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I.	PLASMAS	AS	FLUIDS	



Observational	Evidence	

•  It	is	estimated	that	more	than	99.9	%	of	matter	in	the	
Universe	exists	in	the	form	of		plasma;	

•  A	plasma	is	a	ionized	gas		where	charged	particles	interact	
via	electromagnetic	forces	(electric	and	magnetic	fields);	

•  Examples	include	stars,	nebulae,	galaxies,	supernovae,	
interstellar/galactic	medium,	jets,	accretion	disks,	etc..	

•  Our	knowledge	limited	by	what	we	can	actually	observe	à	
emitting	plasma.	



Plasma	Modelling:	Classical	Description	

Individual	particle	motion	

Charge	and	currents	

Maxwells’	Equations	

à Not	feasible	!	
	(too	many	degress	of	freedom)	



Plasma	Modelling:	Kinetic	Description	
•  Kinetic	Description:	

•  Particle	In	Cell:	(PIC)	methods	are	based	on	a	finite	element	approach,	but	
with	moving	and	overlapping	elements.	Distribution	function	of	each	species	is	
given	by	the	superposition	of	several	elements	(“superparticles”):		

•  Each	element	represents	a	large	number		
						of		physical	particles	that	are	near	each	other	in	phase	space.		
	

Vlasov	Equation:	f(x,v,t)	is	the	distribution	function	(for	a	given	species)	giving	the		
number	density	per	unit	element	of	phase	space	

Most	consistent	approach,	but	must	resolve	the	plasma	(electron)	
skin	depth,		



Kinetic	Description	
•  PIC	codes	are	applicable	to	study	small-

scale	kinetic	effects.	

•  Stability	constraints	impose	a	time	step	
that	is	able	to	resolve	with	a	cadence	of	
about	1/10	the	fastest	frequency	in	the	
system.		

•  For	space	weather	applications,	this	is	
commonly	the	electron	plasma	
frequency,		5–7	orders	of	magnitude	
smaller	than	the	typical	scales	of	
evolution	of	space	weather	phenomena.		

•  Ion	scales	are	smaller	and	the	electron	
scales	much	smaller,	down	to	100	m	
corresponding	to	typical	electron	Debye	
lengths.		

Typical	scales	observed	in	the	Earth		
magnetotail	(Lapenta	JCP	(2012),	231).	
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From	Kinetic	to	Fluid	to	MHD		
•  Vlasov	/	Fokker	Plank	describes	the	time	evolution,	

in	phase	space,	of	the	plasma	distribution	function	
f(x,v,t):	

•  Two-fluid	model		(ions	&	electrons)	derived	by	
integrating																											over	velocity	space	and	
taking	moments	of	increasingly	higher	order.	

•  A	one	fluid	model	is	derived	by	proper	average	of	
the	ions	and	electrons	fluid	equations.	

•  Magnetohydrodynamics	(MHD)	is	a	further	
simplification	of	the	one	fluid	model.			

Vlasov	

Two-fluid	

One-fluid	

MHD	

Small	scales,		
high	frequency	

Large	scales,		
low	frequency	



Validity	of	Fluid	approximations	
•  The	fluid	approach	treats	the	system	as	a	continuous	medium	and	

considering	the	dynamics	of	a	small	volume	of	the	fluid.		

•  Meaningful	to	model	length	scales	much	greater	than	mean	free	path	or	
individual	particle	trajectories.			

•  “Fluid	element”:	small	enough	that	any	macroscopic	quantity	has	a	
negligible	variation	across	its	dimension	but	large	enough	to	contain	
many	particles	and	so	to	be	insensitive	to	particle	fluctuations.		

•  Fluid	equations	involve	only	moments	of	the	distribution	function	
relating	mean	quantities.	Knowledge	of	f(x,v,t)	is	not	needed*.		

	
•  Still:	taking	moments	of	the	Vlasov	equation	lead	to	the	appearance	of	a	

next	higher	order	moment	à	“loose	end”	à	Closure.	



Magetohydrodynamics:	Assumptions	
•  Ideal	MHD	describes	an	electrically	conducting	single	fluid,	

assuming:	

–  low	frequency																																															,		

–  large	scales			

–  Ignores	electron	mass	and	finite	Larmor	radius	effects;	

–  Assume	plasma	is	strongly	collisional	à	L.T.E.,	isotropy;	

–  Fields	and	fluid	fluctuate	on	the	same	time	and	length	scales;	

–  Neglect	charge	separation,	electric	force	and	displacement	current.	
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Ideal	MHD	at	Last	

•  MHD	suitable	for	describing	plasma	at	large	scales;	

•  Good	first	approximation	to	much	of	the	physics,	even	when	some	of	
the	conditions	are	not	met.	

•  Draw	some	intuitive	conclusions	concerning	plasma	behavior	without	
solving	the	equations	in	detail.		

•  Fluid	equations	are	hyperbolic	conservation	laws.	
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(Special)	Relativistic	Ideal	MHD	
•  Special	relativistic	MHD	equations:	

	

•  Relativistic	effects:		
–  Bulk	motion:		v	≈	c;	
–  Strongly	magnetized	rarefied	plasmas:	VA	≈	c;	
–  Extremely	hot	plasmas:	kT/m	≈	c2.	
	

•  Both	MHD	and	relaticistic	MHD	are	nonlinear	systems	of	hyperbolic	PDE.	

The Astrophysical Journal Supplement Series, 198:7 (31pp), 2012 January Mignone et al.

where q = 5φρc3
iso is the magnitude of the saturated flux (Cowie

& McKee 1977), φ is a parameter of order unity accounting for
uncertainties in the estimate of q, ciso is the isothermal speed of
sound, and

Fclass = κ∥b̂(b̂ · ∇T ) + κ⊥ [∇T − b̂(b̂ · ∇T )] (7)

is the classical heat flux with conductivity coefficients κ∥ and κ⊥
along and across the magnetic field lines, respectively (Orlando
et al. 2008). Indeed, the presence of a partially ordered magnetic
field introduces a large anisotropic behavior by channeling
the heat flux along the field lines while suppressing it in the
transverse direction (here b̂ = B/|B| is a unit vector along the
field line). We point out that, in the classical limit q → ∞,
thermal conduction is described by a purely parabolic operator
and flux discretization follows standard FD. In the saturated
limit (|∇T | → ∞), on the other hand, the equation becomes
hyperbolic and thus an upwind discretization of the flux is more
appropriate (Balsara et al. 2008). This is discussed in more detail
in Appendix A.

2.2. Relativistic MHD Equations

A (special) relativistic extension of the previous equations
requires the solution of energy momentum and number density
conservation. Written in divergence form we have

∂(ργ )
∂t

+ ∇ · (ργ v) = 0 ,

∂m
∂t

+ ∇ · [wγ 2vv − BB − EE] + ∇pt = 0 ,

(8)
∂B
∂t

− ∇ × (v × B) = 0 ,

∂E
∂t

+ ∇ · (m − ργ v) = 0 ,

where ρ is the rest-mass density, γ is the Lorentz factor,
velocities are given in units of the speed of light (c = 1), and
the fluid momentum m accounts for matter and electromagnetic
terms: m = wγ 2v + E × B, where E = −v × B is the electric
field and w is the gas enthalpy. The total pressure and energy
include thermal and magnetic contributions and can be written
as

pt = p +
B2 + E2

2
, E = wγ 2 − p +

B2 + E2

2
− ργ . (9)

Finally, the gas enthalpy w is related to ρ and p via an EoS,
which can be either the ideal gas law,

w = ρ +
Γp

Γ − 1
, (10)

or the Taub-Mathews (TM, Mathews 1971) EoS

w = 5
2
p +

√
9
4
p2 + ρ2 , (11)

which provides an analytic approximation of the Synge rela-
tivistic perfect gas (Mignone & McKinney 2007).

A relativistic formulation of the dissipative terms will not be
presented here and will be discussed elsewhere.

2.3. General Quasi-Conservative Form

In the following, we adopt an orthonormal system of
coordinates specified by the unit vectors êd (d is used
to label the direction, e.g., d = {x, y, z} in Carte-
sian coordinates) and conveniently assume that conserved
variables U = (ρ, ρv, E, B, ρXα)—for the MHD equations—
and U = (ργ , m, E, B)—for RMHD—satisfy the following
hyperbolic/parabolic partial differential equations

∂U
∂t

+ ∇ · F = ∇ · Π + Sp, (12)

where F and Π are, respectively, the hyperbolic and parabolic
flux tensors. The source term Sp is a point-local source term
which accounts for body forces (such as gravity), cooling,
chemical reactions, and the source term for the scalar multiplier
(see Equation (14) below). We note that equations containing
curl or gradient operators can always be cast in this form by
suitable vector identities. For instance, the projection of ∇ × E
in the coordinate direction given by the unit vector êd can be
rewritten as

(∇ × E) · êd ≡ ∇ · (E × êd ) + E · (∇ × êd ) , (13)

where the second term on the right-hand side should be included
as an additional source term in Equation (12) whenever different
from zero (e.g., in cylindrical geometry). Similarly, one can
rewrite the gradient operator as ∇p = ∇ · (Ip).

Several algorithms employed in PLUTO are best im-
plemented in terms of primitive variables, V = (ρ, v, B, p).
In the following, we shall assume a one-to-one map-
ping between the two sets of variables, provided by
appropriate conversion functions, that is, V = V(U) and
U = U(V).

3. SINGLE PATCH NUMERICAL INTEGRATION

PLUTO approaches the solution of the previous sets of
equations using either FV or FD methods both sharing a flux-
conservative discretization where volume averages (for the for-
mer) or point values (for the latter) of the conserved quanti-
ties are advanced in time. The implementation is based on the
well-established framework of Godunov-type, shock-capturing
schemes where an upwind strategy (usually a Riemann solver)
is employed to compute fluxes at zone faces. For the present
purposes, we shall focus on the FV approach where volume-
averaged primary flow quantities (e.g., density, momentum, and
energy) retain a zone-centered discretization. However, depend-
ing on the strategy chosen to control the solenoidal constraint,
the magnetic field can evolve either as a cell-average or as a face-
average quantity (using the Stokes’ theorem). As described in
Paper I, both approaches are possible in PLUTO by choosing
between Powell’s eight-wave formulation or the CT method,
respectively.

A third, cell-centered approach based on the generalized
Lagrange multiplier (GLM) formulation of Dedner et al. (2002)
has recently been introduced in PLUTO, and a thorough dis-
cussion as well as a direct comparison with CT schemes can be
found in the recent work by MT. The GLM formulation easily
builds in the context of MHD and RMHD equations by introduc-
ing an additional scalar field ψ , which couples the divergence

3



II.	THE	LINEAR	ADVECTION	EQUATION:				
CONCEPTS	AND	DISCRETIZATIONS	



The	Advection	Equation:	Theory	
•  First	order	partial	differential	equation	(PDE)	in	(x,t):	

	

•  Hyperbolic	PDE:	information	propagates	across	domain	at	finite	speed	
à	method	of	characteristics	

•  Characteristic	curves	satisfy:	

•  Along	each	characteristics:	
	
		
	
	à	The	solution	is	constant	along	characteristic	curves.	

U(x-at,0)	

U(x,t)	



The	Advection	Equation:	Theory		
•  for	constant	a:	the	characteristics	are	straight	parallel	lines	and	the	

solution	to	the	PDE	is	a	uniform	shift	of	the	initial	profile:	

•  The	solution	shifts	to	the	right	(for	a	>	0)	or	to	the	left	(a	<	0):	



Discretization:	the	FTCS	Scheme	
•  Consider	our	model	PDE	

	
•  Forward	derivative	in	time:	

•  Centered	derivative	in	space:	

•  Putting	all	together	and	solving	with	respect	to	Un+1		gives		

				where		C	=	a	Δt/Δx	is	the	Courant-Friedrichs-Lewy	(CFL)	number.	

•  We	call	this	method	FTCS	for	Forward	in	Time,	Centered	in	Space.	

•  It	is	an	explicit	method.	

n+1	

n	



The	FTCS	Scheme	
•  At	t=0,	the	initial	condition	is	a	square	pulse	with	periodic	

boundary	conditions:	

Something	isn’t	right…	why	?	



FTCS:	von	Neumann	Stability	Analysis	
•  Let’s	perform	an	analysis	of	FTCS	by	expressing	the	solution	as	a	

Fourier	series.		
•  Since	the	equation	is	linear,	we	only	examine	the	behavior	of	a	

single	mode.	Consider	a	trial	solution	of	the	form:	

•  Plugging	in	the	difference	formula:	

•  Indipendently	of	the	CFL	number,	all	Fourier	modes	increase	in	
magnitude	as	time	advances.	

•  This	method	is	unconditionally	unstable!	



Forward	in	Time,	Backward	in	Space	
•  Let’s	try	a	difference	approach.	Consider	the	backward	formula	for	

the	spatial	derivative:	

•  The	resulting	scheme	is	called	FTBS:	

•  Apply	von	Neumann	stability	analysis	on	the	resulting	discretized	
equation:	

•  Stability	demands																																		

•  for	a	<	0	the	method	is	unstable,	but	
•  for	a	>	0	the	method	is	stable		when			0	≤	C	=	a	Δt/Δx	≤	1.	

n+1	

n	



Forward	in	Time,	Forward	in	Space	
•  Repeating	the	same	argument	for	the	forward	derivative	

•  The	resulting	scheme	is	called	FTFS:	

•  Apply	stability	analysis	yields	

•  If	a	>	0	the	method	will	always	be	unstable	

•  However,	if	a	<	0	and		-1	≤	C	=	a	Δt/Δx	≤	0		then	this	method	is	
stable;	

n+1	

n	



Stable	Discretizations:	FTBS,	FTFS	

Forward	in	Time,		
Backward	in	Space	

Forward	in	Time,		
Forward	in	Space	



The	1st	Order	Godunov	Method	
•  Summarizing:	the	stable	discretization	makes	use	of	the	grid	point	

where	information	is	coming	from:	

•  è	‘Upwind’:	

•  This	is	also	called	the	first-order	Godunov	method;	

a>0	 a<0	



Conservative	Form	
•  Define	the	“flux”	function	
				so	that	Godunov	method	can	be	cast	in	conservative	form	

			

•  The	conservative	form	ensures	a	correct	description	of	
discontinuities	in	nonlinear	systems,	ensures	global	conservation	
properties	and	is	the	main	building	block	in	the	development	of	
high-order	finite	volume	schemes.	

a	>	0	 a	<	0	



The	CFL	Condition	
•  Since	the	advection	speed	a	is	a	parameter	of	the	equation,	Δx	is	

fixed	from	the	grid,	the	previous	inequality	is	a	stability	constraint	
on	the	time	step	for	explicit	methods	

•  Δt	cannot	be	arbitrarily	large	but,	rather,	less	than	the	time	taken	
to	travel	one	grid	cell	(CFL)		condition.	

•  In	the	case	of	nonlinear	equations,	the	speed	can	vary	in	the	
domain	and	the	maximum	of	a	should	be	considered	instead.	



III.	NONLINEAR	HYPERBOLIC	PDE	



Nonlinear	Advection	Equation	
•  We	turn	our	attention	to	the	scalar	conservation	law	

•  Where	f(u)	is,	in	general,	a	nonlinear	function	of	u.		

•  To	gain	some	insights	on	the	role	played	by	nonlinear	effects,	we	
start	by	considering	the	inviscid	Burger’s	equation:	



Nonlinear	Advection	Equation	
•  We	can	write	Burger’s	equation	also	as	

•  In	this	form,	Burger’s	equation	resembles	the	linear	advection	
equation,	except	that	the	velocity	is	no	longer	constant	but	it	is	
equal	to	the	solution	itself.	

•  The	characteristic	curve	for	this	equation	is	

•  à	u	is	constant	along	the	curve	dx/dt=u(x,t)	à	characteristics		are	
again	straight	lines:	values	of	u	associated	with	some	fluid	element	
do	not	change	as	that	element	moves.	



Nonlinear	Advection	Equation	
•  From																									one	can	predict	that	higher	values	of	u	will	

propagate	faster	than	lower	values:	à	wave	steepening.	

	

?	?	?	

t 

x 

t 

x 

•  Correct	answer:		
					characteristic	will	intersect		
					creating	a	shock	wave:	
	



Nonlinear	Advection	Equation	
•  This	is	how	the	solution	should	look	like:	

•  Such	solutions	to	the	PDE	are	called	weak	solutions.	



Nonlinear	Advection	Equation	

•  In	the	opposite	situation:	

	
•  Here	characteristic	velocities		
					on	the	left	are	smaller	than		
					those	on	the	right	à	
	
	
•  The	proper	solution	is	a	
					rarefaction	(expansion)	wave,		
					a	nonlinear	self-similar	wave	
					that	smoothly	connects	L/R	states.	
	

uL 

uR u(x) 

x 

t 

x 

t 

x 

tail 
head 



IV.	FINITE	VOLUME	METHODS	



Finite	Volume	Approach	
•  In	a	finite	volume	discretization,	the	unknowns	are	the	spatial	

averages	of	the	function	itself:	

					
	
					where	xi-½  and	xi+½  denote	the	location	of	the	cell	interfaces.	
	
	
	

•  The	solution	to	the	conservation	law	involves	computing	fluxes	
through	the	boundary	of	the	control	volumes	

i+1 i i-1 

i+½ i-½ 



Finite	Volume	Formulation	
•  The	conservative	form	links	the	differential	form	of	the	equation	

and	its	integral	representation:	

			obtained	by	integrating	the	PDE	over	a	time	interval Δt	=	tn+1	–	tn		
			and	cell	size	Δx	=	xi+1/2	–	xi-1/2	
	
	
	
	

		
	where		



Finite	Volume	Formulation	

•  This	is	an	EXACT	evolutionary	equation	for	the	spatial	averages	of	U.	
•  The	integral	form	does	not	make	use	of	partial	derivatives!	
•  Problem:	how	do	we	compute	the	flux	?		
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Flux	computation:	the	Riemann	Problem	
•  Since	the	solution	is	known	only	at	tn,		
				some	kind	of	approximation	is	required		
				in	order	to	evaluate	the	flux	through		
				the	boundary:	
	

•  This	achieved	by	solving	the	so-called	“Riemann	Problem”,	i.e.,	
the	evolution	of	an	inital	discontinuity	separating	two	constant	
states.	The	Riemann	problem	is	defined	by	the	initial	condition:	
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The	Riemann	Problem	

UL	

UR	

Left	State	

Right	State	

x	

Cell	Interface	

i i+1 i+½ 

Initial	Discontinuity	

t	=	0	



The	Riemann	Problem	

UL	

UR	

Left	State	

Right	State	

x	

Cell	Interface	

i i+1 i+½ 

Discontinuity	Breakup	

t	>	0	

Flux	=	Solution	on	the	axis	



The	Riemann	Problem	
•  In	CFD,	the	solution	to	the	Riemann	problem	depends	on	the	

underlying	system	of	conservation	laws:	
	

Magnetohydrodynamics	(MHD),	
7	waves	



Riemann	Problem	in	MHD/Relativistic	MHD	

•  7	wave	pattern,	
•  across	the	contact	wave,	for	Bn≠0,	only	density	has	a	jump;	
•  across	Alfven	waves,	[ρ]	=	[pgas]=0	but	normal	velocity	[vx]≠	0		
						àmagnetic	field	circularly	/	elliptically	polarized.	

Fast [S/R] 
fast  [S/R] 

x 

Alfven 
entropy slow [S/R]  

Alfven 

UL, left state UR, right state 

t 
slow [S/R]  



Solving	the	Riemann	Problem	
•  The	full	analytical	solution	to	the	Riemann	problem	for	the	Euler	

equation	can	be	found,	but	this	is	a	rather	complicated	task	(see	
the	book	by	Toro).		

•  In	general,	approximate	methods	of	solution	are	preferred.		

•  The	advantage	of	using	approximate	solvers	is	the	reduced	
computational	costs	and	the	ease	of	implementation.	

•  The	degree	of	approximation	reflects	on	the	ability	to		“capture”	
and	spread	discontinuities	over	few	or	more	computational	zones.			



Solving	the	Riemann	Problem	

•  Exact	Riemann	solvers	(nonlinear)	
–  Full	nonlinear	solution:		
–  Expensive	/	impracticable	for	heavily	usage	in	upwind	codes;	

•  Linearized	Riemann	solvers	(Roe	type)	
–  require	characteristic	decomposition	in	eigenvectors	
–  may	be	prone	to	numerical	pathologies	

•  HLL-type	Riemann	solvers	(guess-based)	
–  based	on	guess	to	the	signal	speeds	and	on	the	integral	average	of	the	

solution	over	the	Riemann	Fan;	
–  fewer	waves	are	considered	in	the	solution;	
–  preserve	positivity;	



Resolution	of	Contact	Discontinuities		



Improving	spatial	accuracy	
•  High	order	reconstruction	can	be	carried	inside	each	cell	by	

suitable	oscillation-free	polynomial	interpolation:	
	
Piecewise		
constant	
	
	
Piecewise		
Linear	
(TVD)	
	
Piecewise		
Parabolic	
(PPM,	WENO)	



1st	and	2nd	Order	Reconstruction	
•  1st-order	reconstruction:	

	
•  For	2nd-order	we	use	linear	

reconstrution:	



Preventing	Oscillations	

•  Use	slope	limiters	to	avoid	spurious		
					oscillations:	

Δi-½ 

Δi+½ 

Δi 

Undesired new minimum 



Reconstruct-Solve-Update	
•  Start	from	volume-averages	

•  Reconstruct	interface	values	from	
zone	averages	using	a	high-order	
non-oscillatory	polynomial:	

•  Solve	Riemann	problems	between	
adjacent,	discontinuous	states.	

						à	Compute	interface	flux.	
	
•  Update	conserved	variables	with	

time	stepping	algorithm	(e.g.	RK2):	



A	“Pseudo-Code”…	

Time Stepping: 

Data 
Reconstruction 

Riemann 
Solver 

begin loop on grid zones{ 

}end loop on grid zones 

for each dt { 

} 
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A	Note	on	Numerical	Diffusion	
•  Upwind	methods	have	a	natural,	built-in	numerical	dissipation.		
•  A	discretized	PDE	gives	the	exact	solution	to	an	equivalent	

equation	with	a	diffusion	term;	

•  Consider	

–  Use	upwind	discretization:	

–  Use	Taylor	expansion	on																					and				
–  The	solution	to	the	discretized	equation	satisfies	exactly		

–  This	is	an	advection-diffusion	equation.		
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A	Note	on	Numerical	Diffusion	
•  Generally,	the	amount	of	numerical	diffusion	is	controlled	by	the	

underlying	grid	resolution	/	numerical	scheme:	
–  spatial	reconstruction	
–  Riemann	solver	accuracy	
–  (marginally)	time	stepping	

•  PROS:	numerical	diffusion	has	a	stabilizing	effect.	
•  CONS:	suppress	small	scale	effect,	may	prevent	growth	of	

instabilities		
	



A	2D	Example:	Axisymmetric	PWN	



V.	BEYOND	IDEAL	MHD	



Beyond	Ideal	MHD	
•  The	range	of	validity	of	MHD	can	be	extended	by	several	means,	at	the	

cost	of	introducing	additional	terms	and	more	complex	algorithms.	

•  One	will	then	have	to	deal	with	different	time	scales.	

•  Example	are:	

–  Dissipative	effects	(viscosity,	Ohmic	dissipation,	thermal	conduction,	etc…)	
à	mixed	hyperbolic	/	parabolic	PDE.	

–  Extended	MHD	including	generalized	Ohm’s	law		(Hall-MHD,	electron	
pressure)	à	dispersive	waves,	non-homogenous	PDE	with	stiff	sources	
(RMHD);	

–  Fluid-particles	hybrid	algorithms.	



Diffusion	Processes	
•  Parabolic	(diffusion)	term	describes	transfer	of	momentum	or	

energy	due	to	microscopical	processes	without	requiring	bulk	
motion.	

•  Examples:	viscosity,	magnetic	resistivity,	thermal	conduction.	

•  No	upwinding	is	required	since	parabolic	problems	have	infinite	
propagation	speed	à	central	differences	are	OK!	



Explicit	Scheme	for	Parabolic	PDE	
•  However,	explicit	schemes	subject	to	restrictive	constraint:	

•  In	1-D	with	constant	D:	

•  Using	FTCS:	

•  Where	C	=	DΔt/Δx2	is	the	(parabolic)	CFL	number	

•  Stability	demands		C	≤	½	à			Δt	≤		Δx2	/	(2D)			

•  This	is	quite	restrictive	!	



Implicit	Schemes	for	Parabolic	PDE	
•  Using	a	backward	in	time,	centered	in	space	(BTCS):	

					has	no	stability	limit	(unconditionally	stable	!)	
•  However,	it	leads	to	an	implicit	(linear)	system:	

•  This	is	a	global	operation	and	thus	not	can	not	be	efficiently	
carried	out	on	parallel	domains.	

•  Alternative	à	Accelerated	explicit	methods	à	



Accelerated	Explicit	Methods	
•  Divide	each	time	step	Δt	in	s	sub-steps	based	on	a	polynomial	

sequence	and	require	stability	at	the	end	of	a	cycle	of	s	substeps:	

•  In	practice	we	require	the	super-step	to	be	as	large	as	possible,	
exploiting	properties	of	orthogonal	polynomial,	Chebyshev	(Super	
Time	Stepping	[STS])	or	Legendre	(Runge-Kutta	Legendre	[RKL]).	

•  The	scheme	is	still	explicit	!	

Accelerated methods: Super-Time-Stepping

We redefine �t as a super-step �t =
sP

j=1

⌧j :

We require the super-step �t to be as large as possible, while mantainig stability:

|
sY

j=1

(1 + ⌧j�) |  1 with � eigenvalue of M
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Runge-Kutta-Legendre	
•  RKL	methods	show	better	stability	properties	and	are	preferred	over	STS.	
•  Choosing	s	sub-steps	we	can	cover	a	time	step	equal	to	

					where	Δtexpl	is	the	standard	explicit	method	time	step.			
•  The	method	is	easily	parallelizable.	
•  Scaling	on	2D	blast	wave:	

Accelerated methods: Runge-Kutta-Legendre

Final numerical scheme:

Y0 = �n

Y1 = Y0 + eµ1�tMY0

Yj = µjYj�1 + ⌫jYj�2 + (1� µj � ⌫j)Y0 + eµj�tMYj�1 + e�j�tMY0 for 2  j  s

�n+1 = Ys

The method is stable for

�t  �texpl
s
2 + s � 2

4

where �texpl is a standard explicit method’s time step.
Advantages:

2nd order in time and space

Increased stability for not diagonally dominant matrix

Parameter-free

Luca Rickler Torino, 10 dicembre 2015 12 / 26

Blast Wave Execution Times

Repeating the simulation for di↵erent grid resolutions, we compared the
computational time of RKL and a 2nd order explicit method:

Algorithm Nx Execution Time [s]

Explicit 192 1m : 13s
RKL 192 28s

Explicit 384 18m : 32s
RKL 384 5m : 19s

Explicit 768 4h : 21m : 15s
RKL 768 49m : 17s

Explicit 1536 3d : 5h : 13m : 10s
RKL 1536 10h : 4m : 55s

Expected Scaling:

Explicit: Execution Time / N
2

x

RKL: Execution Time / N
1.5
x

Luca Rickler Torino, 10 dicembre 2015 18 / 26



Recommended	Books	



IX.	MULTIDIMENSIONAL	ISSUES:	
DIVERGENCE	OF	∇⋅B	=	0	



Multi	Dimensional	Integration	
•  Integration	in	more	than	one	dimensions	can	be	achieved	using	

two	distinct	approaches:	

–  Dimensionally	Split	schemes:	solve	the	PDE	as	a	sequence	of	1-D	sub-
problems.		

–  Dimensionally	Unsplit	schemes:	solve	the	full	problem	in	one	step:	

   
qn 

 
       q* qn+1 = 



∇⋅B		Condition			
•  Numerically,	the	solenoidal	condition	is	fulfilled	only	at	the	truncation	

level	and	non-solenoidal	components	may	be	generated	during	the	
evolution:	

•  Magnetic	monopoles	cause	unphysical	accelerations	of	the	plasma	in	the	
direction	parallel	to	the	field	lines	(BrackBill	&	Barnes	1980)	



Cell	Centered	vs	Staggered	
•  ∇⋅B	=	0	cannot	be	satisfied	for	any	type	of	discretization;		

•  Robustness	of	a	method	can	be	assessed	on	practical	basis	by	extensive	
numerical	testing.	

•  Cell	Centered	Methods:	magnetic	field	treated	as	volume	average	over	
the	zone:	
	

•  Projection	method	(BrackBill	&	Barnes,	1980)	
•  Powell’s	8-wave	formulation	(Powell	1994,	Powell	et	al.	1999)	
•  Field	CD	(Toth	2000)	
•  Divergence	cleaning	(Dedner	2002,	Mignone	et	al.	2010)	

•  Staggered	(face-centered)	methods:	

–  magnetic	field	has	a	staggered	representation	where	field	components	live	
on	the	face	they	are	normal	to	(Evans	&	Hawley	1988,	Balsara	2000,	2004).	



1.	Projection	Method	
•  Correct	the	magnetic	field	after	the	time	step	is	completed;	
•  Starting	from	Bn	we	obtain	B*	which	is	not	divergence-free.	

•  Then,	using	Hodge-projection:	
•  Taking	the	divergence	of	both	sides	gives	

		
				which	can	be	solved	for	the	scalar	function	φ.	
•  The	magnetic	field	is	then	corrected	as	
•  Cons:	requires	the	solution	of	a	Poisson	equation.	



2.	Powell’s	Method	(8	wave)	
•  Start	from	the	primitive	form	of	the	MHD	equations	without	

discarding	the	∇⋅B	term	à	quasi-conservative	form	



2.	Powell’s	Method	(8	wave)		
•  The	non-conservative	form	is	discretized	by	introducing	an	8th	

wave	in	the	Riemann	solver	associated	with	jumps	in	the	normal	
component	of	magnetic	field.	

•  With	the	non-conservative	formulation	∇⋅B	errors	generated	by	
the	numerical	solution	do	not	accumulate	at	a	fixed	grid	point	but,	
rather,	propagate	together	with	the	flow.		

•  For	many	problems	the	8-wave	formulation	works.	

•  However,	in	problems	containing	strong	shocks,	the	non-
conservative	source	terms	can	produce	incorrect	jump	conditions	
and	consequently	the	scheme	can	produce	incorrect	results	



3.	Hyperbolic	Divergence	Cleaning	
•  The	divergence	constraint	is	coupled	to	Faraday’s	law	by	introducing	a	

new	scalar	field	function	ψ	(generalized	Lagrangian	multiplier).		
•  The	second	and	third	Maxwell’s	equations	are	thus	replaced	by	

						
						where	D	is	a	linear	differential	operator.		
•  An	efficient	method	may	be	obtained	by	choosing																																													

yielding	a	mixed	hyperbolic/parabolic	correction.	
•  Direct	manipulation	leads	to	the	telegraph	equation:	

à	errors	are	propagated	to	the	domain	at	finite	speed	ch	and	damped	at	
the	same	time.	



3.	Hyperbolic	Cleaning	
•  The	resulting	system	is	called	the	generalized	Lagrange	multiplier	

(GLM-MHD)	and	includes	9	evolution	equation:	

•  Divergence	errors	propagate	with	speed	ch		even	at	stagnation	
points	where	v	=	0.	



4.	Constrained	Transport	
•  Staggered	magnetic	field	treated	
				as	an	area-weighted	average	on		
				the	zone	face.	

•  Thus,	different	magnetic	field		
				components	live	at	different		
					location;	

•  A	discrete	version	of	Stoke’s	theorem	is	used	to	update	them:	



4.	Constrained	Transport	in	2D	
•  In	2D,	the	emf	is	placed	at	cell	corners.	
•  The	discrete	Stoke’s	theorem	becomes	

•  It	is	easy	to	show	that	the	numerical	divergence	of	b	defined	by		

				
				does	not	change	due	to	perfect	cancellation	of	term	to	machine	

accuracy	(Toth,	2000).	
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Scheme	Comparison	

to the four selected integration schemes, is given in Table 3. We notice that the CT, GLM and EGLM schemes all yield errors of
the same order of magnitude (typically 10!4). Beware that these computations may be susceptible to small variations
depending on implementation details (e.g. limiter, Courant number, etc.) and thus give a representative estimate of the error.
For instance, the implementation of the CTU-CT scheme in the PLUTO code [19] is similar, although not exactly equivalent, to
that of Gardiner and Stone [15] who instead use piecewise parabolic reconstruction. Nevertheless, we have ascertained that
the 8W scheme always performs the worst and the discrepancy becomes particular evident by looking at the longitudinal
component of the field where the 8W scheme yields, once again, incorrect (although smaller than the previous 2D case)
jumps. This is better illustrated in Fig. 6, where we compare the profiles of B1 for the four selected numerical schemes.
We stress that, despite its non-conservative character, the EGLM formulation does not seem to produce incorrect jump con-
ditions or wrong shock propagation speeds.

A resolution study, shown in the right panel of Fig. 7, demonstrates that errors produced by the GLM and EGLM formu-
lations are very much comparable and only weakly dependent on the a parameter. Both schemes report a minimum at
a " 0:005—0:01 regardless of the resolution, and the inferred order of convergence is approximately one as expected for
solutions involving shock waves.

4.4. Magnetic field loop advection

This problem consists of a weak magnetic field loop being advected in a uniform velocity field. Since the total pressure is
dominated by the thermal contribution, the magnetic field is essentially transported as a passive scalar.

4.4.1. Two-dimensional advection
Following [13,14,16], we employ a periodic computational box defined by x 2 ½!1;1$ and y 2 ½!0:5;0:5$ discretized on

Nx % Nx=2 grid cells ðNx ¼ 128Þ. Density and pressure are initially constant and equal to 1. The velocity of the flow is given
by v ¼ ðV0 cosa;V0 sin a;1Þ with V0 ¼

ffiffiffi
5
p

; sin a ¼ 1=
ffiffiffi
5
p

and cos a ¼ 2=
ffiffiffi
5
p

. The magnetic field is defined through its mag-
netic vector potential as

Az ¼
A0ðR! rÞ if r 6 R;
0 if r > R;

"
ð41Þ

where A0 ¼ 10!3; R ¼ 0:3 and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The simulations are allowed to evolve until t ¼ 2 ensuring the crossing of the

loop twice through the periodic boundaries.
In Fig. 8, we show the magnetic energy density for the 8W, GLM and CT schemes using Ca ¼ 0:8 (top) and Ca ¼ 0:4 (bot-

tom), along with the field lines shape. The circular shape of the loop is best preserved with the CT and GLM schemes while
some distortions are visible using the eight-wave formulation. Using Ca ¼ 0:4 with the GLM scheme yields slightly better
results, while the CT does not seem to be affected by the choice of the Courant number.

Fig. 4. The parallel magnetic field component for the four schemes. Concordantly with the results of Tóth [25] the eight-wave formalism fails to capture the
correct jumps. This problem is absent in the results of the other schemes and the field component remains close to the expected value 5=

ffiffiffiffiffiffiffi
4p
p

away from
discontinuities. Spikes are found in proximity of shock waves and are of the same order of magnitude for GLM, EGLM and CT schemes.

2128 A. Mignone, P. Tzeferacos / Journal of Computational Physics 229 (2010) 2117–2138

to the four selected integration schemes, is given in Table 3. We notice that the CT, GLM and EGLM schemes all yield errors of
the same order of magnitude (typically 10!4). Beware that these computations may be susceptible to small variations
depending on implementation details (e.g. limiter, Courant number, etc.) and thus give a representative estimate of the error.
For instance, the implementation of the CTU-CT scheme in the PLUTO code [19] is similar, although not exactly equivalent, to
that of Gardiner and Stone [15] who instead use piecewise parabolic reconstruction. Nevertheless, we have ascertained that
the 8W scheme always performs the worst and the discrepancy becomes particular evident by looking at the longitudinal
component of the field where the 8W scheme yields, once again, incorrect (although smaller than the previous 2D case)
jumps. This is better illustrated in Fig. 6, where we compare the profiles of B1 for the four selected numerical schemes.
We stress that, despite its non-conservative character, the EGLM formulation does not seem to produce incorrect jump con-
ditions or wrong shock propagation speeds.

A resolution study, shown in the right panel of Fig. 7, demonstrates that errors produced by the GLM and EGLM formu-
lations are very much comparable and only weakly dependent on the a parameter. Both schemes report a minimum at
a " 0:005—0:01 regardless of the resolution, and the inferred order of convergence is approximately one as expected for
solutions involving shock waves.

4.4. Magnetic field loop advection

This problem consists of a weak magnetic field loop being advected in a uniform velocity field. Since the total pressure is
dominated by the thermal contribution, the magnetic field is essentially transported as a passive scalar.

4.4.1. Two-dimensional advection
Following [13,14,16], we employ a periodic computational box defined by x 2 ½!1;1$ and y 2 ½!0:5;0:5$ discretized on

Nx % Nx=2 grid cells ðNx ¼ 128Þ. Density and pressure are initially constant and equal to 1. The velocity of the flow is given
by v ¼ ðV0 cosa;V0 sin a;1Þ with V0 ¼

ffiffiffi
5
p

; sin a ¼ 1=
ffiffiffi
5
p

and cos a ¼ 2=
ffiffiffi
5
p

. The magnetic field is defined through its mag-
netic vector potential as

Az ¼
A0ðR! rÞ if r 6 R;
0 if r > R;

"
ð41Þ

where A0 ¼ 10!3; R ¼ 0:3 and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The simulations are allowed to evolve until t ¼ 2 ensuring the crossing of the

loop twice through the periodic boundaries.
In Fig. 8, we show the magnetic energy density for the 8W, GLM and CT schemes using Ca ¼ 0:8 (top) and Ca ¼ 0:4 (bot-

tom), along with the field lines shape. The circular shape of the loop is best preserved with the CT and GLM schemes while
some distortions are visible using the eight-wave formulation. Using Ca ¼ 0:4 with the GLM scheme yields slightly better
results, while the CT does not seem to be affected by the choice of the Courant number.

Fig. 4. The parallel magnetic field component for the four schemes. Concordantly with the results of Tóth [25] the eight-wave formalism fails to capture the
correct jumps. This problem is absent in the results of the other schemes and the field component remains close to the expected value 5=

ffiffiffiffiffiffiffi
4p
p

away from
discontinuities. Spikes are found in proximity of shock waves and are of the same order of magnitude for GLM, EGLM and CT schemes.

2128 A. Mignone, P. Tzeferacos / Journal of Computational Physics 229 (2010) 2117–2138

4.5. Three-dimensional field loop advection

A three-dimensional extension can be obtained by rotating the previous 2D magnetic field configuration around one axis
using the coordinate transformation given by Eq. (35) with a ¼ 0 and c ¼ tan"1 1=2, see [15]. Even though the loop is rotated
only around one axis, the velocity profile ðvx;vy;vzÞ ¼ ð1;1;2Þ makes the test intrinsically three-dimensional. We consider
the computational box "0:5 6 x 6 0:5; "0:5 6 y 6 0:5; "1:0 6 z 6 1:0, resolved on a N % N % 2N grid. Boundary conditions
are periodic in all directions.

A three-dimensional rendering of the magnetic energy density is shown in Fig. 10 for the selected schemes while relevant
quantities are plotted in the three panels of Fig. 11. All schemes show a similar amount of numerical dissipation, in agree-
ment with the results of Gardiner and Stone [15].

As for the 2D case, it is useful to check the growth of the magnetic field component B3 ¼ ð"Bx þ 2BzÞ=
ffiffiffi
5
p

orthogonal to the
original ðx1; x2Þ plane where the loop is two-dimensional. Analytically, the magnetic field component in this direction is a
trivial constant of motion since

@B3

@t
¼ v3

@B1

@x1
þ @B2

@x2

" #
¼ 0: ð42Þ

The numerical integration in the rotated ðx; y; zÞ Cartesian frame, however, preserves this condition only to some accuracy
which strongly reflects the ability of the scheme in controlling the divergence-free constraint (this is true for all presented
numerical methods). The middle panel in Fig. 11 shows the volume-integrated value of jB3j, normalized to the initial field
strength B0 ¼ 10"3 for three different resolutions N ¼ 32;64;128. Our results reveal that the value of B3 grows slowly in time

Fig. 8. From left to right: magnetic energy density for the 2D field loop problem at t ¼ 2 for the 8W, GLM and CT schemes. Results have been computed with
CFL numbers of 0.8 (top) and 0.4 (bottom). Overplotted are 9 isocontours of Az , between 10"5 and 10"3.

Fig. 9. Leftmost panel: time evolution of the volume-integrated magnetic energy density (normalized to its initial value) for the 2D field loop advection
problem. The black and red lines correspond, respectively, to computations carried with Ca ¼ 0:4 and Ca ¼ 0:8. Middle panel: volume-averaged value of jBzj
(normalized to the initial value B0 ¼ 10"3) as a function of time for three different grid resolutions (256, 128 and 64 corresponding to stars, ‘‘%” and plus
signs). Rightmost panel: volume-averaged values of jr ' Bj and jBzj for different values of the a parameter controlling monopole damping at the resolution
Nx ¼ 128 points. (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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properly controlled and the scheme does not introduce adequate dissipation across oblique discontinuous features. Here, we
consider a three-dimensional configuration on the unit cube ½"1=2;1=2#3 discretized on 2003 computational zones. The med-
ium is initially at rest (v=0) and threaded by a constant uniform magnetic field lying in the xz plane and forming an angle h
with the vertical z direction, B ¼ B0ðsin hx̂ þ cos hẑÞ. A spherical region of high thermal pressure is initialized,

p ¼ pin for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
< r0;

pout otherwise:

(
ð44Þ

We consider two different versions of the same test problem with parameters given in Table 4. In the first one, taken from
Gardiner and Stone [15], the field forms an angle h ¼ p=4 with the z axis and the largest magnetization achieved outside the
sphere is b ¼ 2pout=B2 ¼ 2 ( 10"2. In the second version, we follow [28] and adopt a larger field strength (with h ¼ 0) yielding
a more severe configuration with b ¼ 2 ( 10"4.

The over-pressurized spherical region sets a blast wave delimited by an outer fast forward shock propagating (nearly)
radially, see Figs. 14 and 16. Magnetic field lines pile up behind the shock in the direction transverse to the initial field ori-
entation (h ¼ p=4 and h ¼ 0 for the two cases) thus building a region of higher magnetic pressure. In these regions the shock

Table 4
Parameter sets used for the first and second versions of the three-dimensional blast wave problem.

pin pout B0 h r0 tstop

Test 1 102 1 10 p=4 0.125 0.02
Test 2 104 1 100 0 0.1 2:5 ( 10"3

Fig. 14. Two-dimensional cuts in the xz plane of gas pressure, magnetic and kinetic energy densities for the GLM (top), EGLM (middle) and CT (bottom)
schemes, at t ¼ 0:02 for the first blast wave problem. Pressure values range from 1.0 (white) to 42.4 (black). The magnetic energy ranges from 25.2 (white)
to 64.9 (black) while the kinetic energy density spans from 0.0 (white) to 33.1 (black).
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Fig. 14. Two-dimensional cuts in the xz plane of gas pressure, magnetic and kinetic energy densities for the GLM (top), EGLM (middle) and CT (bottom)
schemes, at t ¼ 0:02 for the first blast wave problem. Pressure values range from 1.0 (white) to 42.4 (black). The magnetic energy ranges from 25.2 (white)
to 64.9 (black) while the kinetic energy density spans from 0.0 (white) to 33.1 (black).
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∇⋅B		Condition			

Cell-Centered Staggered 

Pros n  keeps “native” code discretization 
n  better for I.C. and B.C. 
n  easier to extend to AMR grids 
n  Can be used in dimensionally split 
  schemes 
 

n  keep ∇⋅B = 0 to machine accuracy 
n  elegant and consistent discretization 
n  lead to perfectly consistent, well 
   posed Riemann problems 
 

Cons n  require monopole control algorithm 
n  8 wave / Projection:  

Ø Jump of B at face à Riemann  
   problem   
Ø  Break conservation (??) 

n  tricky extension to AMR 
n  more work on B.C. and I.C. 
n  Require solution of multi D Riemann  
   problems (UCT, L. Del Zanna &   
   Londrillo) 
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