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■ Every year > 1.8 million deaths in the European Union

■ Coronary artery atherosclerosis

Plaque

Cross-section

Coronary heart disease
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■ In-stent restenosis is a major complication

3

Coronary artery stenting

■ Most commonly used technique to treat coronary atherosclerotic lesions

Cross-section
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Coronary artery stenting

■ In-stent restenosis is a major complication

■ Most commonly used technique to treat coronary atherosclerotic lesions

Cross-section

1 out of 6 stents fails
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Coronary bifurcation lesions

■ Challenging for interventional cardiologists*

Lower success rate

Higher restenosis rate

*Lassen et al. Eurointervention, 2014

■ Several issues:

 No optimal stenting 

technique

 Critical assessment of 

lesion severity by FFR

 Plaque/carina shift

> 10% failure rate
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Coronary bifurcation lesions

*Lassen et al. Eurointervention, 2016

■ Several issues:

 No optimal stenting 

technique

 Critical assessment of 

lesion severity by FFR

 Plaque/carina shift

■ Challenging for interventional cardiologists*

Lower success rate

Higher restenosis rate
> 10% failure rate
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FLUID DYNAMICSSOLID MECHANICS
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Biomechanical impact of stenting

■ Vessel wall damage

■ Influence on tissue regrowth

Wall stress 
0 0.5 MPa

Blood flow

Velocity
0 1 m/s

■ Influence on tissue regrowth
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FLUID DYNAMICSSOLID MECHANICS
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Biomechanical impact of stenting

■ Vessel wall damage

■ Influence on tissue regrowth

Wall stress 
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Blood flow

Velocity
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■ Influence on tissue regrowth
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Biomechanical analysis of coronary stents

Antoniadis et al. J Am Coll Cardiol Interv, 2015

PREDICTION 

OF OUTCOMES

 Restenosis

 Thrombosis

STENTING 

OPTIMIZATION

 Stenting techniques

 Stent design

Virtual stenting

Blood flow simulations

In-vitro stenting

Coronary bifurcation
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Idealized and patient-specific studies

■ Side branch compromise after main vessel stenting (study 1)

■ Computational replication of stenting procedure for the treatment of 

two real clinical cases (study 2)

Post-operative

Pre-operative

Iannaccone, 

Chiastra et al. 

EuroInterv, 2017

Chiastra et al. 

J Biomech, 2016
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Chiastra et al. 

J Biomech, 2016
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Idealized and patient-specific studies

■ Side branch compromise after main vessel stenting (study 1)

■ Computational replication of stenting procedure for the treatment of 

two real clinical cases (study 2)

Post-operative

Pre-operative

Iannaccone, 

Chiastra et al. 

EuroInterv, 2017
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Clinical problem: plaque / carina shift

Lateral dislocation of plaque/carina during stent implantation

Possible occlusion of the side branch

Plaque/carina shiftStent

Side branch

compromise

Carina with plaque

Side branch

Prox. main branch

Distal main 

branch

Main branch 

stenosis

Post-operative

Pre-operative

Side brach ostium
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Aim

2 bifurcation geometries with different distal angles* are investigated 

* Distal angle = 57.3° ± 10.0° calculated on LAD, RCA, LCX (mainly LAD, 92.2%) (n = 153 patients) by Elsaban et al. 2013 

Elsaban et al. J Invasive Cardiol 2013

45°

70°

To investigate the influence of distal angle / plaque composition on 

side branch compromise because of main branch stenting

different types of plaques



claudio.chiastra@polimi.it16

Aim

2 bifurcation geometries with different distal angles* are investigated 

To investigate the influence of distal angle / plaque composition on 

side branch compromise because of main branch stenting

- lipid

- lipid + calcium (half ring in the DMB)

- fibrous

- lipid + calcium (full ring in the DMB)

Lipid CalciumFibrous

different types of plaques
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Methods: geometry

■ LAD / D1 bifurcation parametric model (Chiastra et al. 2016)

Chiastra et al. Biomed Eng Online, 2016

Finet et al. EuroIntervention, 2007

Kimball et al. J Cardiol, 1990

DPMB

Case 60 60 60 - 70°

Side branch (SB)

Distal main branch (DMB)

Proximal main branch (PMB)

- Diameters defined according to Finet’s law:

DPMB = 3.3 mm 

DDMB = 2.77 mm 

DSB = 2.1 mm

(Kimball 1990, - 3.3 ± 0.5 mm)

𝐷𝑃𝑀𝐵 = 0.678(𝐷𝑆𝐵 + 𝐷𝐷𝑀𝐵)
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■ LAD / D1 bifurcation parametric model (Chiastra et al. 2016)

Case 60 60 60 - 70°

Side branch (SB)

Distal main branch (DMB)

Proximal main branch (PMB)

- Angles:

Main branch angle β = 150° (Godino 2010: 156°± 19°)

Distal angle α = 45° / 70° (Elsaban 2013: 57.3° ± 10.0°)

18

Methods: geometry

α

β

(Onuma 2008: 50° < α < 90°

in 70% of investigated patients)

Chiastra et al. Biomed Eng Online, 2016

Godino et al. J Interv Cardiol, 2010

Onuma et al. EuroIntervention, 2008

Elsaban et al. J Invasive Cardiol, 2013
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■ LAD / D1 bifurcation parametric model (Chiastra et al. 2016)

Case 60 60 60 - 70°

Side branch (SB)

Distal main branch (DMB)

Proximal main branch (PMB)

- Stenosis: PMB 60% - DMB 60% - SB 60% 

- Plaque length:

LP-PMB = 6 mm

LP-DMB = 6 mm

Side branch lesion length (LP-SB) = 6 mm

19

Methods: geometry

Chiastra et al. Biomed Eng Online, 2016

LP-PMB

LP-DMB

LP-SB



claudio.chiastra@polimi.it

R

Case 60 60 60 - 70°

20

Methods: geometry

■ LAD / D1 bifurcation parametric model (Chiastra et al. 2016)

Chiastra et al. Biomed Eng Online, 2016

Pvikin et al. J Biomech, 2005

- Curvature: bifurcation placed on a sphere with radius R representing the heart,  R= 56.25 (Pvikin 2005)

- Asymmetric plaque
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Methods: geometry

■ LAD / D1 bifurcation parametric model

- Main branch cross-sections

Intima + Media thickness = 20 % lumen radius 

Distance between two consecutive cross-sections = 1 mm

Intima

Media

Adventitia

Plaque
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Methods: vessel material properties

■ Arterial wall ■ Fibrous / lipid / calcium plaque

Isotropic hyperelastic behavior with 
ideal plasticity to mimic vessel damage
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Isotropic hyperelastic behavior with 
ideal plasticity to mimic plaque rupture

Loree et al. J Biomech, 1994

Holzapfel et al. Am J Physiol Heart Circ Physiol, 2005
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Methods: stent and balloon

Kiousis et al. Int J Num Methods Eng, 2008

Free expansion simulation

Manufacturer test

Pressure [atm]

D
ia

m
e

te
r 

[m
m

]

■ Multi-Link 8 (Abbott Laboratories, Abbott Park, IL, USA) 

■ Balloon:

- Bare-metal stent, Co-Cr alloy

- Size: 3x18 mm

- Modeled as a straight tube using a simplified 

approach*

- Calibrated using the manufacturer compliance chart 

from 10 atm to 14 atm

(nominal pressure = 10 atm, burst pressure = 18 atm)
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Provisional side branch stenting

1 - Insertion

Multi-Link 8 stent (3x18 mm) 

2 - Balloon expansion at 14 atm
(Final diameter = 3.22 mm)

3 - Final configuration

after balloon deflation
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6 - Final configuration

after balloon post dilation

25

Provisional side branch stenting

5 - Balloon expansion at 14 atm
(Final diameter = 3.5 mm)

4 - Insertion

Post dilation balloon (3.5x15 mm)
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Results: Side branch lumen area

Pre

MB stenting

Post-dilation

A
re

a 
[m

m
2
]

45° 70° 45° 70° 45° 70° 45° 70°

Lipid Fibrous
Lipid + 

½ calcium ring
Lipid + 

1 calcium ring
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Results: Side branch lumen area

Pre

MB stenting

Post-dilation

A
re

a 
[m

m
2
]

45° 70° 45° 70° 45° 70° 45° 70°

Lipid Fibrous
Lipid + 

½ calcium ring
Lipid + 

1 calcium ring

■ Marginal change for lipid and fibrous cases

more influence on lumen shape
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Results: Side branch lumen area

■ Marginal change for lipid and fibrous cases

more influence on lumen shape

■ Angiographic pictures depending on the angle can mislead interpretation of the 

outcomes good FFR values even when the angiographic result is not optimal

Simulation
(fibrous plaque - 70°)

Xu et al. 2012

PRE

POST

Xu et al. Circ Cardiovasc Interv, 2012
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Results: Side branch lumen area

Pre

MB stenting

Post-dilation

A
re

a 
[m

m
2
]

45° 70° 45° 70° 45° 70° 45° 70°

Lipid Fibrous
Lipid + 

½ calcium ring
Lipid + 

1 calcium ring

■ Significant change for cases with calcium plaques
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Results: Side branch compromise

■ Volumetric analysis
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Lipid

45° 70°

Compromise

NO compromise45° 70° 45° 70° 45° 70°

Fibrous
Lipid + 

½ calcium ring

Lipid + 

1 calcium ring

SB compromise* = lumen volume decrease in the SB segment after MB stenting

* Xu et al. Circ Cardiovasc Interv, 2012
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Results: Side branch compromise

■ Volumetric analysis: 15 versus 9 mm long post-dilation balloon

* Xu et al. Circ Cardiovasc Interv, 2012
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15 mm 9 mm

Compromise

NO compromise15 mm 9 mm

Lipid + 

1 calcium ring
Lipid

15 mm 

post-dilation balloon

9 mm 

post-dilation balloon

SB compromise* = lumen volume decrease in the SB segment after MB stenting
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Conclusions (study 1)

■ Development of a parametric model of a coronary bifurcation to investigate side 

branch compromise after main branch stenting

■ Change in side branch ostium shape after stenting but its area remains similar 

for lipid and fibrous cases

 possible misleading interpretation of the outcomes from angiography

■ Side branch compromise depends mainly on plaque composition

■ Side branch compromise is reduced if a shorter post-dilation balloon is used

CLINICAL CONCLUSIONS
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Iannaccone, 

Chiastra et al. 

EuroInterv, 2017

33

Idealized and patient-specific studies

■ Side branch compromise after main vessel stenting (study 1)

■ Computational replication of stenting procedure for the treatment of 

two real clinical cases (study 2)

Post-operative

Pre-operative

Chiastra et al. 

J Biomech, 2016
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Aims

1. Investigation of the reliability of finite element analyses in predicting 

post-operative geometry

2. Pre-operative virtual planning to test:

 different stent designs

 different stent positioning

Structural model

Fluid dynamics model

Patient-specific virtual stenting

of coronary bifurcation models from OCT and CT images

Replicate the complete procedure followed by clinicians 

to treat coronary bifurcations
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Aims

1. Investigation of the reliability of finite element analyses in predicting 

post-operative geometry

2. Pre-operative virtual planning to test:

 different stent designs

 different stent positioning

Structural model

Fluid dynamics model

Patient-specific virtual stenting

of coronary bifurcation models from OCT and CT images

Replicate the complete procedure followed by clinicians 

to treat coronary bifurcations
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Investigated cases

Case 1
Left anterior descending  / diagonal 

(LAD/D1) bifurcation

Case 2
Left circumflex artery 

with two branches

Kobe University 

Graduate School of 

Medicine (Kobe, Japan)

 Angiography

 Computed tomography (CT)

 Optical coherence tomography (OCT)

■ Pre / post operative data:
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Methods: Vessel lumen model

■ Locating OCT pullback path and reconstructing pre-stenting geometry 

A. Position orthogonal sets of 

coplanar transducer 

candidate points within 

coarse volume from CT

B. Segment OCT images into 

lumen (white) contours 

containing candidate points 

(green)

C. Create spatial diagram of a 

vessel and its graph 

diagram. Determine the wire 

pathway with minimum 

bending energy

D. Register OCT segments 

(purple) in 3D space and 

create the vessel  lumen 

model

Ellwein et al. Cardiovasc Eng Tech. 2011
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Methods: Vessel solid model

■ Wall thickness defined according to ex vivo measurements *

Lumen

Final solid model

Case 1

* Holzapfel et al. Am J Physiol Heart Circ Physiol, 2005
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Methods: Vessel solid model mesh

■ Hexahedral elements C3D8R

■ Element number ≈ 120,000

Case 1

Flow
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Methods: Plaque identification

■ Method by Morlacchi et al. (2013)*

Flow

* Morlacchi et al. Med Eng Phys, 2013
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Methods: Plaque identification

■ Method by Morlacchi et al. (2013)*

* Morlacchi et al. Med Eng Phys, 2013

Flow
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Methods: Plaque identification

■ Method by Morlacchi et al. (2013)*

* Morlacchi et al. Med Eng Phys, 2013

Flow
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Methods: Plaque identification (Case 1)

■ Physician-guided delineation of plaque components

Flow

Distal Proximal

Soft plaque

Stiff plaque

OCT analysis (28.2 mm)
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Methods: Plaque identification (Case 2)

■ Physician-guided delineation of plaque components

Distal Proximal

OCT analysis (26.9 mm)

Flow

Soft plaque

Stiff plaque
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Methods: Material properties

■ Arterial wall ■ Soft / stiff plaque

Isotropic hyperelastic constitutive law 

based on a sixth order polynomial strain 
energy density function 

Isotropic hyperelastic behavior with 

ideal plasticity at mean value of plaque 

rupture

Loree et al. J Biomech, 1994

Holzapfel et al. Am J Physiol Heart Circ Physiol, 2005

Soft plaque Stiff plaque
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Methods: Stent

■ XIENCE PRIME® (Abbott Vascular, USA) 

Mesh

CAD model

Length = 18 mm

Diameter = 2.5 mm (Case 1)

= 3.5 mm (Case 2)

Strut thickness = 81 μm

Material: L-605 Co-Cr alloy

elasto-plastic with kinematic 

hardening

Mesh: highly regular hexahedral 

mesh, ≈100,000 volume C3D8R 

elements
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Methods: Stent

■ NOBORI® (Terumo, Japan) 

Mesh

CAD model

Length = 18 mm

Diameter = 2.5 mm (Case 1)

= 3.5 mm (Case 2)

Strut thickness = 125 μm

Material: L-605 Co-Cr alloy

elasto-plastic with kinematic 

hardening

Mesh: highly regular hexahedral 

mesh, ≈100,000 volume C3D8R 

elements
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Stenting procedure (Case 1)

1. Angioplasty 

(2.5x18 mm balloon positioning)

2. Angioplasty (balloon expansion)

3. Provisional technique 

(2.5x18 mm XIENCE PRIME 

stent insertion)

4. Provisional technique        

(stent expansion)

5. Provisional technique 

(stent release)

Flow
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Stenting procedure (Case 2)

1. Angioplasty 

(3.5x18 mm balloon positioning)

2. Angioplasty (balloon expansion)

3. Provisional technique 

(3.5x18 mm NOBORI 

stent insertion)

4. Provisional technique 

(stent expansion)

Flow
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From structural to fluid dynamics simulations

Case 1 Case 2
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Fluid dynamics methods

Case 1

MV SB

Q (mL/sec) 1.32 0.24

Rc (dynscm
-5) 16,400 46,600

C (cm5/dyn) 9.0E-07 5.5E-07

Rd (dynscm
-5) 43,600 292,000

In
le

t Aimed Pressure 

[mmHg]

Systolic - 77

Mean - 68

Diastolic - 59  

Additional details:

  = 4.0 cP

 = 1.06 g/cm3

 Vessel walls assumed 

to be rigid after stenting*

■ Inflow waveforms* and estimates of downstream vascular resistances

implemented from previous studies**

**Van Huis et al. AJP - Heart, 1987*LaDisa et al. J Appl Physiol, 2002
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Fluid dynamics methods

Case 1

MV SB

Q (mL/sec) 1.32 0.24

Rc (dynscm
-5) 16,400 46,600

C (cm5/dyn) 9.0E-07 5.5E-07

Rd (dynscm
-5) 43,600 292,000

In
le

t Aimed Pressure 

[mmHg]

Systolic - 77

Mean - 68

Diastolic - 59  

Additional details:

  = 4.0 cP

 = 1.06 g/cm3

 Vessel walls assumed 

to be rigid after stenting*

■ Inflow waveforms* and estimates of downstream vascular resistances

implemented from previous studies**

O
u
tl
e
ts

**Van Huis et al. AJP - Heart, 1987*LaDisa et al. J Appl Physiol, 2002
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Validation of the structural model

From patient images

Simulation

Distance > 0.25 mm

Case 1 Case 2

Flow Flow

Flow Flow

Perc. diff = 14.8 %
(threshold = 0.25 mm) 

Perc. diff = 20.3 %
(threshold = 0.25 mm) 

View A

View B

View A

View B
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Pre-clinical planning: optimal stent choice (Case 1)

Malapposed

Well-apposed

Flow

Flow

XIENCE PRIME 

(implanted)

NOBORI

Malapp. = 0.9 %

Malapp. = 1.5 %

■ Malapposition
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Pre-clinical planning: optimal stent choice (Case 1)

■ Fluid dynamics
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6.8% of area with TAWSS < 0.4 Pa
FlowFlow

4.1% of area with TAWSS < 0.4 Pa
FlowFlow

View A View B
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Pre-clinical planning: optimal stent choice (Case 2)

Malapposed

Well-apposed

■ Malapposition

Flow

Flow

NOBORI 

(implanted)

Malapp. = 2.4 %

XIENCE PRIME

Malapp. = 0.9 %
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Pre-clinical planning: optimal stent choice (Case 2)

■ Fluid dynamics
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27.1% of area with TAWSS < 0.4 Pa
FlowFlow

22.5% of area with TAWSS < 0.4 Pa
FlowFlow

View A View B
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Pre-clinical planning: stent positioning (Case 2)

■ Malapposition

Flow

Flow

NOBORI – position A

Malapp. = 4.9 %

NOBORI – position B (implanted)

NOBORI – position C

Malapp. = 2.4 %

Malapp. = 1.3 %

Malapposed

Well-apposed
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Conclusions (study 2)

 the best stent design

 the best stent position

 the best stenting technique

■ Creation of coronary bifurcation models from CT and OCT, including

plaque composition

■ Virtual stenting methodology able to replicate real clinical cases

■ Reasonable agreement between the post-operative geometry obtained 

after virtual expansion and the one created from patient images

■ Pre-clinical planning using a sequential method (mechanical + fluid 

dynamics simulations) to find



claudio.chiastra@polimi.it61

Overall conclusions

■ Computer simulations (mechanical + fluid dynamics analyses)

powerful tool for investigating coronary stents

PREDICTION OF 

OUTCOMES

 Restenosis

 Thrombosis

STENTING 

OPTIMIZATION

 Stenting techniques

 Stent designCoronary bifurcation

Virtual stenting

Blood flow simulations

■ High-performance computing fundamental for running those simulations 

efficiently, reliably and fast  
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Thank you for your attention

www.labsmech.polimi.it

LABORATORY OF BIOLOGICAL STRUCTURE MECHANICS

- claudio.chiastra@polimi.it -
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Validation of numerical simulations

Chiastra et al. Eurointervention, 2015
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Validation of numerical simulations

Morlacchi et al. Biomech Model Mechanobiol, 2010

■ Comparison between the geometrical results of the experimental data 

and of the structural analysis
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Validation of numerical simulations

Raben et al. J Appl Biomater Funct Mater, 2014
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