group
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Improvement turbulent channel
Laboratory and convective frame Bernardini (JCP 2012)

Phase velocity cu = − Im〈û∗ ∂t û〉
kx 〈|û|2〉
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Inviscid Energy Conservation

Resolution 963

Time reversibility forward up to t = 10

Then V (10,X ) = −V (10,X )

At t = 20 V (20,X ) = V (0,X )

Isosurface of λ2 = −0.025

t = 0 t = 10 t = 20
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Validation inviscid

Comparison for unresolved Taylor Green Duponchel et al.
(2008)

Comparison FD2, FD4, Pseudospectral

Adams Bashfort

Runge-Kutta 3rd order
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Numerics on FTS Taylor-Green

Pseudospectral Cichowlas & Brachet (2006)
Pile-up can be eliminated by exponential filters (Hou & Li)
Second order finite difference FD2 Orlandi & Carnevale
(2008)
Simulations at 2563 and 5123
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FTS Taylor-Green E(k) t = 4.5
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Cartesian HPC FD for Clay prize

Finite Time Singularity from smooth I.C.
Euler equations
Navier-Stokes equations

Transition from Vortex Dynamics to Turbulence

Link between Vortical Structures and

Power Spectra

Give insights to mathematician to prove

Existence of FTS

Insert passive scalar
Look at the difference between

Energy and scalar spectra
Vortical and scalar structures
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Euler

FTS does exist if

|ω|max ∝ (ts − t)−1

E(k) ∝ k−3 at ts infinite enstrophy
other requirements in Kerr (2006)

I.C. and numerics important

Lamb dipoles Orlandi & Carnevale (2008)
t = 0 E(k) = k−6

Lamb vortex solution Euler
for t → ts, |ω|max ∝ |ω̃2|max , ω̃2 ∝ S̃2
∂ω̃2
∂t = S̃2ω̃2 = ω̃2

2
Having a FTS

Close to FTS investigate

Differences in the spectra between scalars and velocity

Differences in the structures
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Navier-Stokes

FTS does not exist

Interest to understand

Turbulence from Vortex Dynamics

Evolution of energy spectrum

Different from forced DNS

Evolution of spectra and tendency to equilibrium range
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Inviscid energy spectra
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Inviscid Scalar spectra

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1  10  100  1000

t=2.75
t=0

t=0.05
t=1.

t=1.5 
t=2.0
t=2.5

E
θ
(k
)k

2

k

20483

P. Orlandi HPC for CFD and Astro CINECA 2017



Viscous Flows

Energy q = 〈u2
i 〉 equation

∂q
∂t = Ω

Re
Kolmogorov at large t q ∝ t−m

m does not depend on ν
If Re increases Ω increases

Enstrophy equation
∂Ω
∂t = PΩ − DΩ

Re
DΩ/Re rate enstrophy dissipation
DΩ/Re = 〈( ∂ω∂xi

)2〉/Re;PΩ =< ωiωjSij >

Opposite effects of PΩ and DΩ/Re
However at high Re initially PΩ strong
To create Ω at intermediate scales
Later on DΩ/Re grows preventing FTS

Scalar equation
∂θl
∂t + ∂uiθl

∂xi
= 1

RePr
∂2θl
∂x2

i
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Enstrophy evolution
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Enstrophy production

∂Ω
∂t =< ωiωjSij > + 1

Re < ωi∇2ωi >, PΩ =< ωiωjSij >

P̃Ωl = ω̃2
l S̃l
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Spectra and Structures

Inviscid t = 2.75 filtered 15363

Viscous t = 3.0 Re = 10000 10243 , Re = 2500 7683
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Spectra and Structures from Vortex to Turbulence

Re = 10000 10243

t = 3.0 t = 3.5 t = 4.0
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Scalar gradient variance and enstrophy evolution

Scalar dissipation χ =< ( ∂θ
∂xi

)2 >=< G2
i >

∂χ
∂t = − < GiGjSij > + 1

RePr < Gi∇2Gi > PG =<
GiGjSij >

P̃Gl = G̃l
2
S̃l
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Rate of energy and scalar dissipation

ǫ = νΩ

ǫθ = αχ
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Difference between χ and Ω

 0.1

 1

 10

 100

 1000

 0  1  2  3  4  5  6

Re=10^4
INV

Ω

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  1  2  3  4  5  6

l=1
l=2
l=3

P̃
Ω

l

 0.1

 1

 10

 100

 0  1  2  3  4  5  6

χ

t
-2000

-1500

-1000

-500

 0

 500

 1000

 0  1  2  3  4  5  6

P̃
G

l

t

P. Orlandi HPC for CFD and Astro CINECA 2017



Energy and scalar spectra
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Energy and scalar spectra
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Energy and scalar spectra
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Energy and scalar spectra

Comparison with forced isotropic turbulence

Jimenez at Rλ = 168 Donzis & Sreenivasan Rλ = 1100
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Conclusions MFU Velocity

DNS allow to establish
Euler has FTS
I.C. important for the best trend (ts − t)−1

Flows with power laws (Lamb) k−n more efficient
Numerical methods affect the trend

Navier-Stokes do not have FTS

Depending on Re earlier deviation from (ts − t)−1

Varying Re finite rate of energy dissipation ǫ

In time Ω amplification PΩ > DΩ

Constant ǫ PΩ ≈ DΩ

n varies from n = −3 (FTS) to n = −5/3 Kolmogorov

Formation of exponential range

More on JFM Vol.690 280-320.
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Conclusions Scalar

Inviscid
Passive scalar at t = 0 Eθ ≈ k−4
at FTS t = 0 Eθ ≈ k−2 sheets
Growth of χ similar to Ω
− < GiGjSij > not too different from < ωiωjSij >

Viscous scalar
Maximum of χ and Ω at same t
Dependence on Re
Power law decay with t−n

E(k) and Eθ reach k−5/3
Large differences in − < GiGjSij > and < ωiωjSij >

More on JOT Vol.15 No. 11 731-751.
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High Reτ channels and Couette flows

Large interest in wall-bounded flows

Boundary layers, circular pipes and plane channels

Theoretical arguments

Log-law for U+ Prandtl

Attached eddies (Townsend)

Very high Re superstructures

P. Orlandi HPC for CFD and Astro CINECA 2017



DNS using HPC

Channel Bernardini JFM 742, Orlandi JFM 770
Superstructures at high Re

del Alamo et al. up to Reτ = 2000 not wide log-law
at Reτ > 104 very satisfactory for many question
at Reτ ≈ 4000 crossover prod. at y+ ≈ 100
at Reτ = 4000 some answer
Reτ = 4000 Bernardini 8192 × 1024 × 4096 in 12π × 2π

Couette Pirozzoli JFM 758

Production at centerline
Superstructures at low Re

Reτ up to 1000 5120 × 512 × 1536 in 12π × 2π
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u′2
2 stress

Townsend (attached eddies) u′2
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u′
1u′

2 stress

Townsend (attached eddies) u′
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u′2
3 stress

Townsend (attached eddies) u′2
3 /u

2
τ = C3 + klog(h/y)
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u′2
1 stress

Townsend (attached eddies) u′2
1 /u

2
τ = C1 + klog(h/y)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0.01  0.1  1

y/h

u
′2 1
/u

2 τ

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0.1  1  10  100  1000

y+

√
u
′2 1
/u

2 τ

P. Orlandi HPC for CFD and Astro CINECA 2017



Transport of TKE

Balance of production and ǫ

In the outer region y+P+ = y+ǫ+
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〈u′2
2 〉 and N-S equations

〈u′2
2 〉 difficult to measure small dependence on Re

ũ2|max ≈ uτ then ũ+
2 ≈ 1

From u2 equation 〈p〉+ 〈u′2
2 〉 = P0

From pressure equation

-∇2p = sijsji − ωiωi/2 = −Q

Q > 0 tube-like

Q < 0 ribbon-like

−∂
2〈p〉
∂x2

2

= −〈Q〉 = 〈sijsji〉 − 〈ωiωi/2〉 =
∂2〈u2

2〉
∂x2

2

(1)

∂2〈u2
2〉

∂x2
2

accounts for structures
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Production and structures
∂2〈u2

2〉

∂x2
2

accounts for structures
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q and ǫ
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Superstructures and drag Control

Smits & Marusic Physics Today (2013)
connection between superstructures and wall structures
could plausibly reveal new strategies to reduce drag by
manipulating the super structures
Our view drag Control only by changing wall b.c.
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A numerical turbulent wind tunnel

In Wind Tunnels a clean flow

Requires an accurate design of

inlet (contraction)

test section

exit (diffuser)

return

FOR A NUMERICAL WIND TUNNEL
Accurate basic numerical method
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Complex bodies

In wind tunnels flows past bodies

Numerically
Body fitted coordinates non-orthogonal

Difficulties in numerics
Inefficient codes (elliptic equations)

Orthogonal coordinates body surface discretized
Simple numerics
Efficient codes direct solver elliptic equations
Inaccuracy near walls

Small scales generated
Dissipated by viscosity
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Early Immersed Boundary Methods

Vieceli (1969) 2D steady

Vieceli (1971) 2D unsteady

Imposition impermeability

Peskin body forces 1972 2D

Basdevant , Briscolini & Santangelo Mask method

Based on impositions of body forces

Inaccurate near surface

Small ∆t

Impossibility to deal with turbulence
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Rediscover Immersed Boundary Methods

Fadlun (JCP 2000 1430 citations) revisited Vieceli
approach

Zero velocity inside body
Interpolation first point external body
Large ∆t
Turbulent flows accessible

Huge number of versions available
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Our immersed boundary methods

Rough channels

No constant mass with interpolation

Interpolation does not give true friction

No Balance between pressure gradient and wall friction

Present

Inside body as Fadlun

Metric at the first external point

For viscous terms

No correction for non-linear

No correction for pressure

Impermeability more than sufficient
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Validation IBM roughness

Turbulent flows past circular rods

Comparison between boundary layers (exp)

and channels (DNS)
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Validation IBM through experiments
Turbulent flows past square bars
Experiment ad hoc designed
Burattini JFM 600
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Isotropic turbulence decay

Grid turbulence in wind tunnels

Intermediate solidity
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Laminar-turbulent b.l. transition

Orlandi (arXiv.1503.08614.pdf 2015)

Paper rejected twice for numerics

Solid element
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2D trip

Transverse square bar
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Bluff bodies

Two cylinders
Vorticity at Re = 600
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Rough walls

Darcy (1857) resistance function of friction factor
Cf (V ,D, ǫ, ν)
Several exp. performed to find Cf

Pigott (1933) real pipes fully rough
Nikuradse (1933) fully rough sand-grain
Schlichting (1936) roughness elements spheres cones etc.
Colebrook (1938) sand-grain + large elements
Moody (1944) produced a diagram of practical interest
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Moody diagram

Three regimes
Laminar independent from surface depends on Re
Fully turb. depends on surface indep. from Re
Transitional depends on surface and Re
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Roughness description
U contours in a z − y plane

CH SC

TRBAR TRBARSM
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Time evolution of components flow resistance
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U+ profiles definition
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U+ profiles
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Total stress
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Roughness parametrization for channel

Roughness function ∆U+
W vs ũ′+

2 |w
Ũ+ − Ũ+

w = κ−1 ln(ỹ+) + B(1 − ũ′+
2 |w
κ )

Roughness classified by ũ′
2|w

Holds for any kind of rough surface
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Eguivalent roughness height and ũ′+
2 |w

8.48 + 1
κ ln(y+/Z+) = κ−1 ln(ỹ+) + B(1 − ũ′+

2 |w
κ )
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A new Moody diagram

Based on ũ′
2 and UW

Ũ − Ũw
+
= κ−1 ln(ỹ+) + B(1 − ũ′+

2 |w
κ ) , B = 5.0

ŨH
+
= κ−1 ln(H+) + B(1 − ũ′+

2 |w
κ

)
Since U+

H = C + U+
bulk

If λ = uτ/Ubulk , Cf = 2λ2

λ =
(1.+B/κũ′

2|w/Ubulk−Uw/Ubulk )

[C+ln(Rebλ)]

To fit with Cf = 0.0725Re−.25
b C = 4.5
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The new diagram
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Conclusions

CFD is a useful toll to explore
Vortex dynamics
Turbulence

Lucky to have theoretical models

Euler and Navier-Stokes equations

Hard life in the 60th and 70th

Easy life today HPC and software

I WAS UNLUCKY

HOPING MY EFFORT WILL MAKE YOU

HAPPY
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