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Introduction 

§  I will focus on a couple of codes addressing problems in 
astrophysics and cosmology 

§  These applications: 
§  Need high RESOLUTION  

(space, mass), solving a broad  
variety of processes developing  
on very different scales 

§  Need ACCURACY for properly 
solving complex physics 

§  Need to properly treat 
GRAVITATIONAL FORCES 
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ENZO & RAMSES 
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§  3D MPI-parallel Eulerian Adaptive Mesh Refinement (AMR) codes. 
§  Similar codes in terms of applications and functionalities. 
§  Main difference: AMR approach and associated data structures 

 
 
 
 
 
 
 
 
 
 

Both codes solve: 
– Dark Matter dynamics 
– Gravity 
– Baryonic Matter 

hydrodynamics 
– MHD 
– Radiative Transfer 
– Many other physical  

processes… 



RAMSES in some more details 
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(Teyssier, A&A, 385, 2002): !
 
•  various components (dark energy, dark matter, baryonic matter, 

photons) treated 
•  Includes a variety of physical processes (gravity, MHD, 

chemistry, star formation, supernova and AGN feedback, etc.) 
•  Adaptive Mesh Refinement adopted to provide high spatial 

resolution ONLY where this is strictly necessary: Fully Threaded 
Tree 

•  Open Source 
•  Fortran 90 
•  Code “size”: about 70000 lines 
•  MPI parallel (public version)  
•  OpenMP support (not really there…) 
•  OpenACC/CUDA under development 
•  How to get the code: https://bitbucket.org/rteyssie/ramses 



ENZO in some more details 
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(Bryan et al. ApJS. 211, 2014): !
 
•  various components (dark energy, dark matter, baryonic matter, 

photons) treated 
•  Includes a variety of physical processes (gravity, MHD, 

chemistry, star formation, supernova and AGN feedback, etc.) 
•  Adaptive Mesh Refinement adopted to provide high spatial 

resolution using Structured AMR (SAMR). 

•  Open Source 
•  Fortran 90 + C++ 
•  MPI parallel 
•  CUDA support for Hydro and MHD 
•  How to get the code: https://enzo.readthedocs.io/en/latest/ 



What do they do? 
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Solving fluid dynamics 
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§  Fluid dynamics is one of the key and most 
computational demanding kernels 

§  In both codes it is solved using a finite volumes 
eulerian approach: conservation equations of mass, 
momentum and energy are solved on a rectangular 
(adaptive) mesh. Equation of state of a perfect fluid 
closes the system 

§  Shock capturing methods are used 
§  Notice the source (gravity) term  
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6 R. Teyssier: Cosmological Hydrodynamics with Adaptive Mesh Refinement

whose cloud is entirely included within the level bound-
ary are concerned. For particles belonging to level ℓ, but
whose cloud lies partially outside the level volume, the ac-
celeration is interpolated from the mesh of level ℓ−1. This
is the same for the ART code: “In this way, particles are
driven by the coarse force until they move sufficiently far
into the finer mesh” (Kravtsov et al. 1997).

2.2.5. Time integration

One requirement in a coupled N-body and hydrodynami-
cal code is the possibility to deal with variable time steps.
The stability conditions for the time step is indeed given
by the Courant Friedrich Levy (CFL) condition, which
can vary in time. The standard leapfrog scheme (Hockney
& Eastwood 1981), though accurate, does not offer this
possibility. In RAMSES, a second-order midpoint scheme
has been implemented, which reduces exactly to the sec-
ond order leapfrog scheme for constant time steps. Since
the acceleration −∇φn is known at time tn from particle
positions xn

p , positions and velocities are updated first by
a predictor step

vn+1/2
p = vn

p −∇φn∆tn/2 (5)

xn+1
p = xn

p + vn+1/2
p ∆tn (6)

and then by a corrector step

vn+1
p = vn+1/2

p −∇φn+1∆tn/2 (7)

In this last equation, the acceleration at time tn+1 is
needed. In order to avoid an extra call to the Poisson
solver, this last operation is postponed to the next time
step. The new velocity is computed as soon as the new
potential is obtained. In RAMSES, it is possible to have
either a single time step for all particles, or individual time
steps for each level. In the latter case, when a particle exits
level ℓ with time step ∆tℓ, the corrector step is applied at
level ℓ−1, using ∆tℓ in place of ∆tℓ−1. Therefore, the “past
history” of all particles has to be known in order to apply
correctly the corrector step. This is done in RAMSES by
introducing one extra integer per particle indicating its
current level. This particle “color” is eventually modified
at the end of the corrector step.

Usually, the time step evolution is smooth, making our
integration scheme second-order in time. However, if one
uses the adaptive time step scheme instead of the more ac-
curate (but time consuming) single time step scheme, the
time step changes abruptly by a factor of two for particles
crossing a refinement boundary. Only first order accuracy
is retained along those particle trajectories. This loss of
accuracy has been analyzed in realistic cosmological con-
ditions (Kravtsov & Klypin 1999; Yahagi & Yoshii 2001)
and turns out to have a small effect on the particle distri-
bution, when compared to the single time step case.

2.3. Hydrodynamical Solver

In RAMSES, the Euler equations are solved in their con-
servative form:

∂ρ

∂t
+ ∇ · (ρu) = 0 (8)

∂

∂t
(ρu) + ∇ · (ρu⊗ u) + ∇p = −ρ∇φ (9)

∂

∂t
(ρe) + ∇ · [ρu (e + p/ρ)] = −ρu ·∇φ (10)

where ρ is the mass density, u is the fluid velocity, e is the
specific total energy, and p is the thermal pressure, with

p = (γ − 1)ρ(e −
1

2
u2) (11)

Note that the energy equation (Eq. 10) is conservative
for the total fluid energy, if one ignores the source terms
due to gravity. This property is one of the main advan-
tages of solving the Euler equations in conservative form:
no energy sink due to numerical errors can alter the flow
dynamics. Gravity is included in the system of equation
as a non stiff source term. In this case, the system is not
explicitly conservative and the total energy (potential +
kinetic) is conserved at the percent level (see section 4.3).

Let Un
i denote a numerical approximation to the cell-

averaged value of (ρ, ρu, ρe) at time tn and for cell i. The
numerical discretization of the Euler equations with grav-
itational source terms writes:

Un+1
i − Un

i

∆t
+

Fn+1/2
i+1/2 − Fn+1/2

i−1/2

∆x
= Sn+1/2

i (12)

The time centered fluxes Fn+1/2
i+1/2 across cell interfaces are

computed using a second-order Godunov method (also
known as Pieceweise Linear Method), with or without di-
rectional splitting (according to the user’s choice), while
gravitational source terms are included using a time cen-
tered, fractional step approach:

Sn+1/2
i =

(

0,
ρn

i ∇φn
i + ρn+1

i ∇φn+1
i

2
,
(ρu)n

i ∇φn
i + (ρu)n+1

i ∇φn+1
i

2

)

(13)

A general description of Godunov and fractional step
methods can be found in Toro (1997). The present im-
plementation is based on the work of Collela (1990) and
Saltzman (1994). For sake of brevity, only its basic fea-
tures are recalled here.

2.3.1. Single grid Godunov solver

In this section, I describe the basic hydrodynamical
scheme used in RAMSES to solve equations (8-10) at a
given level. It is assumed that proper boundary conditions
have been provided: the hydrodynamical scheme requires
2 ghost zones in each side and in each direction, even in
the diagonal directions. Since in RAMSES the Euler equa-
tions are solved on octs of 2dim cells each, 3dim− 1 similar
neighboring octs are required to define proper boundary
conditions. The basic stencil of the PLM scheme therefore



Shock Capturing Methods 
Numerical methods specifically designed to accurately describe  
shock waves, i.e. physical discontinuities, propagating in a fluid. 
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Shock Capturing Methods: Main Steps 

1.  Formulate equations as finite  
difference  

2.  Reconstruct fluid profiles in the  
neighborhood of the cell to be 
updated (first order or more) 

3.  Calculate time centered fluxes at  
the cell boundaries (with different  
methods) 

4.  Use the fluxes to solve the equations 
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Dark Matter 

§  Non-collisional component 
§  Usually described as a set of particles 

§  Each particle is characterized by a mass, a 3D position and 
a 3D velocity 

§  Position and velocities are calculated solving the equations 
of motion: 
 
 

§  Leapfrog integration  

§  Density is calculated distributing the mass according to a 
proper kernel (more on this tomorrow). 
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dx/dt = v ;  dv/dt = -sΦ 



Cosmological simulations 
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Gravity 

Gravity has to be accurately calculated since it drives the dynamics of the 
system. 

In principle it is a straightforward problem, following Newton’s law of gravity 
(if relativistic effects can be neglected): 

 

 

However, gravity is highly computationally challenging: 

1.  Newton’s law scales as N2 

2.  Gravity is a purely attractive long range force, involving for each point 
in space all the others 
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Calculating gravity 

Many computational efficient methods have been implemented to calculate 
gravity.  

ENZO and RAMSES solve the Poisson equation:  

On the computational mesh. 

They both combine a FFT based method: 

 

 

with a Multigrid algorithm: 
relaxation iterative method + multiple levels  
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The mesh 
§  So far we have assumed the existence of a computational mesh, on 

which our equations and quantities are discretized, focusing on the most 
appropriate numerical method. 

§  The mesh defines most of the data structures, so the memory 
layout and usage 

§  We have not addressed yet the need for resolution 

§  With a mesh, the resolution is set by the cell size 

§  Brute force, one can think of using a super-fine mesh: of course this is 
computationally impossible (computational needs scale with the CUBE 
of the resolution) 

§  But for many physical processes, having high resolution 
everywhere is NOT necessary 

§  This is particularly true in astrophysics, due to the action of gravity, 
which tends to cluster evolving objects. 
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Resolution: weather  
forecast examples 
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Adaptive Mesh Refinement (AMR) 

§  AMR is a class of meshing algorithms designed to increase 
the resolution only where this is necessary 

§  Geometry is preserved  

§  Different solutions can be adopted: 
§  RAMSES à Fully Threaded Tree 
§  ENZO à Structured AMR 

§  Both approaches have advantages and drawbacks. 
However they dramatically reduce the demand of 
computational resources 
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Structured AMR (ENZO) 

§  Refinement is done on a “patch” basis  
§  Main steps: 

1.  Flag cells that have to be refined according to given criteria 
2.  Cluster neighboring cells  
3.  Create rectangular patches filling the gaps according to a given 

“efficiency” criterion and “properly nested” 
4.  Initialize the variables in the patches  
5.  Update the “control tree” with the newly created patches 
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SAMR in action 
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Fully Threaded Tree (RAMSES) 

§  Refinement is done on a “per-cell” basis  
§  Main steps: 

1.  Flag cells that have to be refined according to given criteria 
2.  Divide each flagged cell in 8 equal parts (OCTS) 
3.  Initialize variables in the Oct’s cell 
4.  Define the pointers to parents, siblings and Oct’s cells 
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Fully Threaded Tree in action 
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SAMR vs Fully Threaded Tree: what’s the best? 

§  SAMR: 
+ Simple geometry  
+ Optimal layout in memory, cache friendly 
-  Refinement of unnecessary cells 
-  Need for a patch manager (two linked lists) which can fill memory 

§  Fully Threaded Tree: 
+ Optimal allocation of memory  
+ All information stored in the Octs (no need of a tree) 
-  Not so efficient memory layout 
-  Complex geometry 
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AMR: is it actually so memory-effective? 
§  This example is for RAMSES, but similar results can be 

obtained for ENZO: 
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§  The mesh has about 23 million Octs, corresponding to 184 million 
cells, at the resolution level 14.  

§  A uniform mesh would need 245 cells to get to the same resolution 
à 35000 billion cells 

§  Storing a single float variable requires 1.5GB with AMR, 
280TB with the uniform mesh! 



Parallelization Strategy: ENZO 

23 

•  Level 0 grid partitioned across 
processors 

•  Level >0 grids within a 
processor executed sequentially  

•  Dynamic load balancing by 
messaging grids to underloaded 
processors 



Parallelization Strategy: RAMSES 
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Adaptive Time Step 



Some features compared 
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ENZO RAMSES 
Parallelization MPI, support of shared memory still missing 
Scalability  Up to some thousands of 

MPI ranks. Limited by 
communication. 

O(1000) MPI ranks. 
Limited by load balancing. 

Memory “consumption” Overhead due to SAMR. 
Tree is replicated over 
ALL MPI ranks and can fill 
the memory. 

Optimal 

Memory usage Effective, cash friendly, 
easily vectorizable 

Low efficiency due to 
memory “fragmentation” 

Portability  Highly portable. Supports 
all standard compilers 
and MPI libraries.  
Combination of C++ and 
F90 sometimes tricky. 
Dependency only from 
HDF5 library. 

Extremely portable. 
Supports all standard 
compilers and MPI 
libraries 
Straightforward building. 
No external 
dependencies  



What about support to accelerators? 

§  No Xeon-PHI porting currently available 
§  Limited GPU support: 

§  ENZO 
§  Hydro and MHD solvers efficiently ported on the GPU using 

CUDA 
§  RAMSES 

§  Radiative Transfer module available on the GPU based on CUDA 
§  On-going implementation of the full code using OpenACC 

26 



ENZO on the GPU 

§  Hydro and MHD kernels ported 
§  Each patch is an independent boundary value problem 
§  The GPU can solve each patch separately 
§  Efficient overlap of computation and data transfer 
§  Low arithmetic intensity for hydro, better for MHD 
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Patch 1 

Patch 2 Patch 3 

Patch 4 



RAMSES on the GPU 

§  Radiative Transfer kernel parallelized with CUDA 
§  Transport equation solved iteratively 
§  Good arithmetic intensity, good efficiency  

§  Full code under refactoring based on OpenACC 
§  Memory layout is the  

main problem 
§  Full redesign of the  

algorithms required 
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I/O 

§  Both codes support simple parallel I/O, each MPI task 
writing a different file 

§  ENZO writes HDF files  

§  RAMSES has a “proprietary” binary format (although it 
supports also HDF5) 

§  Files can be used also for restart 

§  Restarting with a different number of MPI tasks is tricky 

§  The number of files to handle can become “unfriendly” 
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Final remarks 

§  Both ENZO and RAMSES are very good tools for numerical 
astrophysics.  

§  RAMSES is a little better in terms of accuracy, ENZO is 
more HPC oriented 

§  Both have a quite big community of users and developers  
§  Both are on continuous update and are trying to support 

new HPC architectures to solve bigger and more complex 
problems 

§  From the astronomer point of view, RAMSES is easier to 
develop. From a computer scientist point of view ENZO is 
“better”… 

§  Support is quite limited for both. Documentation is more 
exaustive for ENZO. 
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Thank you for your attention. 


