(rbf-morph)™

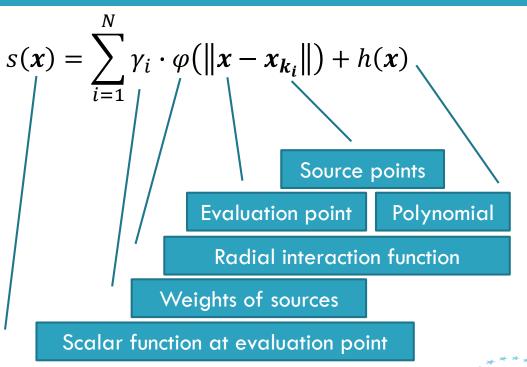
Università di Roma

Fast Radial Basis Functions for Engineering Applications

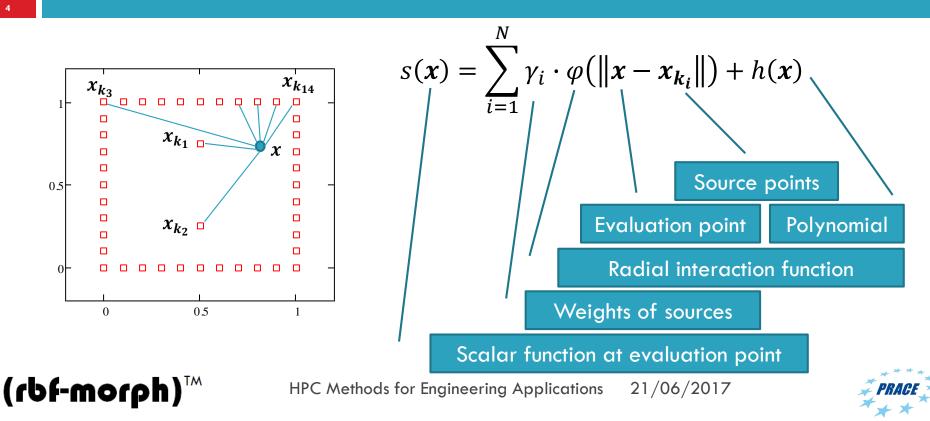
Prof. Marco Evangelos Biancolini – University of Rome "Tor Vergata"

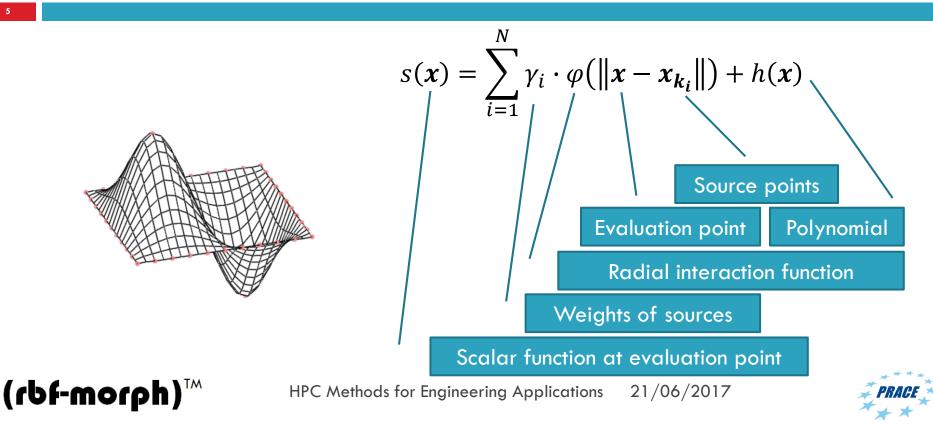
- RBF background
- □ Fast RBF on HPC
- Engineering Applications
- Mesh morphing

$$s(\mathbf{x}) = \sum_{i=1}^{N} \gamma_i \cdot \varphi(\|\mathbf{x} - \mathbf{x}_{k_i}\|) + h(\mathbf{x})$$


. .

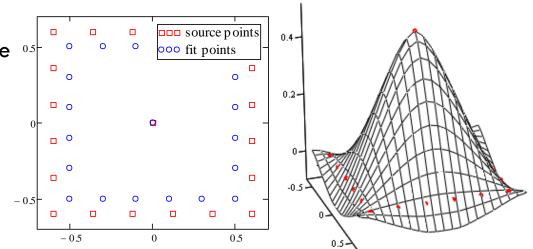
- RBF Morph CAE workflow
- □ Conclusions


(rbf-morph)[™]



- Radial Basis Functions (RBF) were introduced as interpolators of scattered data in sixties. Usually the interpolation is comprised of:
 - A sum of weighted radial interactions
 - A polynomial correction
- RBF are commonly used to interpolate a scalar function defined in a multi-dimensional space ($\mathbb{R}^n \to \mathbb{R}$)

(rbf-morph)™

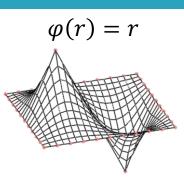


- The weights of the RBF are computed using regression/interpolation:
 - From scalar values at source points
 - From scalar values at fit points
- RBF fit (known as RBF training):
 - Solving a linear system (interpolation)
 - Using Least Squares

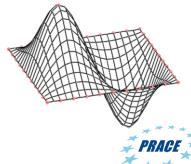
(rbf-morph)[™]

HPC Methods for Engineering Applications 21/06/2017

PRACE


RBF with global support

- Far field interactions
- Dense system of equations to be solved


RBF with compact support

- Local interactions
- Sparse systems of equations to be solved

RBF with global support	arphi(r)			
Spline type (R _n)	r^n , $n \ odd$			
Thin plate spline (TPS _n)	$r^n \log(r)$, n even			
Multiquadric (MQ)	$\sqrt{1+r^2}$			
Inverse multiquadric (IMQ)	$\frac{1}{\sqrt{1+r^2}}$			
Inverse quadratic (IQ)	$\frac{1}{1+r^2}$			
Gaussian (GS)	e^{-r^2}			
RBF with compact support	$\varphi(r) = f(\xi), \xi \le 1, \xi = \frac{r}{R_{sup}}$			
Wendland C ^o (CO)	$(1 - \xi)^2$			
Wendland C ² (C2)	$(1-\xi)^4(4\xi+1)$			
Wendland C ⁴ (C4)	$(1-\xi)^6\left(\frac{35}{3}\xi^2+6\xi+1\right)$			

$$\varphi(r)=r^3$$

(rbf-morph)™

- Scalar
 Function values
 g_{si} known at
 sources x_{si}
- Orthogonality condition
- Linear polynomial

(rbf-morph)[™]

$$s(\boldsymbol{x_{s_i}}) = g_{s_i}, 1 \le i \le N$$

$$\sum_{i=1}^N \gamma_i p(\boldsymbol{x}_{\boldsymbol{s}_i}) = 0$$

$$h(\mathbf{x}) = \beta_1 + \beta_2 x + \beta_3 y + \beta_4 z$$

$$\sum_{i=1}^{N} \gamma_i = \sum_{i=1}^{N} \gamma_i x_{k_i} = \sum_{i=1}^{N} \gamma_i y_{k_i} = \sum_{i=1}^{N} \gamma_i z_{k_i} = 0$$

- Linear system to be solved for the computation of unknown coefficients
- System matrix

(rbf-morph)^m

- Constraint matrix
 P_s
- Interpolation matrix
 M

$$M_{ij} = \varphi\left(\left\|\boldsymbol{x_{s_i}} - \boldsymbol{x_{s_j}}\right\|\right), 1 \le i \le N, 1 \le j \le N$$

Requirements and limits

- Engineering applications often requires large RBF clouds to be fitted (up to millions)
- Evaluation cloud could be even larger (up to **billions**)
- Maximum flexibility is given by direct method that scales as N³

(rbf-morph)^m

 Direct method is limited to about 10.000 points (memory usage, time to fit)

Challenges

- The industry requires a two order of magnitude increment in the size of the cloud
- A further order of magnitude (billion size cloud fitting) as a reasonable target for future roadmaps
- FastRBF are required to fill the gap and make RBF attractive for industrial applications

(rbf-morph)[™]

Options to boost performances

- Reducing the size of the cloud with error control (efficient algorithms for data decimation)
- Decomposing the large problem in several overlapping small problems (Partition Of Unity POU)
- Usage of iterative solvers for the linear system (FGP, GMRES)
- Usage of compact supported RBF (sparse solver)
- Approximate the RBF (Fast Multipole Method FMM)
- Distributing the calculation on multiple cores (CPU and GPU)

Fast RBF strategies

(rbf-morph)^m

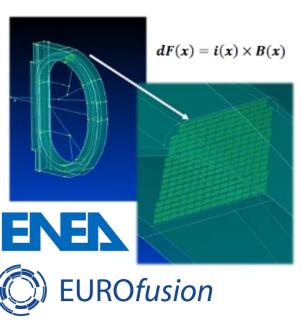
- The approach depends on the **RBF functions**
- The approach depends on the **RBF** space dimension (2-d, 3-d, n-d)
- It's problem dependent (are far field interactions required?)
- Parallelism can be easily exploited at evaluation stage
- Parallelism during **RBF training** is not obvious
- POU methods can be quickly parallelised (distributing local problems)
- Optimisation are OS specific and hardware specific

(rbf-morph)[™]

RBF Morph software solver

- Fluent Add On and Stand Alone software feature a fast iterative solver with FMM (available for bi-harmonic kernel in 3d) + a custom POU (proprietary Local Correction Method LCM technology) with shared memory (OpenMP) parallelism (FORTRAN + C)
- LCM technology can be enabled with generic kernel in 3d (reduced performances increased flexibility) (C)
- ACT Extension features a fast iterative solver with advanced parallelism on CPU (OpenMP + SSE) and on GPU (CUDA) (C++)
- RBF evaluation can be easily distributed (shared memory and distributed memory CPU, GPU)

14								
RBF Morph 🔥 🚳 📴								
Outline Filter: Name		Sphere benchmark with ACT Extension ANSYS						
		Sphere benchmark with ACI Extension ANSYS						
Project Model (A4) Model (A4) Coordinate Systems Coordinate Systems Mesh Mesh	e	RBF sources on the sphere surfaces with a radial offset. RBF evaluated in the ball volume.						
			2017 RBF solver		2015 RBF solv	/er		
Spacing	Sources	Targets	min	sec	min	sec	speed-up	
0,025	85434	205866	0	38	4	23	6,92	
0,02	132598	323464	1	16	10	35	8,36	
0,015	234522	574960	4	30	37	50	8,41	
							·****	

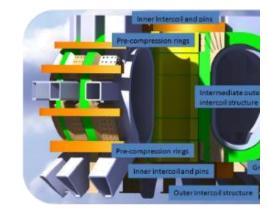

(rbf-morph)™

RBF mapping (DEMO+DTT)

- Electromagnetic loads transferred to the structural model as magnetic field
- Can be transferred as Force density

(rbf-morph)™

HPC Methods for Engineering Applications


21/06/2017

EM/FE/

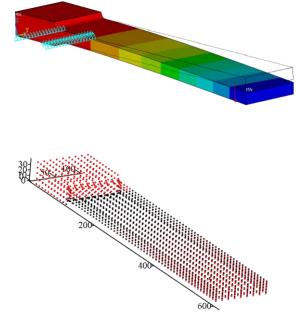
Mapper

62

$$B_{x}(\mathbf{x}) = \sum_{i=1}^{N} \gamma_{i}^{x} \varphi(\|\mathbf{x} - \mathbf{x}_{k_{i}}\|) + \beta_{1}^{x} + \beta_{2}^{x} x + \beta_{3}^{x} y$$
$$B_{y}(\mathbf{x}) = \sum_{i=1}^{N} \gamma_{i}^{y} \varphi(\|\mathbf{x} - \mathbf{x}_{k_{i}}\|) + \beta_{1}^{y} + \beta_{2}^{y} x + \beta_{3}^{y} y$$
$$B_{z}(\mathbf{x}) = \sum_{i=1}^{N} \gamma_{i}^{z} \varphi(\|\mathbf{x} - \mathbf{x}_{k_{i}}\|) + \beta_{1}^{z} + \beta_{2}^{z} x + \beta_{3}^{z} y$$

RBF mapping (RIBES)

- Pressure field computed on surface (CFD) onto structure (FEA)
- Temperature field mapped in the volume


(rbf-morph)™

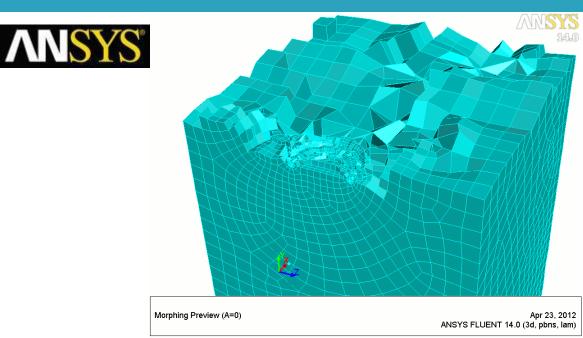
 Compensation of metrological data (RBF4METRO)

17

- Environment modelled using FEA
- Acquired points compensated using RBF

(rbf-morph)™

HPC Methods for Engineering Applications

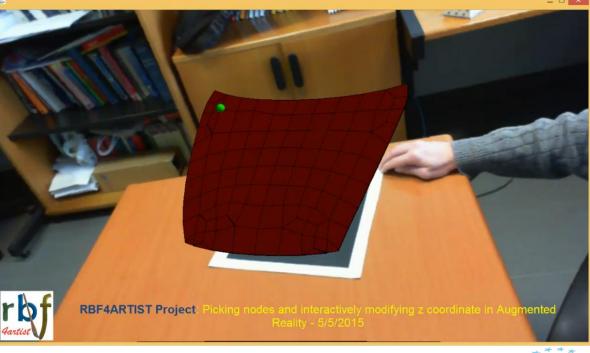

21/06/2017

 Crack propagation (RBF4CRACKS)

18

- Local driving force computed using FEA
- RBF to interpolate driving force and morph the FEA mesh

(rbf-morph)™


 Interactive sculpting (RBF4ARTIST)

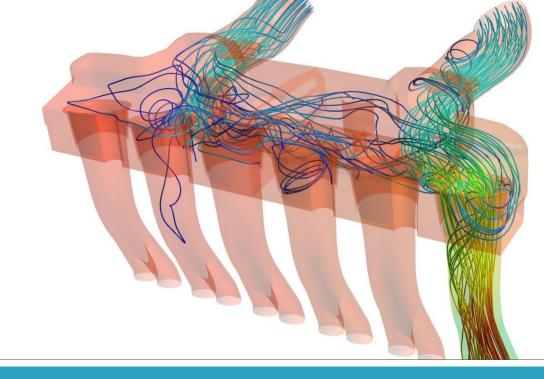
19

- Augmented reality
- Force feedback system
- Real time reactivity requires high performances!

(rbf-morph)™

youtu.be/74yjd7ZWcN k

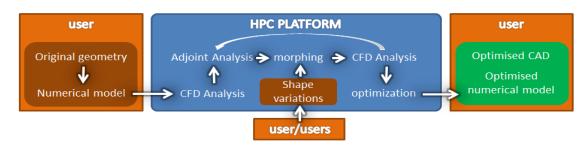
FSI optimisation (RBF4AERO now on FF2)


- Mesh morphing for shape parametrization of numerical grids
- FSI based on mapping and modal superposition
- Optimisation run on the flexible model
- www.rbf4aero.eu/
- youtu.be/eThibFzEPNI
- youtu.be/A0WPDyhlr8Q

21/06/2017

yPlus

21


RBF Morph CAE workflow

Fortissimo experiment 515 - Cloud-based Additive Manufacturing

Fortissimo EU Project

- Factories Of the Future Resources, Technology, Infrastructure and Services for SImulation and MOdelling
- Our experiment: "Virtual Automatic Rapid Prototyping Based on Fast Morphing on HPC Platforms"
- HSL srl, Trento; University of Rome "Tor Vergata"; CINECA

HPC Methods for Engineering Applications

(rbf-morph)^{IM}

Motivation

- Fortissimo Call submission on January 2014
- Fortissimo WP515 "Cloud based modelling for the 3-d printing of complex shapes" started on October 2014
- August 2015 Lamborghini on board as a first user of the method
- New service on the Fortissimo Marketplace

(rbf-morph)™

- 3d printing already in use for **one-**off projects
- Moving to **small production** lots looks reasonable (especially for top cars)
- Full exploitation of 3d printing potential requires **new CAE** concepts
- Shape optimisation based on **mesh** morphing (with parameters or without parameters, adjoint) could be a meaningful answers

GE Unveils Additive Manufacturing Factory Plan

Jui 15, 2014

FARNBOROUGH -- General Electric has revealed plans to develop the aerospace world's first large, dedicated additive manufacturing facility for jet engine parts in Auburn, Alabama

Guy Norris | AWIN First

40k nozzles/year by 2020 for

- Airbus A320neo
- Boeing 737 MAX
- Comac's C919

(rbf-morph)^{IM}

21/06/2017 HPC Methods for Engineering Applications

Shape parameterization strategy

- Geometric parameterization by Mesh morphing
- The principle is to take the control on a set of point and to transfer the deformation to the whole mesh
- Adjoint sensitivities

(rbf-morph)™

- filtered and used to have "flow sculpted" shapes
- derivatives of shape parameters for gradient based optimisation

HPC Methods for Engineering Applications

21/06/2017

Radial Basis Functions for mesh morphing

- Radial Basis Functions (RBF) can be used to drive mesh morphing (smoothing) from a list of source points and their displacements.
 - Surface shape changes (exact nodes control)
 - Volume mesh smoothing.

(rbf-morph)[™]

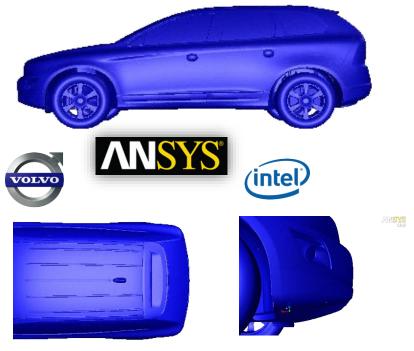
 RBF are recognized to be one of the **best mathematical tool** for mesh morphing.

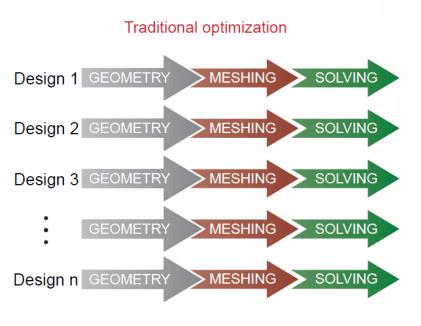
$$\begin{split} \left\{ s_{x}(\boldsymbol{x}) = \sum_{i=1}^{N} \gamma_{i}^{x} \varphi \left(\|\boldsymbol{x} - \boldsymbol{x}_{s_{i}}\| \right) + \beta_{1}^{x} + \beta_{2}^{x} x + \beta_{3}^{x} y + \beta_{4}^{x} z \\ s_{y}(\boldsymbol{x}) = \sum_{i=1}^{N} \gamma_{i}^{y} \varphi \left(\|\boldsymbol{x} - \boldsymbol{x}_{s_{i}}\| \right) + \beta_{1}^{y} + \beta_{2}^{y} x + \beta_{3}^{y} y + \beta_{4}^{y} z \\ s_{z}(\boldsymbol{x}) = \sum_{i=1}^{N} \gamma_{i}^{z} \varphi \left(\|\boldsymbol{x} - \boldsymbol{x}_{s_{i}}\| \right) + \beta_{1}^{z} + \beta_{2}^{z} x + \beta_{3}^{z} y + \beta_{4}^{z} z \end{split}$$

Radial Basis Functions for mesh morphing

$$\begin{cases} s_{x}(\mathbf{x}) = \sum_{i=1}^{N} \gamma_{i}^{x} \varphi (\|\mathbf{x} - \mathbf{x}_{s_{i}}\|) + \beta_{1}^{x} + \beta_{2}^{x} x + \beta_{3}^{x} y + \beta_{4}^{x} z \\ s_{y}(\mathbf{x}) = \sum_{i=1}^{N} \gamma_{i}^{y} \varphi (\|\mathbf{x} - \mathbf{x}_{s_{i}}\|) + \beta_{1}^{y} + \beta_{2}^{y} x + \beta_{3}^{y} y + \beta_{4}^{y} z \end{cases}$$

$$s_{z}(\mathbf{x}) = \sum_{i=1}^{N} \gamma_{i}^{z} \varphi(\|\mathbf{x} - \mathbf{x}_{s_{i}}\|) + \beta_{1}^{z} + \beta_{2}^{z} x + \beta_{3}^{z} y + \beta_{4}^{z} z$$


- Main advantages
 - No re-meshing
 - Can handle any kind of mesh
 - Can be integrated in the CFD solver
 - Highly parallelizable
 - Robust process
- Main disadvantages
 - Computationally expensive (HPC for large grids)
 - Back to CAD procedure required



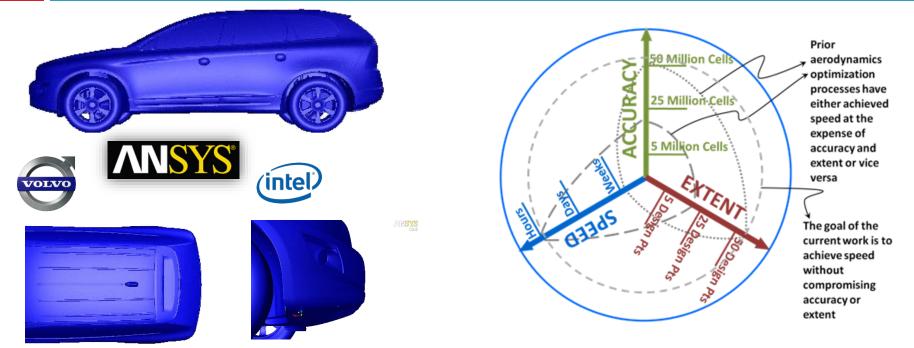
(rbf-morph)™

λŢ

Example – 50:50:50 procedure

(rbf-morph)™

Example – 50:50:50 procedure



(rbf-morph)™

HPC Methods for Engineering Applications

21/06/2017

Example – 50:50:50 procedure

(rbf-morph)™

HPC Methods for Engineering Applications 21/06/2017

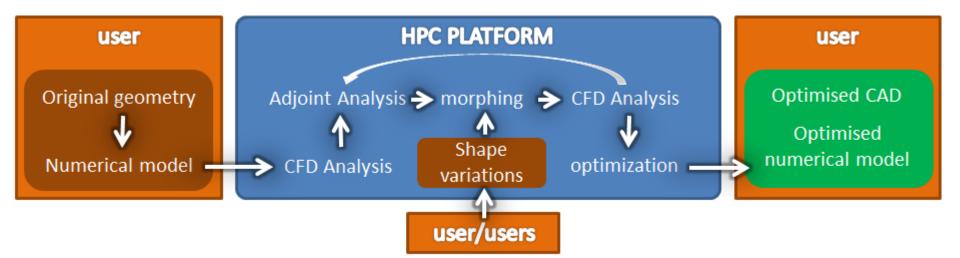
PRACE

HPC performances

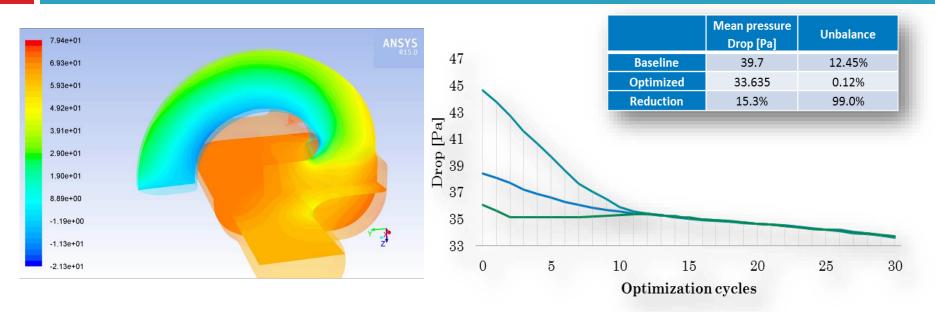
- 31
- □ 14 mill. cells, 60.000 points, PC 4 cpu 2.67 GHz
 - RBF training: 53 sec. (serial)
 - **morphing:** 3.5 min.
- □ 50 mill. cells, 30.000 points, HPC 140 cpu
 - **RBF** training : 25 sec. (serial)
 - **morphing** : 1.5 min.
- 100 mill. cells, 200.000 points, HPC 256 cpu
 - **RBF** training : 25 min.
 - **morphing** : 5 min.

(rbf-morph)^m

HPC Methods for Engineering Applications

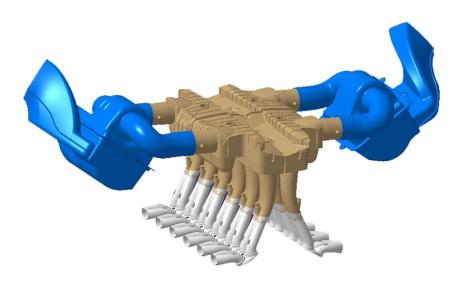

21/06/2017

Fortissimo WP515


(rbf-morph)™

Fortissimo Benchmark

(rbf-morph)™

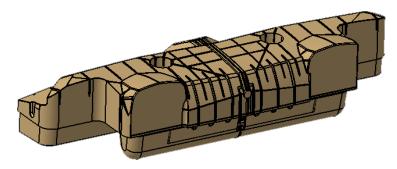


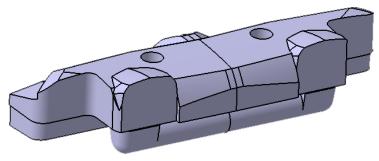
Fortissimo Case study

Airbox of the Lamborghini Aventador

- Detailed CFD analyses of intake runners pressure drops (compressible!)
- Define a new shape for charging efficiency maximization

(rbf-morph)[™]

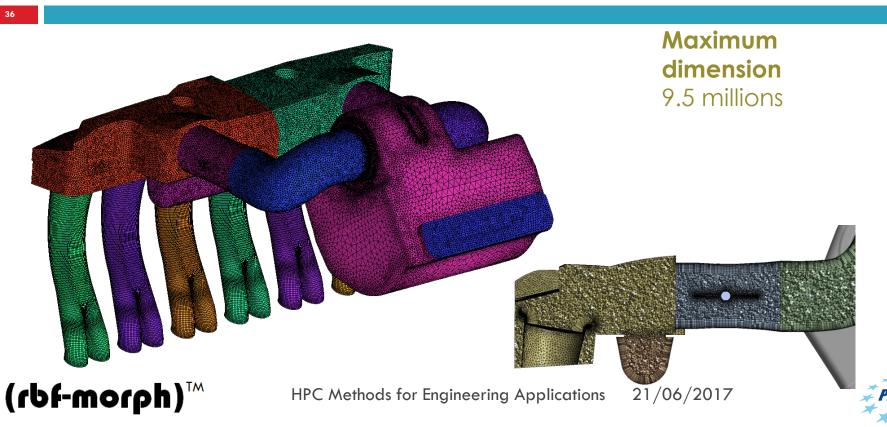




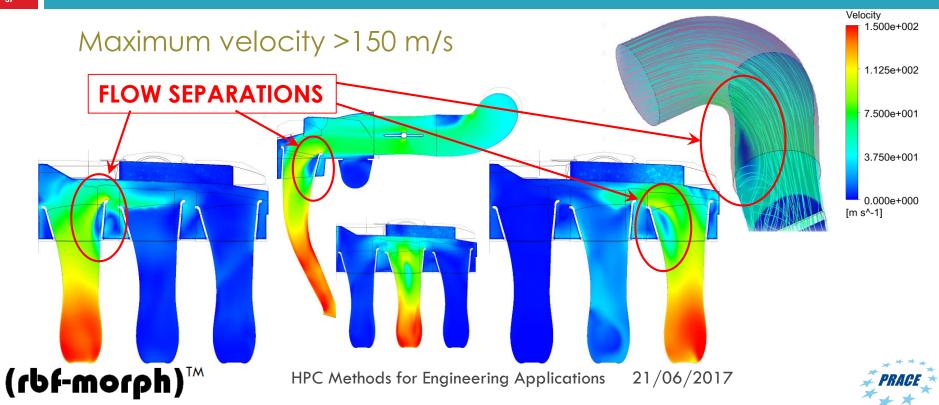
CAD model preparation

- CAD model rebuilt to:
 - simplify the geometry eliminating reinforcements (reduced mesh dimension)
 - clean the surfaces (steps, gaps, holes) to be suitable for CFD

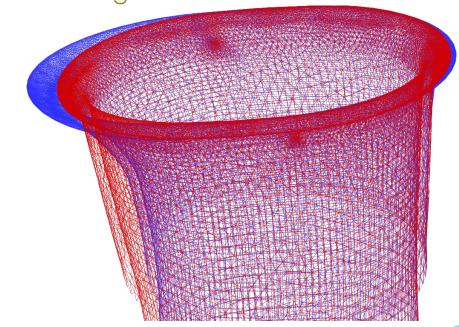
(rbf-morph)™


HPC Methods for Engineering Applications

21/06/2017

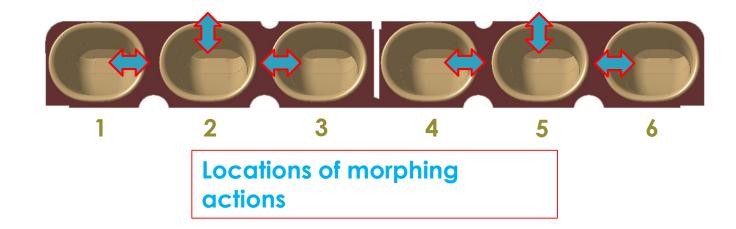

Mesh assembly

Critical regions



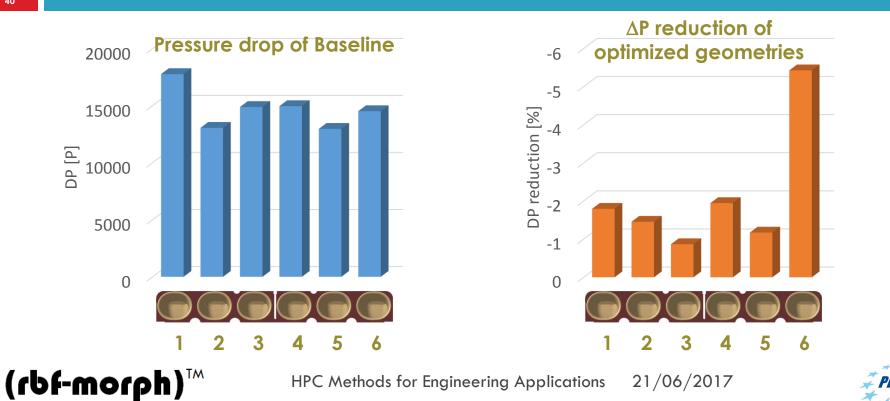
38

Two shape modifiers for each runner acting in the region of separation Variable 1



(rbf-morph)™

RBF setup for all runners


(rbf-morph)™

Results

40

Results

DP = 15044.8 P

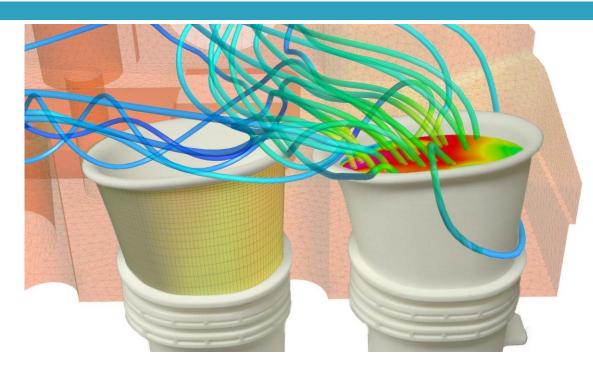
(rbf-morph)™

Results

DP = 14584.8 P

(rbf-morph)™

(rbf-morph)™



(rbf-morph)™

(rbf-morph)™

(rbf-morph)™

Conclusions

(rbf-morph)[™]

- 47
- Radial Basis Functions have a great potential to be more and more adopted in Engineering Applications
- Fast RBF are a paramount to tackle industrial cases. Users are hungry of performances.
- **RBF Morph** software (first industrial mesh morphing tool based on RBF) is representative of the **industrial needs**
- Various engineering applications demonstrated (ranging in research/industrial active projects)
- A detailed example of a cloud HPC workflow of Fortissimo fully demonstrated

goo.gl/1svYd

(rbf-morph)™

twitter.com/RBFMorph

linkedin.com/company/rbf-morph

youtube.com/user/RbfMorph

rbf-morph.com

Many thanks for your kind attention!

biancolini@ing.uniroma2.it