
Mirko Cestari – m.cestari@cineca.it
Alessandro Marani – a.marani@cineca.it

SuperComputing Applications and Innovation Department

Introduction to MARCONI
Parallel & production environment

November 27, 2017

GOALS
You will learn:

• basic concepts of the system architecture that directly affects
your work during the school

• how to explore and interact with the software installed on the
system

• how to launch a simulation exploiting the computing resources
provided by the MARCONI system

OUTLINE
• A first step:

– System overview
– Login
– Work environment

• Production environment
– Our first job!!
– Creating a job script
– Accounting and queue system
– PBS commands

• Programming environment
– Module system
– Serial and parallel compilation
– Interactive session

• KNL Environment
• For further info...

– Useful links and documentation

MARCONI CHARACTERISTICS: A1

Model: Lenovo NeXtScale

Architecture: Intel Omnipath Cluster

Processors Type: 18-cores Intel Xeon

 E5-2697 v4 (Broadwell) 2.30 Ghz

 (2 per node)

Number of nodes: 1512 Compute

Number of cores: 54432

RAM: 128 GB/node, 3.5 GB/core

Internal Network: Intel Omnipath
Architecture 2:1

Peak Performance: 2 Pflop/s

OS: RedHat CentOS release 7.2, 64 bit

MARCONI CHARACTERISTICS: A2

Model: Lenovo Adam Pass

Architecture: Intel Omnipath Cluster

Processors Type: 68-cores Intel Xeon Phi
7250 CPU (Knights Landing) 1.40 Ghz

Number of nodes: 3600 Compute

Number of cores: 244800

RAM: 108 GB/node, 96 of DDR4 and 16 of
MCDRAM

Internal Network: Intel Omnipath
Architecture 2:1

Peak Performance: 11 Pflop/s

OS: RedHat CentOS release 7.2, 64 bit

MARCONI CHARACTERISTICS: A3

Model: Lenovo Stark

Architecture: Intel Omnipath Cluster

Processors Type: 48-cores Intel Skylake,
2.30 Ghz

Number of nodes: 1512 Compute

Number of cores: 60480

RAM: 192 GB/node

Internal Network: Intel Omnipath
Architecture 2:1

Peak Performance: 4,5 Pflop/s (presumed)

OS: RedHat CentOS release 7.2, 64 bit

MARCONI CHARACTERISTICS
• Compute Nodes: 1512 36-core compute nodes for A1, 3600 68-core compute

nodes for A2, 1512 48-core compute nodes for A3.
– The nodes have 128GB of memory, but the allocatable memory on the node

is 118 GB for A1, and 86 GB for A2. A3 nodes have 192GB, and 180GB can
be allocated.

– Not all nodes are available for all the users. A partition of the cluster is
reserved for EUROFusion community (half A1, a small part of A2 and all A3),
and the rest is available for academical users

• Login nodes: 8 Login (3 available for regular users) & 12 service nodes for
cluster management, each one contains 2 x Intel Xeon Processor E5-2697 v4
with a clock of 2.30GHz and 128 GB of memory. The login nodes are shared
between the three partitions, while the service nodes are splitten among the
partitions (6 for A1/A3 and 6 for A2).

• Network: all the nodes are interconnected through a custom Intel Omnipath
network that can go up to 100Gb/s, making MARCONI the largest Omnipath
cluster in the World.

HOW TO LOG IN

• Establish a ssh connection

ssh <username>@login.marconi.cineca.it

• Remarks:
– ssh available on all linux distros
– Putty (free) or Tectia ssh on Windows
– secure shell plugin for Google Chrome!
– login nodes are swapped to keep the load balanced
– important messages can be found in the message of the day

• Check the user guide!
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide

• When we login, our default environment is set to work with A1
partition. This is where we will handle the first part of our hands-on.

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide

WORK ENVIRONMENT
$HOME:

Permanent, backed-up, and local to MARCONI.

50 Gb of quota. For source code or important input files.

$CINECA_SCRATCH:

Large, parallel filesystem (GPFS).

No quota. Run your simulations and calculations here.

A cleaning procedure automatically deletes every file untouched since 50 days

use the command cindata to get info on your disk occupation

https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.4%3A+Data+storage+and+FileSystem

$WORK:

Similar to $CINECA_SCRATCH, but the content is shared among all the users of the same account.

1 Tb of quota. Stick to $CINECA_SCRATCH for the school exercises!

https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.4:+Data+storage+and+FileSystem

OUTLINE
• A first step:

– System overview
– Login
– Work environment

• Production environment
– Our first job!!
– Creating a job script
– Accounting and queue system
– PBS commands

• Programming environment
– Module system
– Serial and parallel compilation
– Interactive session

• KNL Environment
• For further info...

– Useful links and documentation

LAUNCHING JOBS

As in every HPC cluster, MARCONI allows you to run your simulations by

submitting “jobs” to the compute nodes

Your job is then taken in consideration by a scheduler, that adds it to a

queuing line and allows its execution when the resources required are

available

The operative scheduler in MARCONI is PBS

PBS JOB SCRIPT SCHEME

The scheme of a PBS job script is as follows:

#!/bin/bash

#PBS keywords

variables environment

execution line

PBS JOB SCRIPT EXAMPLE

PBS KEYWORD ANALYSIS - 1
#PBS -N myname

Defines the name of your job

#PBS -o job.out

Specifies the file where the standard output is directed (default=jobname.o<jobID>)

#PBS -e job.err

Specifies the file where the standard error is directed (default=jobname.e<jobID>)

#PBS -m abe (optional)

Specifies e-mail notification. An e-mail will be sent to you when something happens to your job, according

to the keywords you specified (a=aborted, b=begin, e=end, n=no email)

#PBS -M user@email.com (optional)

Specifies the e-mail address for the keyword above

mailto:user@email.com

PBS KEYWORD ANALYSIS - 2
#PBS -l walltime=00:30:00

Specifies the maximum duration of the job. The maximum time allowed depends on the queue used

(more about this later)

#PBS -l select=1:ncpus=36:mpiprocs=18:mem=10GB

Specifies the resources needed for the simulation.

select – number of compute nodes (“chunks”)

ncpus – number of cpus per node (max. 36)

mpiprocs – number of MPI tasks per node (max=ncpus)

mem – memory allocated for each node (default=3.5 GB)

ACCOUNTING SYSTEM

#PBS -A <my_account>

Specifies the account that consumes the CPU hours allocated.

As an user, you have access to a limited number of CPU hours to spend. They are not
assigned to users, but to projects and are shared between the users who are working
on the same project (i.e. your research partners). Such projects are called accounts and
are a different concept from your username.

You can check the status of your account with the command “saldo -b”, which tells you

how many CPU hours you have already consumed for each account you’re assigned at

(a more detailed report is provided by “saldo -r”).

ACCOUNT FOR THE SCHOOL

The account provided for this school (on
Broadwell) is “train_cdoB2017”

(you have to specify it on your job scripts).

It will expire the Monday after the end of this
week (4th December) and is shared between all

the students; there are plenty of hours for
everybody, but don’t waste them!

#PBS -A train_cdo2017

RESERVATION FOR THE SCHOOL

For this morning, 4 Broadwell nodes are reserved. The
reservation will let you bypass the regular queue and

let your jobs run immediately.

The “#PBS -q” keyword regulates the queue selection.
If you omit it (regular user behaviour), your job will be
processed among the queue suited for the resources

you asked (debug, prod, bigprod). To use the
reservation, add this to your jobscript:

#PBS -q R846859

#PBS -W group_list=train_cbig2017_0

PBS COMMANDS
After the job script is ready, all there is left to do is to submit it:

qsub
 qsub <job_script>
Your job will be submitted to the PBS scheduler and executed when there will
be nodes available (according to your priority and the queue you requested)

qstat -u
 qstat -u <username>
Shows the list of all your scheduled jobs, along with their status (idle, running,
closing, …) Also, shows you the job id required for other PBS commands.
Hint: add the flag “-w” for an extended vision and the full name of your jobid

PBS COMMANDS

qstat -f
 qstat -f <job_id>
Provides a long list of informations for the job requested.
In particular, if your job isn’t running yet, you'll be notified about its
estimated start time or, if you made an error on the job script, you
will learn that the job won’t ever start

qdel

 qdel <job_id>

 Removes the job from the scheduled jobs by killing it

EXERCISE 01

OUTLINE
• A first step:

– System overview
– Login
– Work environment

• Production environment
– Our first job!!
– Creating a job script
– Accounting and queue system
– PBS commands

• Programming environment
– Module system
– Serial and parallel compilation
– Interactive session

• KNL Environment
• For further info...

– Useful links and documentation

AN EXAMPLE OF A PARALLEL JOB

#!/bin/bash

#PBS -l walltime=1:00:00

#PBS -l select=2:ncpus=36:mpiprocs=18

#PBS -o job.out

#PBS -e job.err

#PBS -A <my_account>

cd $PBS_O_WORKDIR # points to the folder you are actually working into

module load autoload intelmpi

mpirun –np 32 ./myprogram

MODULE SYSTEM
• All the optional software on the system is made available through the

"module" system. It provides a way to rationalize software and its
environment variables.

• Modules are divided in several profiles:

•profile/base default - stable and tested compilers, libraries, tools

•profile/advanced libraries and tools compiled with different setups that
the default

•profile/chem (phys, bioinf, astro,...) “domain” profiles with the application
softwares specific for each field of research

•profile/archive old or outdated versions of our module (we don't throw
away anything!)

• Each profile is divided in 4 categories

 compilers (GNU, intel, openmpi) tools (e.g. Scalasca, GNU make, VNC, ...)

 libraries (e.g. LAPACK, BLAS, FFTW, …) applications (software for chemistry, physics, ...)

MODULE SYSTEM
• CINECA’s work environment is organized in modules, a set of

installed libraries, tools and applications available for all users.

• “loading” a module means that a series of (useful) shell
environment variables will be set

• E.g. after a module is loaded, an environment variable of the
form “<MODULENAME>_HOME” is set

• For certain modules, a specific profile must be loaded before
(“module load profile/...”). Use the “modmap” command to
understand which module is in which profile (try “modmap -h”)

MODULE COMMANDS

COMMAND DESCRIPTION

module av list all the available modules

module load <module_name(s)> load module <module_name>

module list list currently loaded modules

module purge unload all the loaded modules

module unload <module_name> unload module <module_name>

module help <module_name> print out the help (hints)

module show <module_name> print the env. variables set when
loading the module

MODULE PREREQS AND CONFLICTS

Some modules need to be loaded after other modules they
depend from (e.g.: parallel compiler depends from basic
compiler). You can load both compilers at the same time

with “autoload”

You may also get a “conflict error” if you load a module not
suited for working together with other modules you already

loaded (e.g. different compilers). Unload the previous module
with “module unload”

COMPILING ON MARCONI

• On MARCONI you can choose between three different
compiler families: gnu, intel and pgi

• You can take a look at the versions available with “module
av” and then load the module you want.

module load intel # loads default intel compilers suite

module load intel/pe-xe-2017--binary # loads specific
compilers suite

GNU INTEL PGI

Fortran gfortran ifort pgf77

C gcc icc pgcc

C++ g++ icpc pgcc

Get a list of the
compilers flags with
the command man

PARALLEL COMPILING ON MARCONI

PARALLEL COMPILING ON MARCONI

OPENMPI/INTELMPI

Fortran90 mpif90/mpiifort

C mpicc/mpiicc

C++ mpiCC/mpiicpc

Compiler flags are the same of the basic compiler (since
they are basically MPI wrappers of those compilers)

OpenMP is provided with the following compiler flags:

gnu: -fopenmp

intel : -qopenmp

pgi: -mp

Let’s take a step back…

#PBS -l select=2:ncpus=16:mpiprocs=4

This example line means “allocate 2 nodes with 16 CPUs each, and 4 of them should

be considered as MPI tasks”

So a total of 32 CPUs will be available. 8 of them will be MPI tasks, the others will be

OpenMP threads (4 threads for each task).

In order to run a pure MPI job, ncpus must be equal to mpiprocs.

EXECUTION LINE IN JOB SCRIPT

mpirun -np 8 ./myprogram

Your parallel executable is launched on the compute nodes via the
command “mpirun”.
With the “-np” flag you can set the number of MPI tasks used for the
execution. The default is the maximum number allowed by the
resources requested.

WARNING:

In order to use mpirun, openmpi-intelmpi has to be loaded inside

the job script:

module load autoload intelmpi

Be sure to load the same version of the compiler that you used to
 compile your code!!

DEVELOPING IN COMPUTE NODES:
 INTERACTIVE SESSION

It may be easier to compile and develop directly in the compute nodes,

without recurring to a batch job.

For this purpose, you can launch an interactive job to enter inside a compute node by using PBS.

The node will be reserved to you as it was requested by a regular batch job

Basic interactive submission line:

qsub –I –l select=1 –A <account_name> -q <queue_name>

Other PBS keyword can be added to the line as well (walltime, resources,…)

Keep in mind that you are using computing nodes, and by consequence you are consuming

computing hours!

To exit from an interactive session, just type “exit”

EXERCISE 02
1) Compile "test.c" with the compiler (mpiicc) in the module
intelmpi/2017--binary

2) Check with:
$ ldd <executable>
the list of required dynamic libraries.

3) Write "job.sh" (you can copy it from exercise 1), modifying the
"select" line with the following requests:
#PBS -l select=2:ncpus=36:mpiprocs=36:mem=3gb
#PBS -l select=2:ncpus=36:mpiprocs=1:mem=3gb
Run first 72 processes and then 2 processes for each select.

Optional: if using Intelmpi (recommended), inside the job export the
environment variable:
I_MPI_DEBUG=5
And see what information it prompts you on the standard output.

EXERCISE 03

1) Launch an interactive job. You just need to write the same PBS directives,

without "#PBS" and on the same line, as arguments of "qsub -I"

$ qsub -I ... <arguments>

2) Check whether you are on a different node

3) Check that there's an interactive job running

OUTLINE
• A first step:

– System overview
– Login
– Work environment

• Production environment
– Our first job!!
– Creating a job script
– Accounting and queue system
– PBS commands

• Programming environment
– Module system
– Serial and parallel compilation
– Interactive session

• KNL Environment
• For further info...

– Useful links and documentation

KNL PARTITION

The most important thing to remember is that the three
partitions of MARCONI can be imagined as three separate
HPC clusters, that are sharing the same front-end
environment

Thus, trying to work with KNL has different rules from the
regular Broadwell environment, even in terms of strict
operativity

Since we are basically working with a different PBS, that
reorders job in a different list, some environment needs to
be set before switching from A1 to A2

MODULE ENV-KNL
The easiest way to do this is a simple load of the module

env-knl that transports you from the Broadwell environment to
the KNL environment

Exercise: the command “qstat -Q” shows all the queues that are
defined in an environment (most of them can't be used by
you). Try to launch this command, then load env-knl and

finally launch it again and see the differences

To return to Broadwell, you can either unload the module or
load env-bdw, that sets up the Broadwell environment (and

automatically unloads env-knl)

COMPILING FOR KNL
Applications compiled for Broadwell can be used in KNL as

well. However, one of the main features of Knights Landing
is the capability of exploiting AVX-512 instructions for

improved performance in terms of vectorization

To your (Intel) compilation, add the flag -xMIC-AVX512 to
generate AVX-512 instructions and make your code

faster on KNL

WARNING: this flag will cause your executable to not run on
Broadwell! The flag -axMIC-AVX512 makes the compilation

both portable and optimized.

SUBMIT JOBS FOR KNL - 1

There are a few things that you have to remember when you want to
submit a job for KNL. Namely:

1. Remember to have loaded the “env-knl” module in order to submit on
KNL queues (you can see it because the prompt begins with (KNL)).

2. While Broadwell has a core-based granularity, and single cores can be
asked from PBS, KNL has a node-based granularity, as in, you can't
ask for less than one node and its multiples. So, even when you ask for
less, at least one full node is always reserved to your job, and in a PBS
job only the value of “select” (i.e. The number of nodes) is important.

3. All KNL nodes of MARCONI are set to NUMA quadrant and MCDRAM
cache mode (for production reasons): thus, the maximum memory
requirement can't go further than 86GB per node (as 16GB is for
MCDRAM-cache and what remains is for the OS). This is also not

 needed to be specified because of point 2.

SUBMIT JOBS FOR KNL - 2

4. On KNL nodes the physical limit is 68 cores per node. However,
Hyperthreading is activated, meaning that each physical core can be
treated as up to 4 virtual cores. So a line like this:

 #PBS -l select=1:ncpus=68:mpiprocs=272

 is perfectly allowed.

5. (course only) Your account changes as well. Submit your KNL jobs by
specifying “#PBS -A train_cdoB2017_0” and (for the reservation)

 You can see it with “saldo -b --knl”.

EXERCISE 04

1) Compile "vector.f90"* with the compiler (mpiifort) in the module
intelmpi/2017--binary. For each rank, it does a sum of the elements of a
large array and it prints the sum of some elements and the time spent in
the loop. It's a good code for vector optimization.

2) Load the module env-knl to switch to KNL environment, then submit the
job asking for 1 node, 64 ncpus and 64 mpiprocs.

3) Compile the code again by adding the -xMIC-AVX512 flag, then submit
again. Compare the times obtained with those from the previous run.

Optional: Experiment with the requests, for example by enabling
hyperthreading (ncpus=64, mpiprocs=256). Switch back to Broadwell
environment and submit the job for the non-vector optimized executable.
What simulation has the best time overall?

*credits:
http://www.nersc.gov/users/computational-systems/edison/programming/vectorization/#toc-anchor-2

http://www.nersc.gov/users/computational-systems/edison/programming/vectorization/#toc-anchor-2

OUTLINE
• A first step:

•System overview
•Login
•Work environment

• Production environment
•Our first job!!
•Creating a job script
•Accounting and queue system
•PBS commands

• Programming environment
•Module system
•Serial and parallel compilation
•Interactive session

• KNL Environment
• For further info...

•Useful links and documentation

Useful links and documentation

• Reference guide:
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.5.2%3A+Batch+Scheduler+PBS
https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.4%3A+Data+storage+and+FileSystem

• About vector optimization:
https://wiki.u-gov.it/confluence/display/SCAIUS/How+to+Improve+Code+Vectorization

• Stay tuned with the HPC news: http://www.hpc.cineca.it/content/stay-tuned

• HPC CINECA User Support: mail to superc@cineca.it

• HPC Courses: corsi@cineca.it

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1:+MARCONI+UserGuide%20
https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.5.2:+Batch+Scheduler+PBS
https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.4:+Data+storage+and+FileSystem
https://wiki.u-gov.it/confluence/display/SCAIUS/How+to+Improve+Code+Vectorization
http://www.hpc.cineca.it/content/stay-tuned
http://www.hpc.cineca.it/content/stay-tuned
http://www.hpc.cineca.it/content/stay-tuned
mailto:superc@cineca.it
mailto:corsi@cineca.it

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44

