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briefly introducing myself...

Marco Baldi, Ph.D. 

Present position: Researcher @ DIFA, Bologna
   P.I. of the SIR project SIMCODE (www.marcobaldi.it/SIMCODE)

In the past: PhD @ Max Planck Institute for Astrophysics, Garching (DE)
                 Post-Doc @ Excellence Cluster Universe, Munich (DE)

Main research interests: theoretical cosmology, dark energy, structure
                                    formation, cosmological N-body simulations

Collaborations: Member of the Euclid consortium since January 2010
                       Coordinator of the WP “Numerical tools for non-standard
                       cosmological models” of the Euclid Cosmological 
                       Simulations Working Group

Numerical Projects: PI of the PRACE Tier-0 projects SIBEL1 (8.4 M CPU 
       hours) and SIMCODE1 (20 M CPU hours)
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outline (1st part)
Cosmological Simulations of structure formation: the standard case

1. A brief introduction to cosmology

2. Structure formation: 
introduction and main concepts

3. Why do we need simulations?

4. The N-body method: 
gravity solvers and time integration schemes

5. The N-body code GADGET
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outline (2nd part)
Cosmological Simulations of structure formation: the non-standard 
case

1. Non-standard cosmologies: 
Dark Energy, Modified Gravity, Massive neutrinos, Axions, etc…

2. Why do we need simulations 
(for non-standard cosmologies)?

3. Modified N-body algorithms: 
Dark Energy, Modified Gravity, Massive neutrinos, etc…

4. Accuracy and performance
of non-standard codes

5. Numerical challenges
for non-standard simulations

6. An overview on non-standard
simulations results
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A (very) brief introduction to cosmology



marco baldi - HPC methods for CFD and astrophysics - Cineca, 15 XI 2017

6

The Universe after Planck:
6 parameters to fit all data

ns = 0.9645 ⌧ = 0.079

�8 = 0.831

⌦b = 0.049 ⌦CDM = 0.265

⌦⇤ = 0.6844

The standard cosmological model
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ns = 0.9645 ⌧ = 0.079

�8 = 0.831

⌦b = 0.049 ⌦CDM = 0.265

⌦⇤ = 0.6844

Standard ΛCDM cosmology is based on a series of assumptions:
- Cosmological Principle (homogeneity & isotropy);
- Gaussian and Adiabatic initial conditions;
- Dark Matter is Cold and Collisionless;
- Neutrinos are massless;
- Dark Energy is a Cosmological Constant;
- GR is the complete theory of gravity;

The standard cosmological model
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The Universe after Planck:
6 parameters to fit all data

ns = 0.9645 ⌧ = 0.079

�8 = 0.831

⌦b = 0.049 ⌦CDM = 0.265

⌦⇤ = 0.6844

Standard ΛCDM cosmology is based on a series of assumptions:
- Cosmological Principle (homogeneity & isotropy);
- Gaussian and Adiabatic initial conditions;
- Dark Matter is Cold and Collisionless;
- Neutrinos are massless;
- Dark Energy is a Cosmological Constant;
- GR is the complete theory of gravity;

Precision 
Cosmology 
test the model’s 

assumptions with 
~1% accuracy

The standard cosmological model



Structure formation
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Linear growth of density perturbations
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The process of gravitational instability is responsible for the 
formation of cosmic structures, starting from the primordial density 
fluctuations. This process can be altered by Dark Energy.

Linear growth of density perturbations
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The process of gravitational instability is responsible for the 
formation of cosmic structures, starting from the primordial density 
fluctuations. This process can be altered by Dark Energy.

Primordial density field
zCMB ⇡ 103, aCMB ⇡ 10�3

�T/T ⇡ �⇢b/⇢b ⇡ 10�5

gravitational
instability

Structures in the present-day Universe

D+ ⇡ 103

z0 = 0, a0 = 1

�00 +H�0 � 3

2
H2� = 0

(�⇢/⇢)th ⇡ 10�2 (�⇢/⇢)
obs

⇡ 1

With a cosmological constant                         :⌦M + ⌦⇤ = 1 �+ / am, m < 1

HWith more complicated Dark Energy models also      changes non-
trivially, and additional forces might come to play, so that m 7 1

Linear growth of density perturbations



why do we need 
simulations?
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The non-linear regime of structure formation
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The evolution of primordial density perturbations can be treated 
with a perturbative approach as long as deviations from 
homogeneity are SMALL. However…

The non-linear regime of structure formation
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The evolution of primordial density perturbations can be treated 
with a perturbative approach as long as deviations from 
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gravitational
instability

Structures in the present-day Universe

D+ ⇡ 103

zCMB ⇡ 103, aCMB ⇡ 10�3 z0 = 0, a0 = 1

�00 +H�0 � 3

2
H2� = 0

�T/T ⇡ �⇢b/⇢b ⇡ 10�5 (�⇢/⇢)th ⇡ 10�2 (�⇢/⇢)
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The non-linear regime of structure formation
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The evolution of primordial density perturbations can be treated 
with a perturbative approach as long as deviations from 
homogeneity are SMALL. However…

Primordial density field

gravitational
instability

Structures in the present-day Universe

D+ ⇡ 103

zCMB ⇡ 103, aCMB ⇡ 10�3 z0 = 0, a0 = 1

�00 +H�0 � 3

2
H2� = 0

�T/T ⇡ �⇢b/⇢b ⇡ 10�5 (�⇢/⇢)th ⇡ 10�2 (�⇢/⇢)
obs

⇡ 1

... we know that in the present Universe density perturbations can 
reach large values (          on scales of                 and up to                  
in the center of galaxy clusters).

� ⇡ 1 ⇠ 8Mpc � ⇡ 105

The assumption of small perturbations does not hold anymore, 
and linearity no longer applies  ⟶  need of numerical methods

The non-linear regime of structure formation



The N-body method
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cosmological simulations in pills

Simulate the formation and evolution of structures in the Universe under the 
effect of gravitational instability. 

Use particles as fluid elements, assign initial conditions, compute 
gravitational force on particles, and evolve the system according to 
some assumptions on the physics (cosmology, astrophysical processes, etc...)

Highly non-linear processes when density perturbations exceed unity 
(maximum overdensities in the Universe today ~105)

The gravitational evolution of N particles is a N(N-1)~N2 problem! Need to 
devise approximated solutions to reduce computational cost (e.g. 
Particle-Mesh, Tree, Tree-PM, scale as N logN)

Analyze the simulations outputs through post-processing tools (halo finders, 
ray-tracers, mock galaxy catalogues) and compare with observational data



Cosmological N-body simulations
Integrate the evolution of density perturbations forward in time (starting 
from a known initial power spectrum) within a periodic, comoving, and 
cosmologically representative box filled with tracer particles

time t

redshift z



Millennium Run
Springel et al. 2005



Millennium Run
Springel et al. 2005
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The first observational hint of a DE-dominated Universe came from 
the comparison of the APM galaxy survey with N-body simulations 
~ 10 years before the detection of acceleration 
(Maddox et al. 1990, Efstathiou, Sutherland, Maddox 1990)

simulations are predictive!
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The first observational hint of a DE-dominated Universe came from 
the comparison of the APM galaxy survey with N-body simulations 
~ 10 years before the detection of acceleration 
(Maddox et al. 1990, Efstathiou, Sutherland, Maddox 1990)

EdS, ΩM=1

simulation of 
ΩM=0.2, ΩΛ=0.8

ΩM=0.2, ΩΛ=0

DATA

simulations are predictive!



N-body algorithms: PP, PM, Tree
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N-body method: the gravity solver

The N-body method makes use of a finite set of particles to sample the 
underlying density field. For a system of N particles:
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The N-body method makes use of a finite set of particles to sample the 
underlying density field. For a system of N particles:

The acceleration of each particle (i) is dictated by the global 
gravitational potential

ẍi = �ri�(xi)
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N-body method: the gravity solver

The N-body method makes use of a finite set of particles to sample the 
underlying density field. For a system of N particles:

The acceleration of each particle (i) is dictated by the global 
gravitational potential

ẍi = �ri�(xi)

The gravitational potential is dictated by the (softened) Newtonian 
interaction between the i-th particle and the remaining N-1 particles

�(x) = �G
NX

j=1

mj

[(x� xj)2 + ✏2]

+Hẋi



marco baldi - HPC methods for CFD and astrophysics - Cineca, 15 XI 2017

18

N-body method: the gravity solver

The N-body method makes use of a finite set of particles to sample the 
underlying density field. For a system of N particles:

The acceleration of each particle (i) is dictated by the global 
gravitational potential

ẍi = �ri�(xi)

The gravitational potential is dictated by the (softened) Newtonian 
interaction between the i-th particle and the remaining N-1 particles

�(x) = �G
NX

j=1

mj

[(x� xj)2 + ✏2]

The softening ε avoids large-angle scattering and the formation of 
bound particle pairs (needed for collisionless dynamics) 

+Hẋi
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The nonlinear regime of structure formation could possibly probe 
the largest deviation from ΛCDM: need of N-body!

Particle-Mesh

N-body method: the gravity solver
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the Newtonian Green’s
function 1/k2
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3) Fourier transform back the
potential to real space:
potential on the grid

The nonlinear regime of structure formation could possibly probe 
the largest deviation from ΛCDM: need of N-body!

Particle-Mesh 1) Assign mass to grid nodes,
obtain density on the grid

2) In Fourier space, compute
the gravitational potential with
the Newtonian Green’s
function 1/k2

4) Compute the force on
particles by finite differencing
the gravitational potential

N-body method: the gravity solver
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Particle-Particle (Tree) ⇒ N2 problem (N logN problem)

Compute the direct gravitational 
interaction of a TARGET particle with 
another particle or a NODE (group of 
particles) 

N-body method: the gravity solver
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are far enough (?) so that their
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Particle-Particle (Tree) ⇒ N2 problem (N logN problem)

Compute the direct gravitational 
interaction of a TARGET particle with 
another particle or a NODE (group of 
particles) 

A NODE is just a group of particles that
are far enough (?) so that their
gravitational potential is well (?)
approximated by its monopole: a single
particle in the center of mass, carrying
the total mass of the node

1) Compute the mass and the position of
the node pseudo-particle

2) Compute the particle-node
gravitational interaction

N-body method: the gravity solver
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N-body method: the time integration

tn
ẍi = �ri�(xi) = f(xi)

Once the force (hence the acceleration) on each particle is known, the 
system has to be moved forward in time (positions and velocities)
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N-body method: the time integration

Once the force (hence the acceleration) on each particle is known, the 
system has to be moved forward in time (positions and velocities)

tn + Δt
ẍi = �ri�(xi) = f(xi)

Several possible time integration 
schemes (Euler, Runge-Kutta, mid-
point), the most widely used is the 
LEAPFROG:

vn+ 1
2
= vn + f(xn)

�t

2

vn+1 = vn+ 1
2
+ f(xn+1)

�t

2

xn+1 = xn + vn+ 1
2

�t

2

Kick

Kick

Drift



How to add hydrodynamics: the SPH method

Credit: all slides with a black background are a 
courtesy of my PhD student Matteo Nori



SPH implementation
   



SPH implementation
   

 

 



SPH implementation

 

 

   



The N-body code GADGET
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GADGET IN PILLS
gadget is a parallel N-body SPH code based on a TreePM algorithm 
that is widely used in the community:

Gadget1 (Springel, Yoshida, White, 2001) 806 citations
Gadget2 (Springel 2005) 2376 citations
gadget3 (not public)
gadget4 (coming soon?)
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GADGET IN PILLS
gadget is a parallel N-body SPH code based on a TreePM algorithm 
that is widely used in the community:

Gadget1 (Springel, Yoshida, White, 2001) 806 citations
Gadget2 (Springel 2005) 2376 citations
gadget3 (not public)
gadget4 (coming soon?)

What does TreePM mean? 
The gravitational potential is split into a long-range part and a short-
range part, which are computed with PM and Tree, respectively

�k = �short

k + �long

k

—> PM

—> Tree

Springel (2005)



marco baldi - HPC methods for CFD and astrophysics - Cineca, 15 XI 2017

29

GADGET IN PILLS

Language: ANSI-C 
Parallelization: MPI (pthreads, hybrid MPI/OpenMP)
Domain decomposition: space-filling Peano-Hilbert curve
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GADGET IN PILLS

Scalability: tested up to 8192 cores with MPI implementation
               tested up to 12000 cores with hybrid MPI/OpenMP
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accuracy of N-body simulations
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accuracy of N-body simulations



Non-standard cosmologies
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The Universe after Planck:
6 parameters to fit all data

ns = 0.9645 ⌧ = 0.079

�8 = 0.831

⌦b = 0.049 ⌦CDM = 0.265

⌦⇤ = 0.6844

The standard cosmological model
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The Universe after Planck:
6 parameters to fit all data

ns = 0.9645 ⌧ = 0.079

�8 = 0.831

⌦b = 0.049 ⌦CDM = 0.265

⌦⇤ = 0.6844

Standard ΛCDM cosmology is based on a series of assumptions:
- Cosmological Principle;
- Gaussian and Adiabatic initial conditions;
- Dark Matter is Cold and Collisionless;
- Neutrinos are massless;
- Dark Energy is a Cosmological Constant;
- GR is the complete theory of gravity;

Testing the assumptions of the SM
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DE is not a cosmological constant but a dynamical d.o.f. with 
perturbations and interactions (e.g. to CDM or massive neutrinos)

non-standard models: Dark Energy Fields
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DE is not a cosmological constant but a dynamical d.o.f. with 
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Field equations:

if we assume a non-
universal interaction that 
leaves baryons uncoupled

non-standard models: Dark Energy Fields
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[MB, v. pettorino, g. robbers, v. springel, MNRAS 403 (2010)]

Interacting DE: two families of particles with independent couplings

~a1 = �~r�N�2�2
1
~r�1 � 2�1�2

~r�2+�1�̇~v1

~a2 = �~r�N�2�2
2
~r�2 � 2�1�2

~r�1+�2�̇~v2

Different phenomenology for 
di fferent types of coupled 
pa r t i c l es and s t reng th o f 
coupling

non-standard models: Dark Energy Fields
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[MB, v. pettorino, g. robbers, v. springel, MNRAS 403 (2010)]

case 1: CDM is coupled, baryons are uncoupled

~a1 = �~r�N�2�2
1
~r�1 � 2�1�2

~r�2+�1�̇~v1

~a2 = �~r�N�2�2
2
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m(�)

m(�)

G11

�1�̇~v1

�1�̇~v1

m(�)

m(�)

uncoupled

G

G

�̃

�̃ �̃

�̃

 

 

�2
1��

non-standard models: Dark Energy Fields

Just a cartoon!
Not a quantum theory!
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[MB, v. pettorino, g. robbers, v. springel, MNRAS 403 (2010)]

case 2: CDM and baryons are uncoupled, neutrinos are coupled

~a1 = �~r�N�2�2
1
~r�1 � 2�1�2

~r�2+�1�̇~v1

~a2 = �~r�N�2�2
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coupled

m(�)

m(�)

G11

�1�̇~v1

�1�̇~v1

m(�)

m(�)

uncoupled

G

G �2
1��

⌫

⌫ ⌫

⌫
�̃

�̃

non-standard models: Dark Energy Fields

Just a cartoon!
Not a quantum theory!
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[MB, v. pettorino, g. robbers, v. springel, MNRAS 403 (2010)]

case 3: a CDM doublet with opposite coupling constants

~a1 = �~r�N�2�2
1
~r�1 � 2�1�2

~r�2+�1�̇~v1

~a2 = �~r�N�2�2
2
~r�2 � 2�1�2

~r�1+�2�̇~v2

coupled coupled

m(�)

m(�)

G11 G22

G12

�1�̇~v1

�1�̇~v1

�2�̇~v2

�2�̇~v2

m(�)
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�1�2��

�2
2��

�̃+

�2
1��

�̃+ �̃+

�̃+

�̃�

�̃� �̃�

�̃�

�̃�

�̃�

�̃+

�̃+

REPULSIVE!

non-standard models: Dark Energy Fields

Just a cartoon!
Not a quantum theory!
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The Universe after Planck:
6 parameters to fit all data

ns = 0.9645 ⌧ = 0.079

�8 = 0.831

⌦b = 0.049 ⌦CDM = 0.265

⌦⇤ = 0.6844

Standard ΛCDM cosmology is based on a series of assumptions:
- Cosmological Principle;
- Gaussian and Adiabatic initial conditions;
- Dark Matter is Cold and Collisionless;
- Neutrinos are massless;
- Dark Energy is a Cosmological Constant;
- GR is the complete theory of gravity;

Testing the assumptions of the SM
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Gravity does not follow GR at large scales: 
GR recovered in our local environment (screening mechanism)

R ! R+ f(R)

non-standard models: Modified Gravity
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Gravity does not follow GR at large scales: 
GR recovered in our local environment (screening mechanism)

Background: can be fixed to match ΛCDM (Hu & Sawicki 2007)

r2fR =
1

3c2
(�R� 8⇡G�⇢)

Field equations:

R ! R+ f(R)

mg-gadget 
Puchwein, MB, 
Springel 2013

Can be solved with an iterative NGS 
relaxation scheme on an AMR grid obtained 

from the Gadget gravitational tree

non-standard models: Modified Gravity
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Gravity does not follow GR at large scales: 
GR recovered in our local environment (screening mechanism)

Background: can be fixed to match ΛCDM (Hu & Sawicki 2007)

r2fR =
1

3c2
(�R� 8⇡G�⇢)

Field equations:

R ! R+ f(R)

universal interaction: need 
to have large fluctuations of 
the field, fully non-linear 
field equation

requires iterative 
numerical methods

r2� =
16⇡G

3
�⇢� 1

6
�R

Structure formation:

non-standard models: Modified Gravity
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• Thermal velocities obey a Fermi-Dirac distribution with mean: 

kfs(z) = 0.82
H(z)

H0

1

(1 + z)2
m⌫

eV

h

Mpc
v̄th ⇠ 160(1 + z)

eV

m⌫



marco baldi - HPC methods for CFD and astrophysics - Cineca, 15 XI 2017

45
non-standard models: Massive Neutrinos

kfs(z) = 0.82
H(z)

H0

1

(1 + z)2
m⌫

eV

h

Mpc

Castorina et al. 2016

Free streaming 
suppresses structure 
at small scales
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Non-standard cosmological simulations
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Dark Energy models 
(no screening)

Modified Gravity models 
(with screening)

Primordial Running 
non-Gaussianity

Massive neutrinos

Axion Dark Matter

numerical tools for non-standard simulations
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Dark Energy models 
(no screening)

Modified Gravity models 
(with screening)

Primordial Running 
non-Gaussianity

Massive neutrinos

Axion Dark Matter

c-gadget MB et al. 2010

mg-gadget Puchwein, MB, 
Springel 2013

pngrun Wagner et al. 
2010-2012

nu-gadget Viel, Haehnelt, 
Springel 2010

ax-gadget Nori & Baldi in 
prep.

numerical tools for non-standard simulations
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ΛCDM

from inflation to galaxies... how?

cD
E-CDM

f(R) gravity

Axion Dark Matter

mν ≠ 0



why do we need 
simulations for non-

standard cosmologies?
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interacting de: break degeneracies

Lensing power spectrum extracted from N-body simulations 
with a ray-tracing technique (Pace, MB, et al. 2014)

degeneracy 
with standard 

ΛCDM 
parameters

the lensing 
power 

spectrum at 
small scales 
breaks the 
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modified gravity: capture the screening

Zhao et al. 2011

without 
full non-linear 

screening
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modified gravity: capture the screening
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full non-linear 

screening



marco baldi - HPC methods for CFD and astrophysics - Cineca, 15 XI 2017

59
massive neutrinos: correctly predict features

[Courtesy C. Carbone]

Nonlinear suppression of the matter P(k) ~15% larger than linear 
predictions at k~1-2 h/Mpc (critical range of scales for WL surveys)

[see also Bird, Viel & Haehnelt 2012]

mν = 0.17; 0.3; 0.53 eV
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axion dm: correctly predict features

Nori & Baldi in prep



Main numerical implementations



Dark Energy
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Particle-Mesh (for interacting DE)

In interacting DE the coupling determines two different 
gravitational forces for dark matter and baryons:

N-body algorithms for interacting Dark Energy
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The mg-gadget code (Puchwein, MB, Springel 2013) is a new 
tool for cosmological N-body simulations in Modified Gravity 
cosmologies, and the only one implemented on a TreePM code 

N-body algorithms for Modified Gravity: f(R)
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The mg-gadget code (Puchwein, MB, Springel 2013) is a new 
tool for cosmological N-body simulations in Modified Gravity 
cosmologies, and the only one implemented on a TreePM code 

• Implemented models: f(R) gravity

• The field equation                                            is discretized 
in position space

r2fR =
1

3c2
(�R� 8⇡G�⇢)

• Equation solved using the iterative Newton-Gauss-Seidl 
relaxation scheme

• The tree nodes are used as the cells of an adaptive mesh

• Employs multi-grid acceleration to achieve faster convergence

N-body algorithms for Modified Gravity: f(R)
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The mg-gadget code (Puchwein, MB, Springel 2013) is a new 
tool for cosmological N-body simulations in Modified Gravity 
cosmologies, and the only one implemented on a TreePM code 

• Once       is known,              is also known, and the Poisson 
equation

fR �R(fR)

r2� =
16⇡G

3
�⇢� 1

6
�R

can be solved using the standard Gadget TreePM algorithm by:

i) associate an effective particle mass           to the density 
perturbations 
ii) Apply the standard TreePM integration to the particles 
with mass 

�R
m�R

m+m�R

N-body algorithms for Modified Gravity: f(R)
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massive neutrinos in gadget
Massive neutrinos have been included in N-body codes by 
different groups (see e.g. Brandbyge et al. 2008, Viel et al 2010, 
Wagner et al. 2012)

Two possible approaches
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massive neutrinos in gadget
Massive neutrinos have been included in N-body codes by 
different groups (see e.g. Brandbyge et al. 2008, Viel et al 2010, 
Wagner et al. 2012)

Two possible approaches

Particle-based: neutrinos are treated as a separate family of 
particles with a FD thermal velocity distribution (White et al 
1983, Brandbyge et al. 2008, Viel et al. 2010)

Grid-based: the neutrino gravitational potential is computed on a 
grid and used to correct the CDM particles evolution (Brandbyge 
& Hannestad 2009, Viel et al. 2010)

We adopt the latter method (more accurate in the non-linear 
regime, see e.g. Bird et al 2012)
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are non-standard  
codes reliable?
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N-body codes for non-standard models seem to be mature for 
accurate simulations. One example: comparison of MG codes 
(Winther et al. arXiv:1506.06384):

Comparing codes accuracy
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Found a 
relative 
accuracy in the 
power 
spectrum 
deviation
better than 1% 
up to k~5 h/
Mpc (at z=0)

Comparing codes accuracy
N-body codes for non-standard models seem to be mature for 
accurate simulations. One example: comparison of MG codes 
(Winther et al. arXiv:1506.06384):
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Found a good 
relative 
accuracy also 
in the velocity 
divergence 
power spectra

Comparing codes accuracy
N-body codes for non-standard models seem to be mature for 
accurate simulations. One example: comparison of MG codes 
(Winther et al. arXiv:1506.06384):
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Found a good 
relative 
accuracy also 
in the halo 
abundance 
(though with a 
slightly larger 
scatter)

Comparing codes accuracy
N-body codes for non-standard models seem to be mature for 
accurate simulations. One example: comparison of MG codes 
(Winther et al. arXiv:1506.06384):
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Total CPU time
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c-gadget & mg-gadget scaling

c-gadget tested on 6656 cores @ MareNostrum (Barcelona)
mg-gadget tested on 8192 cores @ SuperMuc (LRZ) 
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ax-g performance: algorithm overhead
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Results of non-standard cosmological simulations
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the CoDECS projectthe CoDECS project
A publicly available suite of cosmological N-body 

simulations for interacting Dark Energy models

www.marcobaldi.it/CoDECS

MB, MNRAS 422 (2012), arXiv:1109.5695

http://www.marcobaldi.it/CoDECS
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comparing lss and halo properties in CoDECS
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comparing lss and halo properties in CoDECS



CoDECS results
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Coupled Dark Energy Cosmological Simulations

(data publicly available at www.marcobaldi.it/CoDECS)

http://www.marcobaldi.it/CoDECS
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Abundance of high z 
massive clusters
MB (2012), 
Harrison & Coles (2012)

Abundance of 
bullet-like systems
Lee & MB (2012)

z-space distortions
Marulli, MB et al. (2012)

WL forecasts for DES and 
Euclid in interacting DE
Beynon, MB, et al. (2012)

c-M relation in 
interacting DE cosmologies
Cui, MB, et al. (2012)

BAO dynamical footprints of DE 
interactions
Vera et al. (arXiv:1212.0853)

Halo formation history in 
interacting DE cosmologies
Giocoli, MB,  et al. (2013)

Spin alignment of galaxy 
pairs in interacting DE
Lee (2012)

High-order statistics as a 
signature of Dark Energy
Moresco, MB et al. (2014)

CMB lensing in interacting 
DE models
Carbone, MB et al. (2013)

WL ray tracing
Pace, MB et al. (2014)

WL tomography
Giocoli, MB et al. (2015)

CoDECS
Coupled Dark Energy Cosmological Simulations

(data publicly available at www.marcobaldi.it/CoDECS)

http://www.marcobaldi.it/CoDECS
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the CoDECS project: results so far...

The abundance of high-z massive clusters: MB 2012

Are high-z massive clusters in tension with ΛCDM?
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the CoDECS project: results so far...

Infall velocity of colliding bullet-like clusters, Lee & MB 2012

Is the bullet cluster in tension with ΛCDM?
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the CoDECS project: results so far...

Infall velocity of colliding bullet-like clusters, Lee & MB 2012

Is the bullet cluster in tension with ΛCDM?

Colliding galaxy clusters with 
comparable mass, high infall 
velocity, and low impact 
parameter are expected to be 
very rare in ΛCDM (Lee & 
Komatsu 2010)
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Infall velocity of colliding bullet-like clusters, Lee & MB 2012

Is the bullet cluster in tension with ΛCDM?

Colliding galaxy clusters with 
comparable mass, high infall 
velocity, and low impact 
parameter are expected to be 
very rare in ΛCDM (Lee & 
Komatsu 2010)
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halo structural properties in cDE

Breaking the c-σ8 
degeneracy for some 
specific cDE realizations

Giocoli, MB, et al. 2013
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halo structural properties in cDE

Breaking the c-σ8 
degeneracy for some 
specific cDE realizations

Substructure abundance 
discriminates among 

different cDE models

Giocoli, MB, et al. 2013
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primary anisotropies
cosmic structure formation

carbone et al.,2013,  
arXiv:1305.0829

CMB lensing in interacting dark energy
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primary anisotropies
cosmic structure formation

lensed anisotropies

carbone et al.,2013,  
arXiv:1305.0829

CMB lensing in interacting dark energy
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Different 
cDE models 
produce a 
different 
lensing signal 
on the CMB

carbone, MB, et al., 2013

CMB lensing in interacting dark energy
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weak lensing tomography in cDE

Ray-tracing with different source redshifts (Giocoli, MB, et al. 2015)
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weak lensing tomography in cDE

Ray-tracing with different source redshifts (Giocoli, MB, et al. 2015)
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weak lensing tomography in cDE

Ray-tracing with different source redshifts (Giocoli, MB, et al. 2015)
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weak lensing tomography in cDE

Ray-tracing with different source redshifts (Giocoli, MB, et al. 2015)

Use WL to constrain 
σ8 assuming a 
ΛCDM cosmology: 

if the best-fit value 
depends on the 
source redshift, then 
something is wrong 
in the assumed 
cosmology
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structure formation in multi-coupled de

First low-res. simulations of multi-coupled Dark Energy [MB, MNRAS 428 2013]
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structure formation in multi-coupled de

� = 0 � = 1/2

First low-res. simulations of multi-coupled Dark Energy [MB, MNRAS 428 2013]
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� = 0 � =
p

3/2

structure formation in multi-coupled de

First low-res. simulations of multi-coupled Dark Energy [MB, MNRAS 428 2013]
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� = 0 � = 1

structure formation in multi-coupled de

First low-res. simulations of multi-coupled Dark Energy [MB, MNRAS 428 2013]
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� = 0 � =
p

3/2

structure formation in multi-coupled de

First low-res. simulations of multi-coupled Dark Energy [MB, MNRAS 428 2013]
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High-resolution simulations

With higher resolution simulations [MB, PDU 2014] it was possible to 
observe for the first time the fragmentation of individual halos in McDE

z = 0� = 0

MB, Phys. Dark Univ. 2014
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High-resolution simulations

With higher resolution simulations [MB, PDU 2014] it was possible to 
observe for the first time the fragmentation of individual halos in McDE

z = 0� = 0 |�| =
p
3/2 z = 0

MB, Phys. Dark Univ. 2014
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High-resolution simulations
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High-resolution simulations

With higher resolution simulations [MB, PDU 2014] it was possible to 
observe for the first time the fragmentation of individual halos in McDE
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High-resolution simulations

With higher resolution simulations [MB, PDU 2014] it was possible to 
observe for the first time the fragmentation of individual halos in McDE

1� 2M�
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M± ⌘ M(type, < R200)
virial abundance 

ratio
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High-resolution simulations

With higher resolution simulations [MB, PDU 2014] it was possible to 
observe for the first time the fragmentation of individual halos in McDE
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virial abundance 

ratio
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Zoom-in simulations: the ZInCo code
ZInCo (Zoomed Initial Conditions) is a new MPI-parallel code for 
generating multi-resolution and multy-particle type ICs for zoomed 
simulations
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Zoom-in simulations: the ZInCo code
ZInCo (Zoomed Initial Conditions) is a new MPI-parallel code for 
generating multi-resolution and multy-particle type ICs for zoomed 
simulations

Diluted simulation Lagrangian region in 
original high-res ICs

Zoomed ICs by grouping 
particles in low-res zones

Garaldi et al. 2016
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Zoom-in simulations: the ZInCo code

Garaldi et al. 2016
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Zoom-in simulations: results
First result: early segregation. 

Already at z~5 there are two clear distinct density peaks

Garaldi et al 2016
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Zoom-in simulations: results
Second result: formation of density cores 

in the total DM density

Garaldi et al. 2016



Modified Gravity
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Universal couplings: Extended Quintessence, f(R), Symmetron, Dilaton, et al.

r2�� = F (��) + �(�)�⇢M

where F is a nonlinear function: a nonlinear Poisson equation to solve!!

Modified Gravity
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Universal couplings: Extended Quintessence, f(R), Symmetron, Dilaton, et al.

r2�� = F (��) + �(�)�⇢M

where F is a nonlinear function: a nonlinear Poisson equation to solve!!

First simulations by Oyaizu 2008; Oyaizu, Lima, Hu 2008; Schmidt et al 2009 
using an iterative scheme within a fix-grid PM code

The scalar fifth-force is suppressed in 
high-density regions according to the 
solution of the nonlinear Poisson 
equation for δϕ. The screening 
mechanism (in this case a Chameleon 
effect) is more efficient for lower 
values of |fR0|

(PM)

Modified Gravity
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mg-gadget
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Modified Gravity
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mg-gadget

arnold et al. 2014

Dynamical vs. true masses of groups and clusters

Modified Gravity



Axion Dark Matter



Simulation
   

  



Simulation
   

  



Simulation
   

  



Simulation
   

  



Simulation
   

  



Simulation
   

  



Simulation
   

  



Simulation
   

  



Simulation
   

  



CDM CDM + QP

FDM + QPFDM
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conclusions

The next era of Precision Cosmology needs large and 
accurate N-body simulations to test data analysis 
pipelines, to perform cosmological model selection, and 
to constrain cosmological parameters 

Many competing models still on the market means 
many simulations to be performed, for many values of 
the related parameters… computational cost is an 
issue.



marco baldi - HPC methods for CFD and astrophysics - Cineca, 15 XI 2017

148

suggested readings

Cosmology and structure formation

N-body simulations

Non-standard cosmological models

Non-standard cosmological simulations

A. Liddle, An introduction to modern cosmology (Wiley) 
J. Peacock, Cosmological Physics (Cambridge University Press) 
S. Weinberg, Gravitation and Cosmology (Wiley) 
S. Dodelson, Modern Cosmology (Elsevier)

R. Hockney and J. Eastwood, Computer simulations using particles (Taylor & Francis) 
S. Aarseth, Gravitational N-body simulations (Cambridge) 
V. Springel 2005, The cosmological simulation code GADGET-2 (MNRAS) 
M. Kuhlen et al. 2012, Numerical Simulations of the Dark Universe (Phys. Dark Univ.) 

L. Amendola and S. Tsujikawa: Dark Energy, Theory and Observations (Cambridge) 
The Euclid Theory WG Review, Amendola et al. 2013 (Living. Rev. Rel.)

M. Baldi 2012, Dark Energy simulations (Phys. Dark Univ.)


