LABORATORY OF BIOLOGICAL STRUCTURE MECHANICS

www.labsmech.polimi.it

Computer simulations of bench testing for the investigation of coronary bifurcation stenting

Claudio Chiastra

Milan – June 20th, 2017

Coronary heart disease

- Every year > 1.8 million deaths in the European Union
- Coronary artery atherosclerosis

Coronary artery stenting

Most commonly used technique to treat coronary atherosclerotic lesions

In-stent restenosis is a major complication

Cross-section

Coronary artery stenting

- Most commonly used technique to treat coronary atherosclerotic lesions
- In-stent restenosis is a major complication

Coronary bifurcation lesions

Challenging for interventional cardiologists*

Lower success rate
 Higher restenosis rate

Several issues:

- No optimal stenting technique
- Critical assessment of lesion severity by FFR
- Plaque/carina shift

*Lassen et al. Eurointervention, 2014

Coronary bifurcation lesions

Challenging for interventional cardiologists*

Lower success rate
 Higher restenosis rate

Several issues:

- No optimal stenting technique
- Critical assessment of lesion severity by FFR
- Plaque/carina shift

*Lassen et al. Eurointervention, 2016

Biomechanical impact of stenting

SOLID MECHANICS

FLUID DYNAMICS

Vessel wall damage

Influence on tissue regrowth

Influence on tissue regrowth

Biomechanical impact of stenting

SOLID MECHANICS

FLUID DYNAMICS

Vessel wall damage

Influence on tissue regrowth

Influence on tissue regrowth

Biomechanical analysis of coronary stents

Antoniadis et al. J Am Coll Cardiol Interv, 2015

Idealized and patient-specific studies

Side branch compromise after main vessel stenting (study 1)

lannaccone, Chiastra et al. *EuroInterv*, 2017

Computational replication of stenting procedure for the treatment of

two real clinical cases (study 2)

Idealized and patient-specific studies

Side branch compromise after main vessel stenting (study 1)

lannaccone, Chiastra et al. *EuroInterv*, 2017

Computational replication of stenting procedure for the treatment of two real clinical cases (study 2)

Research group

Erasmus MC

Jolanda J. Wentzel, PhD

Frank Gijsen, PhD

Evelyn Regar, PhD, MD

Antonios Karanasos, PhD, MD

European **Bifurcation** Club

POLIMI LaBS

POLITECNICO **MILANO 1863**

Prof. Francesco Migliavacca

Prof. Gabriele Dubini

Claudio Chiastra, PhD

Gent University UNIVERSITEIT

Prof. Benedict Verhegghe

Prof. Patrick Segers

Matthieu De Beule, PhD

Francesco Iannaccone, PhD

GFNT

Clinical problem: plaque / carina shift

Lateral dislocation of plaque/carina during stent implantation Possible occlusion of the side branch

Clinical problem: plaque / carina shift

Lateral dislocation of plaque/carina during stent implantation Possible occlusion of the side branch

Aim

To investigate the **influence of distal angle / plaque composition** on **side branch compromise** because of **main branch stenting**

 \Rightarrow 2 bifurcation geometries with **different distal angles*** are investigated

* **Distal angle = 57.3**° \pm **10.0**° calculated on LAD, RCA, LCX (mainly LAD, 92.2%) (n = 153 patients) by Elsaban et al. 2013 Elsaban et al. J Invasive Cardiol 2013

Aim

To investigate the **influence of distal angle / plaque composition** on **side branch compromise** because of **main branch stenting**

- \Rightarrow 2 bifurcation geometries with **different distal angles*** are investigated
 - > different types of plaques

■ LAD / D1 bifurcation parametric model (Chiastra et al. 2016)

- Diameters defined according to Finet's law:

■ LAD / D1 bifurcation parametric model (Chiastra et al. 2016)

- Angles:

Chiastra et al. *Biomed Eng Online*, 2016 Godino et al. *J Interv Cardiol*, 2010 Onuma et al. *EuroIntervention*, 2008 Elsaban et al. *J Invasive Cardiol*, 2013

■ LAD / D1 bifurcation parametric model (Chiastra et al. 2016)

- Stenosis: PMB 60% DMB 60% SB 60%
- Plaque length:

Chiastra et al. Biomed Eng Online, 2016

■ LAD / D1 bifurcation parametric model (Chiastra et al. 2016)

- Curvature: bifurcation placed on a sphere with radius R representing the heart, R= 56.25 (Pvikin 2005)

Chiastra et al. *Biomed Eng Online*, 2016 Pvikin et al. *J Biomech*, 2005

Intima + Media thickness = 20 % lumen radius Distance between two consecutive cross-sections = 1 mm

Methods: vessel material properties

Arterial wall

Isotropic hyperelastic behavior with ideal plasticity to mimic vessel damage

Fibrous / lipid / calcium plaque

Isotropic hyperelastic behavior with ideal plasticity to mimic plaque rupture

> Loree et al. *J Biomech*, 1994 Holzapfel et al. *Am J Physiol Heart Circ Physiol*, 2005

Methods: stent and balloon

Multi-Link 8 (Abbott Laboratories, Abbott Park, IL, USA)

- Bare-metal stent, Co-Cr alloy
- Size: 3x18 mm

Balloon:

- Modeled as a straight tube using a simplified approach*
- Calibrated using the manufacturer compliance chart from 10 atm to 14 atm

(nominal pressure = 10 atm, burst pressure = 18 atm)

Kiousis et al. Int J Num Methods Eng, 2008

Provisional side branch stenting

Provisional side branch stenting

Marginal change for <u>lipid</u> and <u>fibrous</u> cases

 \Rightarrow more influence on lumen shape

Marginal change for <u>lipid</u> and <u>fibrous</u> cases

 \Rightarrow more influence on lumen shape

Angiographic pictures depending on the angle can mislead interpretation of the

outcomes \implies good FFR values even when the angiographic result is not optimal

Simulation

Xu et al. 2012

Xu et al. Circ Cardiovasc Interv, 2012

■ Significant change for cases with <u>calcium plaques</u>

Results: Side branch compromise

Volumetric analysis

SB compromise^{*} = lumen volume decrease in the SB segment after MB stenting

* Xu et al. Circ Cardiovasc Interv, 2012

Results: Side branch compromise

Volumetric analysis: <u>15 versus 9 mm long post-dilation balloon</u>

SB compromise^{*} = lumen volume decrease in the SB segment after MB stenting

* Xu et al. Circ Cardiovasc Interv, 2012

Conclusions (study 1)

Development of a parametric model of a coronary bifurcation to investigate side branch compromise after main branch stenting

CLINICAL CONCLUSIONS

- Change in side branch ostium shape after stenting but its area remains similar for lipid and fibrous cases
 - possible misleading interpretation of the outcomes from angiography
- Side branch compromise depends mainly on plaque composition
- Side branch compromise is reduced if a shorter post-dilation balloon is used

Idealized and patient-specific studies

■ Side branch compromise after main vessel stenting (study 1)

lannaccone, Chiastra et al. *EuroInterv*, 2017

Computational replication of stenting procedure for the treatment of two real clinical cases (study 2)

Research group

POLIMI (Milan, Italy)

Prof. Francesco Migliavacca

Prof. Gabriele Dubini

Claudio Chiastra, PhD

Wei Wu, PhD

Marquette University (Milwaukee, WI, USA)

Prof. John LaDisa Jr.

Ali Aleiou

Benjamin Dickerhoff

Kobe University Graduate School of Medicine (Kobe, Japan)

Hiromasa Otake, MD

Aims

 Investigation of the reliability of finite element analyses in predicting post-operative geometry

2. Pre-operative virtual planning to test:

- different stent designs
- different stent positioning

Aims

- Investigation of the reliability of finite element analyses in predicting post-operative geometry
- 2. Pre-operative virtual planning to test:
- different stent designs
- different stent positioning

Investigated cases

Pre / post operative data:

- > Angiography
- Computed tomography (CT)
- Optical coherence tomography (OCT)

Kobe University Graduate School of Medicine (Kobe, Japan)

Methods: Vessel lumen model

Locating OCT pullback path and reconstructing pre-stenting geometry

- A. Position orthogonal sets of coplanar transducer candidate points within coarse volume from CT
- B. Segment OCT images into lumen (white) contours containing candidate points (green)
- C. Create spatial diagram of a vessel and its graph diagram. Determine the wire pathway with minimum bending energy
- D. Register OCT segments (purple) in 3D space and create the vessel lumen model

Ellwein et al. Cardiovasc Eng Tech. 2011

Methods: Vessel solid model

Wall thickness defined according to ex vivo measurements *

* Holzapfel et al. Am J Physiol Heart Circ Physiol, 2005

Methods: Vessel solid model mesh

Methods: Plaque identification

Method by Morlacchi et al. (2013)*

* Morlacchi et al. Med Eng Phys, 2013

Methods: Plaque identification

Method by Morlacchi et al. (2013)*

* Morlacchi et al. Med Eng Phys, 2013

Methods: Plaque identification

Method by Morlacchi et al. (2013)*

* Morlacchi et al. Med Eng Phys, 2013

Methods: Plaque identification (Case 1)

Physician-guided delineation of plaque components

Methods: Plaque identification (Case 2)

Physician-guided delineation of plaque components

OCT analysis (26.9 mm)

Methods: Material properties

Arterial wall

Isotropic hyperelastic constitutive law based on a sixth order polynomial strain energy density function

Soft / stiff plaque

Methods: Stent

■ XIENCE PRIME[®] (Abbott Vascular, USA)

Length = 18 mm Diameter = 2.5 mm (Case 1) = 3.5 mm (Case 2) Strut thickness = 81 μ m

Material: L-605 Co-Cr alloy elasto-plastic with kinematic hardening

<u>Mesh</u>: highly regular hexahedral mesh, ≈100,000 volume C3D8R elements

Methods: Stent

■ **NOBORI**[®] (Terumo, Japan)

Length = 18 mm Diameter = 2.5 mm (Case 1) = 3.5 mm (Case 2) Strut thickness = **125** μ m CAD model

Material: L-605 Co-Cr alloy elasto-plastic with kinematic hardening

<u>Mesh</u>: highly regular hexahedral mesh, ≈100,000 volume C3D8R elements

Stenting procedure (Case 1)

Stenting procedure (Case 2)

3. Provisional technique

(3.5x18 mm NOBORI stent insertion)

4. Provisional technique (stent expansion)

From structural to fluid dynamics simulations

Fluid dynamics methods

<u>Aimed Pressure</u> [mmHg]

Systolic - 77 Mean - 68 Diastolic - 59

Additional details:

- μ = 4.0 cP
 ρ = 1.06 g/cm³
- Vessel walls assumed to be rigid after stenting*

mVascular

	Case 1	
	MV	SB
Q (mL/sec)	1.32	0.24
R_c (dyn·s·cm ⁻⁵)	16,400	46,600
C (cm ⁵ /dyn)	9.0E-07	5.5E-07
R_d (dyn·s·cm ⁻⁵)	43,600	292,000

*LaDisa et al. J Appl Physiol, 2002

**Van Huis et al. AJP - Heart, 1987

Fluid dynamics methods

Systolic - 77 Mean - 68

Diastolic - 59

Additional details:

- *μ* = 4.0 cP $\rho = 1.06 \text{ g/cm}^3$
- Vessel walls assumed to be rigid after stenting*

SimVascular

	Case 1	
	MV	SB
Q (mL/sec)	1.32	0.24
R_c (dyn·s·cm ⁻⁵)	16,400	46,600
C (cm⁵/dyn)	9.0E-07	5.5E-07
R_d (dyn·s·cm ⁻⁵)	43,600	292,000

*LaDisa et al. J Appl Physiol, 2002

**Van Huis et al. AJP - Heart. 1987

Validation of the structural model

Pre-clinical planning: optimal stent choice (Case 1)

Malapposition

Malapp. = 1.5 %

Pre-clinical planning: optimal stent choice (Case 1)

Pre-clinical planning: optimal stent choice (Case 2)

Malapposition

Pre-clinical planning: optimal stent choice (Case 2)

Pre-clinical planning: stent positioning (Case 2)

Malapposition

Conclusions (study 2)

- Creation of coronary bifurcation models from CT and OCT, including plaque composition
- Virtual stenting methodology able to replicate real clinical cases
- Reasonable agreement between the post-operative geometry obtained after virtual expansion and the one created from patient images
- Pre-clinical planning using a sequential method (mechanical + fluid dynamics simulations) to find
 - ➤ the best stent design
 - the best stent position
 - ➤ the best stenting technique

Overall conclusions

- Computer simulations (mechanical + fluid dynamics analyses)
 - powerful tool for investigating coronary stents

High-performance computing fundamental for running those simulations efficiently, reliably and fast

LABORATORY OF BIOLOGICAL STRUCTURE MECHANICS

www.labsmech.polimi.it

Thank you for your attention

- claudio.chiastra@polimi.it -

Validation of numerical simulations

Simulation

= 12 atn

Chiastra et al. Eurointervention, 2015

Validation of numerical simulations

Comparison between the geometrical results of the experimental data and of the structural analysis

STRUT OPENING AFTER SB ACCESS

STENT DISTORTION AFTER SB ACCESS

GEOMETRICAL CONFIGURATION AFTER FINAL KISSING BALLOON

Morlacchi et al. Biomech Model Mechanobiol, 2010

Validation of numerical simulations

Raben et al. J Appl Biomater Funct Mater, 2014