

Acusolve CFD MULTIPHYSICS solutions for HPC applications: Better Model Reality Using Co-simulation

\triangle Altair

Maurizio Sperati | Country Manager Italy

Altair Numbers

30+ years driving innovation
\$300+ million in revenue
45+ offices in 22 countries
2,600+ creative designers, engineers, scientists, and developers
150+ technology and business partners
5000+ customers

Synergy @ ALTAIR

ProductDesign

A global engineering and design business delivering innovation to our clients

HyperWorks

Industry's broadest integrated Simulation Software Suite (Model Builders, Solvers, Optimisers Visualization)

© 2017 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

LET'S TALK ABOUT MASSIVE CO-SIMULATION: MULTIPHYSICS

IN THE NEXT 20 MINS. LEARN

use co-simulation

HOW

WHY

MBS-CFD co-simulation can be applied

WHAT

is the relevance of MBS-CFD co-simulation for drivability

LET'S START WITH WHY

use co-simulation

HOW MBS-CFD co-simulation can be applied

WHAT

WHY

is the relevance of MBS-CFD co-simulation for drivability

WHY use co-simulation

- CAE drives the design more today than ever before.
- Therefore, it is vital that simulation represent reality to the maximum extent possible.
- Multiphysics simulation provides the opportunity for significantly improved accuracy.

Let's look at a brief history of engineering & simulation:

- 1950's & Earlier: "Build & Test" was the norm; Pen & Paper calcs
- 1960's: The CAE age begins
- 1970's: Solvers emerge; Text edit ir
- 1980's: Solver use common; GUI's
- 1990's: GUI's common; Optimiz
- 2000's: Optimization common;
- 2010's: Multiphysics becoming
- Future: Multiphysics optimizatic

WHY DO MULTI-PHYSICS SIMULATION?

Take better design decisions by accurately simulating interaction between different physics MBS | Controls | FEA | CFD | Actuators

WHY DO CO-SIMULATION?

Co-simulation empowers you to do multi-physics simulation WITHOUT any model simplification

THE GOAL

High-fidelity components

Computational Fluid Dynamics

Detailed kinematics

Structural flexibility

Simulate combined system behavior before creating physical prototypes UNDERSTAND BEHAVIOR | IMPROVE DESIGNS | DECREASE COSE & REDUCE RISK /

LET'S REVIEW SOME APPLICATIONS

use co-simulation

HOW MBS-CFD co-simulation can be applied

WHAT is the relevance of MBS-CFD co-simulation for drivability

CALTAIN A LAND A LA

Altair Sloshing Tanker Truck MBS-CFD CO-SIMULATION

Full Vehicle Ride Performance

MBS-CFD CO-SIMULATION

△ Altair Offshore Riser/Fairing Simulation

MBS-CFD CO-SIMULATION

VEHICLE STEERING STABILITY CO-SIMULATION

WHY use co-simulation

HOW MBS-CFD co-simulation can be applied

WHAT is the relevance of MBS-CFD co-simulation for drivability

Itair Engineering, Inc. Proprietary and Confidential. All rights reserved.

MOTIONSOLVE (MBS) – ACUSOLVE (CFD) CO-SIMULATION

- ✓ MBS & CFD solvers send/receive info via TCP socket communication
- Altair middleware application communicates information between solvers
- ✓ Information is exchanged at the CFD time increment
- Middleware manages runtime and licensing

GOAL: INVESTIGATE VEHICLE STABILITY UNDER LANE CHANGE

- ✓ Accurately predict actual driving conditions
- ✓ Simulations at 90 km/hr (56 mph) performed
- ✓ Lane change maneuver takes place over a 4 second period
- Fluid domain follows vehicle body in horizontal plane

CFD MODELING HIGHLIGHTS

- ✓ Transient Simulation (Delayed Detached Eddy Simulation)
- Single body forces/moments displacements/rotations transferred between MBS & CFD solvers
- ✓ To enable lane change in CFD, the entire fluid is translated according to the motion of the body in MotionSolve (MBS)

MBS MODELING HIGHLIGHTS

Detailed Full Vehicle model built in MotionSolve (MBS) including the external forces coupling from the CFD analysis (AcuSolve)

SIMULATION RESULTS: AERODYNAMICS

SIMULATION RESULTS: COMBINED

SIMULATION RESULTS: COMBINED

No result

SIMULATION RESULTS: ANGULAR DISPLACEMENT

Speed = 90km/hr; results for MotionSolve Only and AcuSolve-MotionSolve Coupling; Not a significant difference in terms of angular motion

SIMULATION RESULTS: MECHANICAL

Aerodynamic forces decrease the velocity of the vehicle and tend to dampen mechanical motion of suspension components; Displacement of suspension is reduced by ~ 5mm

SIMULATION RESULTS: AERODYNAMICS

Increased drag force as the vehicle yaws in and out of maneuver

Lift force is significantly impacted during lane change Downforce is negated, which leads to instability in the vehicle motion

SUMMARY

- Co-simulation empowers you to do multi-physics simulation
 WITHOUT any model simplification
- Multi-body Simulation (MBS)-Computational Fluid Dynamics
 (CFD) co-simulation enables you to better model reality
- This paper describes the importance of pushing the envelope in terms of added physics in simulating the mechanical system using MotionSolve (Multi-body simulation) tightly coupled with AcuSolve (Computational Fluid Dynamics) numerical solver to better model reality and thereby accurately simulate the drivability of the vehicle

KNOWLEDGE OF THE PRODUCT DURING ITS DEVELOPMENT PROCESS AND PROJECTION OF COST/RISKS

T & Costs: Total Lifetime Cycle

"Assioma": MULTIPHYSICS to avoid unforeseen behaviours

 \bigtriangleup

ALTAIR SOLVER TECHNOLOGY

Digital Materials

We ask you to not just design something. We ask you to DESIGN THE DIFFERENCE™

