
ENZO and RAMSES Codes for Computational
Astrophysics
CFD & Astrophysics School
Claudio Gheller, CSCS, cgheller@cscs.ch
November 13-15, 2017

Introduction

§  I will focus on a couple of codes addressing problems in
astrophysics and cosmology

§  These applications:
§  Need high RESOLUTION

(space, mass), solving a broad
variety of processes developing
on very different scales

§  Need ACCURACY for properly
solving complex physics

§  Need to properly treat
GRAVITATIONAL FORCES

Insert_Footer 2

ENZO & RAMSES

3

§  3D MPI-parallel Eulerian Adaptive Mesh Refinement (AMR) codes.
§  Similar codes in terms of applications and functionalities.
§  Main difference: AMR approach and associated data structures

Both codes solve:
– Dark Matter dynamics
– Gravity
– Baryonic Matter

hydrodynamics
– MHD
– Radiative Transfer
– Many other physical

processes…

RAMSES in some more details

4

(Teyssier, A&A, 385, 2002): !

•  various components (dark energy, dark matter, baryonic matter,

photons) treated
•  Includes a variety of physical processes (gravity, MHD,

chemistry, star formation, supernova and AGN feedback, etc.)
•  Adaptive Mesh Refinement adopted to provide high spatial

resolution ONLY where this is strictly necessary: Fully Threaded
Tree

•  Open Source
•  Fortran 90
•  Code “size”: about 70000 lines
•  MPI parallel (public version)
•  OpenMP support (not really there…)
•  OpenACC/CUDA under development
•  How to get the code: https://bitbucket.org/rteyssie/ramses

ENZO in some more details

5

(Bryan et al. ApJS. 211, 2014): !

•  various components (dark energy, dark matter, baryonic matter,

photons) treated
•  Includes a variety of physical processes (gravity, MHD,

chemistry, star formation, supernova and AGN feedback, etc.)
•  Adaptive Mesh Refinement adopted to provide high spatial

resolution using Structured AMR (SAMR).

•  Open Source
•  Fortran 90 + C++
•  MPI parallel
•  CUDA support for Hydro and MHD
•  How to get the code: https://enzo.readthedocs.io/en/latest/

What do they do?

6

AMR build Load
Balance Gravity

Hydro

N-Body

Ti
m

e
lo

op
 MHD

Cooling RT More
Physics

Solving fluid dynamics

7

§  Fluid dynamics is one of the key and most
computational demanding kernels

§  In both codes it is solved using a finite volumes
eulerian approach: conservation equations of mass,
momentum and energy are solved on a rectangular
(adaptive) mesh. Equation of state of a perfect fluid
closes the system

§  Shock capturing methods are used
§  Notice the source (gravity) term

Cell i,j Flux Flux
Fl

ux

Flux

AMR build

Communication,
Balancing

Gravity

Hydro

N-Body

More physics

Ti
m

e
lo

op

6 R. Teyssier: Cosmological Hydrodynamics with Adaptive Mesh Refinement

whose cloud is entirely included within the level bound-
ary are concerned. For particles belonging to level ℓ, but
whose cloud lies partially outside the level volume, the ac-
celeration is interpolated from the mesh of level ℓ−1. This
is the same for the ART code: “In this way, particles are
driven by the coarse force until they move sufficiently far
into the finer mesh” (Kravtsov et al. 1997).

2.2.5. Time integration

One requirement in a coupled N-body and hydrodynami-
cal code is the possibility to deal with variable time steps.
The stability conditions for the time step is indeed given
by the Courant Friedrich Levy (CFL) condition, which
can vary in time. The standard leapfrog scheme (Hockney
& Eastwood 1981), though accurate, does not offer this
possibility. In RAMSES, a second-order midpoint scheme
has been implemented, which reduces exactly to the sec-
ond order leapfrog scheme for constant time steps. Since
the acceleration −∇φn is known at time tn from particle
positions xn

p , positions and velocities are updated first by
a predictor step

vn+1/2
p = vn

p −∇φn∆tn/2 (5)

xn+1
p = xn

p + vn+1/2
p ∆tn (6)

and then by a corrector step

vn+1
p = vn+1/2

p −∇φn+1∆tn/2 (7)

In this last equation, the acceleration at time tn+1 is
needed. In order to avoid an extra call to the Poisson
solver, this last operation is postponed to the next time
step. The new velocity is computed as soon as the new
potential is obtained. In RAMSES, it is possible to have
either a single time step for all particles, or individual time
steps for each level. In the latter case, when a particle exits
level ℓ with time step ∆tℓ, the corrector step is applied at
level ℓ−1, using ∆tℓ in place of ∆tℓ−1. Therefore, the “past
history” of all particles has to be known in order to apply
correctly the corrector step. This is done in RAMSES by
introducing one extra integer per particle indicating its
current level. This particle “color” is eventually modified
at the end of the corrector step.

Usually, the time step evolution is smooth, making our
integration scheme second-order in time. However, if one
uses the adaptive time step scheme instead of the more ac-
curate (but time consuming) single time step scheme, the
time step changes abruptly by a factor of two for particles
crossing a refinement boundary. Only first order accuracy
is retained along those particle trajectories. This loss of
accuracy has been analyzed in realistic cosmological con-
ditions (Kravtsov & Klypin 1999; Yahagi & Yoshii 2001)
and turns out to have a small effect on the particle distri-
bution, when compared to the single time step case.

2.3. Hydrodynamical Solver

In RAMSES, the Euler equations are solved in their con-
servative form:

∂ρ

∂t
+ ∇ · (ρu) = 0 (8)

∂

∂t
(ρu) + ∇ · (ρu⊗ u) + ∇p = −ρ∇φ (9)

∂

∂t
(ρe) + ∇ · [ρu (e + p/ρ)] = −ρu ·∇φ (10)

where ρ is the mass density, u is the fluid velocity, e is the
specific total energy, and p is the thermal pressure, with

p = (γ − 1)ρ(e −
1

2
u2) (11)

Note that the energy equation (Eq. 10) is conservative
for the total fluid energy, if one ignores the source terms
due to gravity. This property is one of the main advan-
tages of solving the Euler equations in conservative form:
no energy sink due to numerical errors can alter the flow
dynamics. Gravity is included in the system of equation
as a non stiff source term. In this case, the system is not
explicitly conservative and the total energy (potential +
kinetic) is conserved at the percent level (see section 4.3).

Let Un
i denote a numerical approximation to the cell-

averaged value of (ρ, ρu, ρe) at time tn and for cell i. The
numerical discretization of the Euler equations with grav-
itational source terms writes:

Un+1
i − Un

i

∆t
+

Fn+1/2
i+1/2 − Fn+1/2

i−1/2

∆x
= Sn+1/2

i (12)

The time centered fluxes Fn+1/2
i+1/2 across cell interfaces are

computed using a second-order Godunov method (also
known as Pieceweise Linear Method), with or without di-
rectional splitting (according to the user’s choice), while
gravitational source terms are included using a time cen-
tered, fractional step approach:

Sn+1/2
i =

(

0,
ρn

i ∇φn
i + ρn+1

i ∇φn+1
i

2
,
(ρu)n

i ∇φn
i + (ρu)n+1

i ∇φn+1
i

2

)

(13)

A general description of Godunov and fractional step
methods can be found in Toro (1997). The present im-
plementation is based on the work of Collela (1990) and
Saltzman (1994). For sake of brevity, only its basic fea-
tures are recalled here.

2.3.1. Single grid Godunov solver

In this section, I describe the basic hydrodynamical
scheme used in RAMSES to solve equations (8-10) at a
given level. It is assumed that proper boundary conditions
have been provided: the hydrodynamical scheme requires
2 ghost zones in each side and in each direction, even in
the diagonal directions. Since in RAMSES the Euler equa-
tions are solved on octs of 2dim cells each, 3dim− 1 similar
neighboring octs are required to define proper boundary
conditions. The basic stencil of the PLM scheme therefore

Shock Capturing Methods
Numerical methods specifically designed to accurately describe
shock waves, i.e. physical discontinuities, propagating in a fluid.

Insert_Footer 8

Shock Capturing Methods: Main Steps

1.  Formulate equations as finite
difference

2.  Reconstruct fluid profiles in the
neighborhood of the cell to be
updated (first order or more)

3.  Calculate time centered fluxes at
the cell boundaries (with different
methods)

4.  Use the fluxes to solve the equations

9

Dark Matter

§  Non-collisional component
§  Usually described as a set of particles

§  Each particle is characterized by a mass, a 3D position and
a 3D velocity

§  Position and velocities are calculated solving the equations
of motion:

§  Leapfrog integration

§  Density is calculated distributing the mass according to a
proper kernel (more on this tomorrow).

10

dx/dt = v ; dv/dt = -sΦ

Cosmological simulations

11

Gravity

Gravity has to be accurately calculated since it drives the dynamics of the
system.

In principle it is a straightforward problem, following Newton’s law of gravity
(if relativistic effects can be neglected):

However, gravity is highly computationally challenging:

1.  Newton’s law scales as N2

2.  Gravity is a purely attractive long range force, involving for each point
in space all the others

12

Calculating gravity

Many computational efficient methods have been implemented to calculate
gravity.

ENZO and RAMSES solve the Poisson equation:

On the computational mesh.

They both combine a FFT based method:

with a Multigrid algorithm:
relaxation iterative method + multiple levels

13

+

The mesh
§  So far we have assumed the existence of a computational mesh, on

which our equations and quantities are discretized, focusing on the most
appropriate numerical method.

§  The mesh defines most of the data structures, so the memory
layout and usage

§  We have not addressed yet the need for resolution

§  With a mesh, the resolution is set by the cell size

§  Brute force, one can think of using a super-fine mesh: of course this is
computationally impossible (computational needs scale with the CUBE
of the resolution)

§  But for many physical processes, having high resolution
everywhere is NOT necessary

§  This is particularly true in astrophysics, due to the action of gravity,
which tends to cluster evolving objects.

14

Resolution: weather
forecast examples

Insert_Footer 15

Adaptive Mesh Refinement (AMR)

§  AMR is a class of meshing algorithms designed to increase
the resolution only where this is necessary

§  Geometry is preserved

§  Different solutions can be adopted:
§  RAMSES à Fully Threaded Tree
§  ENZO à Structured AMR

§  Both approaches have advantages and drawbacks.
However they dramatically reduce the demand of
computational resources

Insert_Footer 16

Structured AMR (ENZO)

§  Refinement is done on a “patch” basis
§  Main steps:

1.  Flag cells that have to be refined according to given criteria
2.  Cluster neighboring cells
3.  Create rectangular patches filling the gaps according to a given

“efficiency” criterion and “properly nested”
4.  Initialize the variables in the patches
5.  Update the “control tree” with the newly created patches

17

SAMR in action

18

Fully Threaded Tree (RAMSES)

§  Refinement is done on a “per-cell” basis
§  Main steps:

1.  Flag cells that have to be refined according to given criteria
2.  Divide each flagged cell in 8 equal parts (OCTS)
3.  Initialize variables in the Oct’s cell
4.  Define the pointers to parents, siblings and Oct’s cells

19

Fully Threaded Tree in action

20

SAMR vs Fully Threaded Tree: what’s the best?

§  SAMR:
+ Simple geometry
+ Optimal layout in memory, cache friendly
-  Refinement of unnecessary cells
-  Need for a patch manager (two linked lists) which can fill memory

§  Fully Threaded Tree:
+ Optimal allocation of memory
+ All information stored in the Octs (no need of a tree)
-  Not so efficient memory layout
-  Complex geometry

Insert_Footer 21

AMR: is it actually so memory-effective?
§  This example is for RAMSES, but similar results can be

obtained for ENZO:

22

§  The mesh has about 23 million Octs, corresponding to 184 million
cells, at the resolution level 14.

§  A uniform mesh would need 245 cells to get to the same resolution
à 35000 billion cells

§  Storing a single float variable requires 1.5GB with AMR,
280TB with the uniform mesh!

Parallelization Strategy: ENZO

23

•  Level 0 grid partitioned across
processors

•  Level >0 grids within a
processor executed sequentially

•  Dynamic load balancing by
messaging grids to underloaded
processors

Parallelization Strategy: RAMSES

24

Adaptive Time Step

Some features compared

25

ENZO RAMSES
Parallelization MPI, support of shared memory still missing
Scalability Up to some thousands of

MPI ranks. Limited by
communication.

O(1000) MPI ranks.
Limited by load balancing.

Memory “consumption” Overhead due to SAMR.
Tree is replicated over
ALL MPI ranks and can fill
the memory.

Optimal

Memory usage Effective, cash friendly,
easily vectorizable

Low efficiency due to
memory “fragmentation”

Portability Highly portable. Supports
all standard compilers
and MPI libraries.
Combination of C++ and
F90 sometimes tricky.
Dependency only from
HDF5 library.

Extremely portable.
Supports all standard
compilers and MPI
libraries
Straightforward building.
No external
dependencies

What about support to accelerators?

§  No Xeon-PHI porting currently available
§  Limited GPU support:

§  ENZO
§  Hydro and MHD solvers efficiently ported on the GPU using

CUDA
§  RAMSES

§  Radiative Transfer module available on the GPU based on CUDA
§  On-going implementation of the full code using OpenACC

26

ENZO on the GPU

§  Hydro and MHD kernels ported
§  Each patch is an independent boundary value problem
§  The GPU can solve each patch separately
§  Efficient overlap of computation and data transfer
§  Low arithmetic intensity for hydro, better for MHD

27

Patch 1

Patch 2 Patch 3

Patch 4

RAMSES on the GPU

§  Radiative Transfer kernel parallelized with CUDA
§  Transport equation solved iteratively
§  Good arithmetic intensity, good efficiency

§  Full code under refactoring based on OpenACC
§  Memory layout is the

main problem
§  Full redesign of the

algorithms required

28

I/O

§  Both codes support simple parallel I/O, each MPI task
writing a different file

§  ENZO writes HDF files

§  RAMSES has a “proprietary” binary format (although it
supports also HDF5)

§  Files can be used also for restart

§  Restarting with a different number of MPI tasks is tricky

§  The number of files to handle can become “unfriendly”

Insert_Footer 29

Final remarks

§  Both ENZO and RAMSES are very good tools for numerical
astrophysics.

§  RAMSES is a little better in terms of accuracy, ENZO is
more HPC oriented

§  Both have a quite big community of users and developers
§  Both are on continuous update and are trying to support

new HPC architectures to solve bigger and more complex
problems

§  From the astronomer point of view, RAMSES is easier to
develop. From a computer scientist point of view ENZO is
“better”…

§  Support is quite limited for both. Documentation is more
exaustive for ENZO.

30

Thank you for your attention.

