LABORATORY OF BIOLOGICAL STRUCTURE MECHANICS

www.labsmech.polimi.it

Computer simulations of bench testing for the investigation of coronary bifurcation stenting

Claudio Chiastra

Milan – June $20th$, 2017

Coronary heart disease

- Every year > 1.8 million deaths in the European Union
- **Coronary artery atherosclerosis**

Coronary artery stenting

■ **Most commonly used technique** to treat coronary atherosclerotic lesions

■ In-stent **restenosis** is a major complication

Cross-section

Coronary artery stenting

- **Most commonly used technique** to treat coronary atherosclerotic lesions
- In-stent **restenosis** is a major complication

Cross-section

Coronary bifurcation lesions

■ **Challenging** for interventional cardiologists^{*}

Lower success rate Higher restenosis rate

■ Several issues:

- \triangleright No optimal stenting technique
- Critical assessment of lesion severity by FFR
- Plaque/carina shift

*Lassen et al. *Eurointervention*, 2014

Coronary bifurcation lesions

Lower success rate Higher restenosis rate

■ Several issues:

- \triangleright No optimal stenting technique
- **▶ Critical assessment of** lesion severity by FFR
- \triangleright Plaque/carina shift

*Lassen et al. *Eurointervention*, 2016

Biomechanical impact of stenting

SOLID MECHANICS ELUID DYNAMICS

■ Vessel wall damage

■ Influence on tissue regrowth

■ Influence on tissue regrowth

Biomechanical impact of stenting

SOLID MECHANICS FLUID DYNAMICS

■ Vessel wall damage

■ Influence on tissue regrowth

■ Influence on tissue regrowth

Biomechanical analysis of coronary stents

Antoniadis et al. *J Am Coll Cardiol Interv*, 2015

Idealized and patient-specific studies

■ Side branch compromise after main vessel stenting (study 1)

Iannaccone, Chiastra et al. *EuroInterv***, 2017**

■ Computational replication of stenting procedure for the treatment of **two real clinical cases** (study 2)

Idealized and patient-specific studies

■ Side branch compromise after main vessel stenting (study 1)

Iannaccone, Chiastra et al. *EuroInterv***, 2017**

■ Computational replication of stenting procedure for the treatment of **two real clinical cases** (study 2)

Research group

Erasmus MC

Jolanda J. Wentzel, PhD

Frank Gijsen, PhD

Evelyn Regar, PhD, MD

Antonios Karanasos, PhD, MD

European Bifurcation Club

POLIMI

Prof. Francesco Migliavacca

Prof. Gabriele Dubini

Claudio Chiastra, PhD

Gent University UNIVERSITEIT

Prof. Benedict Verhegghe

Prof. Patrick Segers

Matthieu De Beule, PhD

Francesco Iannaccone, PhD

GENT

 $\boldsymbol{\Theta}$

Clinical problem: plaque / carina shift

Lateral dislocation of plaque/carina during stent implantation Possible occlusion of the side branch

Clinical problem: plaque / carina shift

Lateral dislocation of plaque/carina during stent implantation Possible occlusion of the side branch

Aim

To investigate the **influence of distal angle / plaque composition on side branch compromise** because of **main branch stenting**

2 bifurcation geometries with **different distal angles*** are investigated

** Distal angle = 57.3° ± 10.0° calculated on LAD, RCA, LCX (mainly LAD, 92.2%) (n = 153 patients) by Elsaban et al. 2013 Elsaban et al. J Invasive Cardiol 2013*

Aim

To investigate the **influence of distal angle / plaque composition on side branch compromise** because of **main branch stenting**

- 2 bifurcation geometries with **different distal angles*** are investigated
	- different types of plaques

■ **LAD / D1 bifurcation parametric model** (Chiastra et al. 2016)

- **Diameters** defined according to **Finet's law**:

17 claudio.chiastra@polimi.it

■ **LAD / D1 bifurcation parametric model** (Chiastra et al. 2016)

- **Angles:**

Elsaban et al. *J Invasive Cardiol*, 2013

■ **LAD / D1 bifurcation parametric model** (Chiastra et al. 2016)

- **Stenosis:** PMB 60% DMB 60% SB 60%
- **Plaque length:**

Chiastra et al. *Biomed Eng Online*, 2016

■ **LAD / D1 bifurcation parametric model** (Chiastra et al. 2016)

- **Curvature:** bifurcation placed on a sphere with radius R representing the heart, R= 56.25 (Pvikin 2005)

Chiastra et al. *Biomed Eng Online*, 2016 Pvikin et al. *J Biomech*, 2005

Intima + Media thickness = 20 % lumen radius Distance between two consecutive cross-sections = 1 mm

Methods: vessel material properties

Isotropic hyperelastic behavior with ideal plasticity to mimic vessel damage

■ **Arterial wall** ■ **Fibrous / lipid / calcium plaque**

Isotropic hyperelastic behavior with ideal plasticity to mimic plaque rupture

Loree et al. *J Biomech*, 1994 Holzapfel et al. *Am J Physiol Heart Circ Physiol*, 2005

Methods: stent and balloon

■ **Multi-Link 8** (Abbott Laboratories, Abbott Park, IL, USA)

- Bare-metal stent, Co-Cr alloy
- Size: 3x18 mm

■ **Balloon:**

- Modeled as a straight tube using a simplified approach*
- Calibrated using the manufacturer compliance chart from 10 atm to 14 atm

(nominal pressure = 10 atm, burst pressure = 18 atm)

Kiousis et al. *Int J Num Methods Eng*, 2008

Provisional side branch stenting

Provisional side branch stenting

■ **Marginal change for lipid and fibrous cases**

more influence on lumen shape

■ **Marginal change for lipid and fibrous** cases

more influence on lumen shape

■ Angiographic pictures depending on the angle can mislead interpretation of the

outcomes \Box good FFR values even when the angiographic result is not optimal

Simulation (fibrous plaque - 70°)

Xu et al. 2012

Xu et al. *Circ Cardiovasc Interv*, 2012

■ Significant change for cases with calcium plaques

Results: Side branch compromise

■ **Volumetric analysis**

SB compromise* = lumen volume decrease in the SB segment after MB stenting

* Xu et al. *Circ Cardiovasc Interv*, 2012

Results: Side branch compromise

■ **Volumetric analysis: 15 versus 9 mm long post-dilation balloon**

SB compromise* = lumen volume decrease in the SB segment after MB stenting

* Xu et al. *Circ Cardiovasc Interv*, 2012

Conclusions (study 1)

■ Development of a parametric model of a coronary bifurcation to investigate side **branch compromise after main branch stenting**

CLINICAL CONCLUSIONS

- Change in side branch ostium shape after stenting but its area remains similar **for lipid and fibrous cases**
	- \triangleright possible misleading interpretation of the outcomes from angiography
- Side branch compromise depends mainly on plaque composition
- Side branch compromise is reduced if a shorter post-dilation balloon is used

Idealized and patient-specific studies

■ Side branch compromise after main vessel stenting (study 1)

Iannaccone, Chiastra et al. *EuroInterv***, 2017**

■ **Computational replication of stenting procedure for the treatment of two real clinical cases** (study 2)

Research group

POLIMI (Milan, Italy)

Prof. Francesco Migliavacca

Prof. Gabriele Dubini

Claudio Chiastra, PhD

Wei Wu, PhD

Marquette University (Milwaukee, WI, USA)

Prof. John LaDisa Jr.

Ali Aleiou

Benjamin Dickerhoff

Kobe University Graduate School of Medicine (Kobe, Japan)

Hiromasa Otake, MD

Aims

1. Investigation of the **reliability of finite element analyses** in predicting post-operative geometry

2. Pre-operative virtual planning to test:

- different stent designs
- **E** different stent positioning

Aims

- **1.** Investigation of the **reliability of finite element analyses** in predicting post-operative geometry
- **2. Pre-operative virtual planning** to test:
- different stent designs
- different stent positioning

Investigated cases

- Pre / post operative data:
	- \triangleright Angiography
	- Computed tomography (CT)
	- Optical coherence tomography (OCT)

Kobe University Graduate School of Medicine (Kobe, Japan)

Case 1 Left anterior descending / diagonal (LAD/D1) bifurcation **Case 2** Left circumflex artery with two branches

Methods: Vessel lumen model

■ Locating OCT pullback path and reconstructing pre-stenting geometry

- A. Position orthogonal sets of coplanar transducer candidate points within coarse volume from CT
- B. Segment OCT images into lumen (white) contours containing candidate points (green)
- C. Create spatial diagram of a vessel and its graph diagram. Determine the wire pathway with minimum bending energy
- D. Register OCT segments (purple) in 3D space and create the vessel lumen model

Ellwein et al. *Cardiovasc Eng Tech*. 2011

Methods: Vessel solid model

■ Wall thickness defined according to ex vivo measurements $*$

* Holzapfel et al. *Am J Physiol Heart Circ Physiol*, 2005

Methods: Vessel solid model mesh

Methods: Plaque identification

■ Method by Morlacchi et al. (2013)^{*}

* Morlacchi et al. Med Eng Phys, 2013

Methods: Plaque identification

■ Method by Morlacchi et al. (2013)^{*}

* Morlacchi et al. Med Eng Phys, 2013

Methods: Plaque identification

■ Method by Morlacchi et al. (2013)^{*}

* Morlacchi et al. Med Eng Phys, 2013

Methods: Plaque identification (Case 1)

■ **Physician-guided delineation of plaque components**

Methods: Plaque identification (Case 2)

■ **Physician-guided delineation of plaque components**

OCT analysis (26.9 mm)

Methods: Material properties

Isotropic hyperelastic constitutive law based on a sixth order polynomial strain energy density function **200** 2005) (Holzapfel et al., 2005) **MEDIA** 800 (Holzapfel et al., **STRESS [kPa] STRESS [kPa] 150** Tensile Stress O_g (kPa) 600 **100** 400 200 **50** 0.0 0.1 0.2 0.3 **0 0.2 0.4 STRAIN**

■ **Arterial wall** ■ **Soft / stiff plaque**

Loree et al. *J Biomech*, 1994 Holzapfel et al. *Am J Physiol Heart Circ Physiol*, 2005

Methods: Stent

■ **XIENCE PRIME**® (Abbott Vascular, USA)

Length $= 18$ mm Diameter = 2.5 mm (Case 1) = 3.5 mm (Case 2) Strut thickness = **81 μm**

Material: L-605 Co-Cr alloy elasto-plastic with kinematic hardening

Mesh: highly regular hexahedral mesh, ≈100,000 volume C3D8R elements

Methods: Stent

■ **NOBORI®** (Terumo, Japan)

Length $= 18$ mm Diameter = 2.5 mm (Case 1) = 3.5 mm (Case 2) Strut thickness = **125 μm**

Material: L-605 Co-Cr alloy elasto-plastic with kinematic hardening

Mesh: highly regular hexahedral mesh, ≈100,000 volume C3D8R elements

Stenting procedure (Case 1)

Stenting procedure (Case 2)

3. Provisional technique (3.5x18 mm NOBORI stent insertion)

4. Provisional technique (stent expansion)

From structural to fluid dynamics simulations

Fluid dynamics methods

Aimed Pressure

[mmHg] Systolic - 77 Mean - 68 Diastolic - 59

Additional details:

- μ = 4.0 cP $\rho = 1.06$ g/cm³
- Vessel walls assumed to be rigid after stenting*

nVascular

*LaDisa et al. *J Appl Physiol*, 2002 **Van Huis et al. *AJP - Heart*, 1987

Fluid dynamics methods

Systolic - 77 Mean - 68 Diastolic - 59

Additional details:

- μ = 4.0 cP $\rho = 1.06$ g/cm³
- Vessel walls assumed to be rigid after stenting*

imVascular

*LaDisa et al. *J Appl Physiol*, 2002 **Van Huis et al. *AJP - Heart*, 1987

Validation of the structural model

Pre-clinical planning: optimal stent choice (Case 1)

■ **Malapposition**

Pre-clinical planning: optimal stent choice (Case 1)

Pre-clinical planning: optimal stent choice (Case 2)

■ **Malapposition**

Malapp. = 0.9 %

Pre-clinical planning: optimal stent choice (Case 2)

Pre-clinical planning: stent positioning (Case 2)

■ **Malapposition**

Flow

Malapp. $= 2.4 \%$

Malapp. $= 1.3 \%$

Conclusions (study 2)

- Creation of **coronary bifurcation models from CT** and OCT, including **plaque composition**
- **Virtual stenting methodology** able to replicate **real clinical cases**
- **Reasonable agreement** between the **post-operative geometry** obtained after **virtual expansion** and the one created from **patient images**
- **Pre-clinical planning** using a sequential method (mechanical + fluid dynamics simulations) to find
	- \triangleright the best stent design
	- \triangleright the best stent position
	- the best stenting technique

Overall conclusions

- **Computer simulations** (mechanical + fluid dynamics analyses)
	- **powerful tool for investigating coronary stents**

■ **High-performance computing fundamental** for running those simulations efficiently, reliably and fast

POLITECNICO MILANO 1863 $^{\prime\prime\prime\prime\prime\prime\prime\prime\prime\prime\prime\prime}$

LABORATORY OF BIOLOGICAL STRUCTURE MECHANICS

www.labsmech.polimi.it

Thank you for your attention

- claudio.chiastra@polimi.it -

claudio.chiastra@polimi.it

Validation of numerical simulations

Simulation

P = 12 atm

Chiastra et al. *Eurointervention*, 2015

Validation of numerical simulations

■ Comparison between the geometrical results of the experimental data and of the structural analysis

STRUT OPENING AFTER SB ACCESS

STENT DISTORTION AFTER SB ACCESS

GEOMETRICAL CONFIGURATION AFTER FINAL KISSING BALLOON

Morlacchi et al. *Biomech Model Mechanobiol*, 2010

Validation of numerical simulations

Raben et al. *J Appl Biomater Funct Mater*, 2014