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First numerical relativity simulation of 
neutron star merger with precessing spins: 

the double pulsar case

Baryon mass density
Viz by T.Dietrich
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Gravity field (~M/d)
Velocities (~0.1 c)
Densities

D~200 Mpc (“far away”) from the source:

Collision of neutron stars [Mass~1.4 Msun, Radius~10 km]:

d ~ 150 km

GWs: Tiny signatures of extreme events

d ~ 50 km

Strain, dL/L = h  ~ 10-22

Frequency span 10-1000 Hz (broad band)



  

First numerical relativity simulation of 
neutron star merger with precessing spins: 

the double pulsar case

Viz by T.Dietrich
Weyl curvature scalar



FUNDAMENTAL PHYSICS
Strong-field tests GR (dynamics) 

Structure of bulk matter at supranuclear densities
Heavy elements nucleosynthesis

ASTROPHYSICS (Multi-messenger)
Origin of gamma-ray burst

Origin of kilonovae, site for r-processes 

COSMOGRAPHY
Measure Hubble constant

Standard sirens, Calibrate cosmic distance ladder

What can we learn from neutron star mergers?



  

LIGO/Virgo/...

Binary neutron star mergers

Fundamental physics
Constraining the Equation of State of matter at supranuclear densities  

Different EOS → different star's structure



  

Example: observing tidal effects in GWs 
tells us about the neutron star matter

Tides depend critically on EOS

Tides determine the wave's phase during merger
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Example: observing tidal effects in GWs 
tells us about the neutron star matter

Tides depend crucially on EOS

[Del Pozzo+ PRL 111 (2013)]

Tides determine the wave's phase during merger

Matched filtering 



  

The GW spectrum of binary neutron stars 

● Faithful and complete waveform model (inspiral+merger+postmerger)

● Coverage of the parameter space (mass, spins, EOS, …)

● Precise prediction of the merger remnant (e.g. collapse, black hole)

Open problems:



  

Methods for the GR 2-body problem

 ε= V/c

 ε= m1/m2



  

Numerical relativity in a nutshell

SuperMUC (LRZ, 45M)

Marconi (CINECA, 7M)Stampede (TACC, 4M)Stampede (TACC, 4M)

High-performance-computing (HPC)

GR Formulation and Cauchy problem
+ GR hydrodynamics

Numerical methods for PDEs on adaptive grids

Coordinates and Singularities 



  

Numerical relativity: Cauchy problem in GR

[SB, Hilditch arXiv:0912.2920]

● 3+1 formulation (hyperboloidal slices?)

● Initial data (Lichnerowic, York, ...) 

● Evolution schemes (GHG; ADM →BSSN, Z4c)

● Well posedness (Choquet-Bruhat; Friedrich;  …. 
Gundlach&Martin-Garcia) [need gauge fix]



  

● Crash at tau=pi (geodesic slicing)

● Lapse collapse, slice stretching (1+log, 
shift=0)

Numerical relativity: singularities & crash tests

e.g. [Bruegmann arXiv:9912009]



  

Numerical relativity: singularities & coordinates

[Thierfelder, SB, Hilditch, Bruegmann, Rezzolla 
arXiv:1012.3703 ]

[Brandt&Bruegmann, arXiv:gr-qc/9703066, 
Baker+ arXiv:gr-qc/0511103, 
Campanelli+ arXiv:gr-qc/0511048]

“moving puncture” method for BH and BBH

Gravitational collapse to BH



  

Adaptive mesh refinement (AMR) → resolve multiple scales

Numerical relativity: numerical methods (some)

Stampede (TACC, 8M)

SuperMUC (LRZ, 35M)

Marconi (CINECA, 7M)

Grid based, AMR Berger-Oliger
Method of line w\ Runge-Kutta (Subcycling)
Finite differencing and finite volumes
Numerical relativity specs

- R.H.S. complexity (derivatives and contractions) 
→ stencil (“horizontal”) + pointwise (“vertical”) ops
- High-order operators (large 3D stencils > 5 pts/direction) 
→ communication overhead for distributed computations
- Memory: >~ O(100) 3D grid function per time level 



  

Improved NR GW with high-order WENO schemes
[SB,Dietrich PRD94 064062 (2016)]

● Robust convergence assessment (although not 5th order)

● Large resolution span (643 -1923), no alignment 

● Error budget: significant improvement wrt FV schemes

See also [SB+ arXiv:1205.3403 ] [Radice+ arxiv:1306.6052]

EOS: MS1bEOS: SLy

Phase errorPhase error



  

● Effective-one-body model with tides, GSF Resummed approach [Bini+ 2014] 

● Valid from low frequencies to merger, PREDICT the merger waveform 

● Accuracy: uncertainties of the numerical data (improve simulations!)

First waveform model for inspiral → merger
[SB,Nagar,Dietrich,Damour PRL 114 (2015)]

See [Hinderer+ PRL 116 (2016)] for an alternative approach



  

Spins & tides during merger: phasing

Tides Spin (SO)

[Dietrich, SB, Ujevic, Tichy PRD 95 (2017)]
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Frequency-domain tidal wf approximant

First NR-based tidal approximant
Fast, flexible, accurate

[Dietrich, SB, Tichy  arXiv:1706.02969]

Used for GW170817 analysis!



  

Exploring the BNS parameter space

Effective
Spin

Mass ratio

Largest exploration of parameter space in 
strong-field regime available to date 

More data: 
[Bernuzzi+ PRL (2015), Dietrich+ PRD91 (2015), SB+ PRD94 (2016), Radice+ PRD94 (2016), 
SB&Dietrich PRD94 (2016), Dietrich+ PRD95 024029 (2017), Radice+ ApJL 842 (2017), ….]

Tidal coupling constat (EOS)

● 130 BNS
● 330 dataset (multiple resolutions)
● >= 10 orbits + post merger
● Variation of M, q, EOS, spins
● Variation of input physics



  

HPC time usage

Usage in 2015/2016

Stampede (TACC, 8M)

SuperMUC (LRZ, 35M)

Marconi (CINECA, 7M)



● MPI: domain decomposition for each level
● OMP threads on MPI job
● None or poor vectorization
● Numerical relativity specs:

− R.H.S. complexity (derivatives and contractions) → 
stencil (“horizontal”) + pointwise (“vertical”) ops

− High-order operators (large 3D stencils > 5 pts/direction) → 
communication overhead for distributed computations

− Memory: >~ O(100) 3D grid function per time level 

No NR production code scales to >~ 10k cores

Production codes & parallelization

● BAM [Bruegmann (Jena) + Tichy (Florida Atlantic) + Bernuzzi 
(Parma) and others ] 

● THC [Radice (Princeton), based on Cactus & ET/CTGamma]



Porting to KNL: first strong scaling results

NOTE: no attempt to optimize code, just re-compile and run

BAM ( MPI+OMP)
Numerical relativity, 

Compact binaries simulations

FISH-ASL (MPI)
Newtonian gravity + hydro
Supernova core-collapse

and disk winds



Linearized Einstein

Tensor wave equations



*[https://software.intel.com/en-us/articles/3d-finite-differences-on-multi-core-processors/]

Operations

Tensor contractions Partial derivatives (3D) *



An anisotropic and three-components 
kilonova counterpart of GW170817

[Perego, Radice, Bernuzzi ApJL (2017) ]



Joint constraint on the neutron star equation 
of state from multimessenger observations

[Radice, Perego, Zappa arxiv:1711.03647]

● kN model → lower bound on Mdisk
● Numerical relativity → Mdisk(Lambda)
● EM+NR analysis → lower bound on Lambda
● GW analysis → upper bound on Lambda



  

Summary

● Numerical relativity is key for
– Waveform modeling

– Exploting multi-messenger astronomy info

● No standard but dedicated codes
● New challenges need 

– Improve performances

– New solutions
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