The influence of mesh characteristics on OpenFOAM simulations of the DrivAer model

Grigoris Fotiadis, Vangelis Skaperdas, Aristotelis Iordanidis BETA CAE Systems S.A.

Marco Di Nonno BETA CAE Italy Srl

The DrivAer model of the Technical University of Munich

Experimental setup: 1:2.5 scale wind tunnel model Re = 4.87×10^{6} L = 1.84 m U = 40 m/sec Free stream turbulence = 0.4%

Acknowledgments to: Institute of Fluid Mechanics and Aerodynamics of the Technical University of Munich for providing the model geometries in IGES and STEP formats

Reference

Heft Angelina (2014) "Aerodynamic Investigation of the Cooling Requirements of Electric Vehicles", PhD Thesis, Technical University of Munich, ISBN 978-3-8439-1765-0

Previous related work of BETA CAE

Studies with Fluent and OpenFOAM simulations were presented at: ANSYS Automotive Simulation Congress Group, Frankfurt, October 2013 International Open Source CFD Conference, Hambourg, October 2013

Model was scaled up to full size L = 4.612 m Domain size 50 x 20 x 11.5 m blockage ratio= 1% domain sides set to symmetry Steady State RANS simulations Re = $4.87x10^{6}$ Turbulence model: k-omega SST Cases with and without moving ground simulation with MRF modeling of rotating wheels

Presence of model support seems to decelerate the flow locally

B

Geometry preparation: STEP file input and property assignment

Geometries that included detailed underbody and mirrors were selected

Geometry preparation: construction of wind tunnel geometry

Geometry preparation: construction of wind tunnel geometry

Blockage ratio $\approx 8\%$

Geometry preparation: construction of wind tunnel geometry

Blockage ratio ≈ 8%

Flexible Size Boxes controlling mesh refinement aligned to the flow

Batch Mesh tool setup: automation and consistency in meshing

Model Properties (OpenFOAM BCs)

Batch Mesh Manager	R						×
New, Read Scenario Autoload	Run						
Name	Contents	Color	Mesh Parameters	Quality Criteria	Sta	tus 🔽 🔻	V.
Surface_notchback	31				I	Completed	
Sting and struts	6		3 to 15 mm	OpenFOAM Strict	I	Completed	
Mirrors and pillars	6		2.5 to 5mm	OpenFOAM Strict	I	Completed	=
··· 🖌 Wheels and bumpers	14		3 to 6mm	OpenFOAM Strict	I	Completed	
Body	5		3 to 12mm	OpenFOAM Strict	I	Completed	
Default_Session	0		CFD parameters	OpenFOAM Strict		Empty	
Surface_wind_tunnel	21					Completed	
mixers	2		2 το 8mm	OpenFOAM Strict	I	Completed	
🖌 BLSc	2		10 to 20 mm	OpenFOAM Strict	I	Completed	
···· 🖌 support beams	4		25 to 60 mm	OpenFOAM Strict	I	Completed	
moving road and spring steel	2		20 to 50 mm	OpenFOAM Strict	I	Completed	
🖌 collector opening	1		8 to 60 mm	OpenFOAM Strict	I	Completed	
···· 🖌 Windtunnel	3		20 to 200mm	OpenFOAM Strict	Ì	Completed	
··· 🖌 stationary_road	1		20 to 160 mm	OpenFOAM Strict		Completed	
	_		501 000		•	a	

Batch Mesh provides:

- automation
- consistency
- mesh specs traceability

Automatic curvature and sharp edge refinement, in combination with the use of Size Boxes ensure the efficient and accurate capturing of all details of the model.

Automatic generation of models with variable resolution using batch meshing

Automatic generation of models with variable resolution using batch meshing

Automatic generation of models with variable resolution using batch meshing

Boundary layer generation

First height 0.8 mm Growth rate = 1.2 4 layers (absolute mode) + 3 layers (aspect mode) Last aspect ratio: 0.4 (40% of the base length)

Total layer height \approx 10-12 mm

Boundary layer generation : local squeezing at proximities

Boundary layer generation: local exclusion of layers at problematic areas

Boundary layer generation: local exclusion of layers at problematic areas

Batch mesh generated volume mesh

Automatic generation of layers and volume mesh for all variants and mesh densities (15 combinations). Image below of medium size mesh with layers (50 million cells) generated in under 40 minutes (including mesh quality fix).

Batch mesh generated volume mesh

Automatic generation of layers and volume mesh for all variants and mesh densities (15 combinations). Image below of medium size mesh with layers (50 million cells) generated in under 40 minutes (including mesh quality fix).

Indicative mesh quality statistics: notchback tetra medium with layers

Mesh refinement study for tetra with layers case

Mesh refinement study for tetra with layers case

Mesh refinement study for tetra with layers case

Mesh refinement study for HexaInterior with layers case

Mesh refinement study for HexaInterior with layers case

Mesh refinement study for HexaInterior with layers case

Mesh refinement study for HexaPoly with layers case

Mesh refinement study for HexaPoly with layers case

Mesh refinement study for HexaPoly with layers case

Generation of Polyhedral mesh through hybrid mesh conversion

Generation of Polyhedral mesh through hybrid mesh conversion

Generation of Polyhedral mesh through hybrid mesh conversion

Overview of final volume mesh

Medium tetra model

Summary of mesh models for different variants

		Coarse	Medium	Fine
Notchback	Open domain	-	Tetra (30.6 million)	-
	Wind tunnel	Tetra (34.5 million)	Tetra (50 million)	Tetra (78.7 million)
		Hexa Interior (27.8 million)	Hexa Interior (40.6 million)	Hexa Interior (61.2 million)
		Hexa Poly (21.7 million)	Hexa Poly (32.1 million)	Tetra (47.9 million)
		Polyhedral (17.4 million)	Polyhedral (26.2 million)	Polyhedral (38.3 million)
Fastback		-	Tetra (50.1 million)	-
Estate		-	Tetra (51.6 million)	_

Setting up the OpenFOAM case in ANSA

Setting up the OpenFOAM case in ANSA

	OpenFoam Case Parameters	N	×			
	general controlDict decompos	seParDict fvSchemes fvSolution transport to	irbulence			0.4
🖿 > 📲 🗔 🧹 > 🔡 P M S > 🔹 🗛 💷	Time Control				$\Diamond \otimes \nabla^{\downarrow} \Diamond \Diamond$	
	application	simpleFoam				
	startFrom	startTime	0.		NODE	INFO ►
					NEW P RELEASE P	
	STOPAL	end lime	20000.		UTIL 🕨	
	deltaT	1.			COORD. SYSTEMS►	
	adjustTimeStep	Off			NODE 🕨	
	maxCo	0.			ELEMENTS	INFO ►
	maxDeltaT	0.			SHELL > SOLID	
					SIZE BOVES	
	Data Writing				NEW > CYLIND	
	writeControl	timeStep	+			
	writeInterval		1000.			
	purgeWrite		0			
	writeFormat	binary			AUXILIARIES	COMMENT N
	write Dessision					
	whitePrecision					
	writeCompression	compressed				
	timeFormat	general	÷			
	timePrecision		6			
	graphFormat	raw	+			
	Data reading					
	run limeModifiable					
	function	User Function				
	Id V Name		•			
	2 force_coeffs_body					
	3 pressure_probes_plenu	m				
	4 pressure_probles_inlet	te la Carra la Dalata la Defensara la Lucia				
	Mod	total 4	selected 0	10 + 10 + 16 + >		
While in NOT function, you can Undo (Ctrl+Z) and Rede(Ctrl+Y) you; commands,						
			Capcel			
			Cuncer			

HPC Methods for Engineering Applications | 19-21 June 2017, Milan - Italy

ß

OpenFOAM simulations: setup

Numerical settings

LinearUpwind scheme for velocity Upwind scheme for turbulence GAMG solver for pressure, tolerance 10⁻¹⁰, relTol 0.05 smoothSolver for velocity and turbulence, tolerance 10⁻¹⁰, relTol 0.1

Steady State simulations

simpleFoam Turbulence model: k-omega SST Stationary ground All runs initialized with potentialFoam

Transient simulation

pisoFoam Time step 10⁻⁴ sec Run for 3.5 sec real time Turbulence model: IDDES Spalart Almaras for near wall Run starting from converged steady state solution

OpenFOAM simulations: Steady state simpleFoam convergence

Indicative convergence history of residuals and drag and lift coefficients for Notchback TetraRapid medium model

Post-processing in META: y+ results

Post-processing was performed manually for one CFD run and then META run in batch mode for the other 14 simulations producing automatically the same images

Velocity field at symmetry plane of notchback

Tetra medium mesh

RANS

Cut-plane of velocity magnitude

Velocity field at symmetry plane of notchback (tetra medium mesh)

RANS

Transient IDDES (55 msec animation)

HPC Methods for Engineering Applications | 19-21 June 2017, Milan - Italy

www.beta-cae.com

Velocity field at symmetry plane of fastback model

Averaged Velocity

RANS k-omega SST (Tetra Medium Mesh)

Pressure loss regions: iso-surface of total pressure = 0

Tetra medium mesh

Open section wind tunnel corrections

Correction is applied on U_{ref} based on the Plenum Method described by B. Nijhof, G. Wickern SAE 2003-01-0428 and R. Kuenstner, K. Deutenbach, J. Vagt SAE 920344

B

Convergence of drag coefficient: Tetra case - Notchback

Convergence of drag coefficient: Tetra case - Notchback

Convergence of drag coefficient: Tetra case - Notchback

Averaging of fluctuating forces: Tetra medium mesh - Notchback

Averaging of fluctuating forces: Tetra medium mesh - Notchback

Sensitivity study of Tetra and Hexa Interior meshes: C_D & C_L convergence

Coefficients calculated based on notchback projected frontal area = 0.3475 m²

HPC Methods for Engineering Applications | 19-21 June 2017, Milan - Italy

www.beta-cae.com

B

Comparison with experimental C_D value of 0.272 for notchback model

	Run	Coarse	Medium	Fine
Open domain	RANS k-omega	-	Tetra 0.284 (+4%)	-
Wind tunnel	RANS k-omega	Tetra 0.268 (-1%)	TetraTetra0.268 (-1%)0.274 (+1%)	
	RANS HexaInt k-omega 0.258 (-5%)		HexaInt 0.265 (-3%)	HexaInt 0.265 (-3%)
	RANS k-omega	HexaPoly 0.258 (-5%)	HexaPoly 0.258 (-5%)	HexaPoly 0.265 (-3%)
	RANS k-omega	Polyhedral 0.284 (+4%)	Polyhedral 0.301 (+11%)	Polyhedral 0.283 (+4%)
	DES S-A	-	Tetra 0.281 (+3%)	-

Plenum method corrected values presented (correction can be as high as 15%)

Comparison with experimental C_L value of 0.04 for notchback model

	Run	Coarse	Medium	Fine
Open domain	RANS k-omega	-	Tetra 0.078 (+95%)	-
Wind tunnel	RANS k-omega	TetraTetra0.054 (+35%)0.051 (+28%)		Tetra 0.067 (+68%)
	RANS HexaInt k-omega 0.094 (+135%)		HexaInt 0.082 (+105%)	HexaInt 0.088 (+120%)
	RANS k-omega	HexaPoly 0.116 (+190%)	HexaPoly 0.087 (+118%)	HexaPoly 0.096 (+140%)
	RANS k-omega		Polyhedral 0.133 (+233%)	Polyhedral 0.116 (+190%)
	DES S-A	-	Tetra 0.031 (-23%)	-

Plenum method corrected values presented (correction can be as high as 15%)

Summary of C_D and C_L values for three variants

Tetra medium mesh, RANS simulations

	C _D Experiment	C _D CFD	C _L Experiment	C _L CFD
Notchback	0.272	0.274 (+1%)	0.04	0.051 (+28%)
Fastback	0.274	0.271 (-1%)	0.05	0.058 (+16%)
Estate	0.314	0.279 (-11%)	-0.07	-0.050 (+29%)

Plenum method corrected values presented (correction can be as high as 15%)

Comparison with experiment: C_P along upper symmetry line

HPC Methods for Engineering Applications | 19-21 June 2017, Milan - Italy

www.beta-cae.com

B

Pre-processing and simulation timing

Reported timing refers to single processor

Hardware used 6 Linux Centos 6.6 PCs (each one with 40 cores Xeon CPU E5-2660 at 2.6GHz) 256 Gb RAM Software used

ANSA v15.3.0 for pre-processing OpenFOAM v2.3 for solving META v15.3.0 for post-processing

We estimate gains up to 15% from ANSA-META latest version v17.1 (and soon v18) as well as mesh quality improvements

Simulation times for 20,000 iterations

Mesh refinement

Concluding remarks

- <u>To extract more accurate conclusions from this and from future studies we need to have the exact experimental setup specifications</u>, like, velocity correction method, k factor, reference pressure measurement and of course accurate geometry of the problem.
- <u>The correction method</u> for Open Test Section Wind Tunnels <u>significantly affects the results</u>.
- <u>The addition of the wind tunnel</u> to the simulation <u>significantly improved the agreement</u> of the results with the experiment.
- Interpretation of results is of utmost importance. <u>Averaging of forces must be performed with</u> <u>great caution</u> and should consider several thousands of iterations.
- <u>Tetra mesh proved to be the most accurate</u> (Spot-on drag coefficient prediction, 28% deviation for lift coefficient), while polyhedral meshes seem to deviate a lot.
- Mesh refinement study showed that <u>acceptable mesh independence can be reached at</u> <u>medium size</u>.
- ANSA and META pre and post-processing for OpenFOAM was demonstrated with key points like:
 - high quality automated surface and volume meshing allowing quick mesh alternatives;
 - fully automated post-processing for multiple simulation results.

thank you!

HPC Methods for Engineering Applications | 19-21 June 2017, Milan - Italy

www.beta-cae.com

