
Introduction to Numerical Libraries

Massimiliano Guarrasi, Nicola Spallanzani, Simone Bnà

(m.guarrasi, n.spallanzani, s.bn)@cineca.it

Theory, Methods and Libraries.

WELCOME!!

The goal of this course is to show you how to get advantage of some of

the most important numerical libraries for improving the performance of

your HPC applications. We will focus on:

FFTW, a subroutine library for computing the discrete Fourier transform (DFT) in one or more

dimensions, of arbitrary input size, and of both real and complex data (as well as of even/odd

data, i.e. the discrete cosine/sine transforms or DCT/DST)

A good number of libraries for Linear Algebra operations, including

BLAS, LAPACK, SCALAPACK, MKL and MAGMA

PETSc, a suite of data structures and routines for the scalable (parallel) solution of

scientific applications modeled by partial differential equations

The 2DECOMP&FFT library is a software framework in Fortran to build large-scale parallel

applications. It is designed for applications using three-dimensional structured mesh and spatially

implicit numerical algorithms. At the foundation it implements a general-purpose 2D pencil

decomposition for data distribution on distributed-memory platforms.

ABOUT THIS LECTURE

This first lecture won’t be about numerical libraries…

Its purpose is to teach you the very basics of how to interact with CINECA’s HPC cluster,

where exercises will take place.

You will learn how to access to our system, how to compile, how to launch

batch jobs, and everything you need in order to complete the exercises

succesfully

…don’t worry, it won’t last long!! ;-)

WORK ENVIRONMENT

Workstation: User → corsi Password → corsi_2013!

Open a terminal: ssh username@login.galileo.cineca.it

Once you’re logged on a cluster, you are on your home space.

It is best suited for programming environment (compilation, small debugging sessions…)

Environment variable: $HOME

Another space you can access to is your scratch space.

It is best suited for production environment (launch your jobs from there)

Environment variable: $CINECA_SCRATCH

WARNING: is active a cleaning procedure, that deletes your files older than 30 days!

Use the command “cindata” for a quick briefing about your space occupancy

As an user, you have access to a limited number of CPU hours to spend. They are not assigned to users,

but to projects and are shared between the users who are working on the same project (i.e. your research

partners). Such projects are called accounts and are a different concept from your username.

ACCOUNTING

You can check the state of your account with the command “saldo –b”, which tells you how many CPU

hours you have already consumed for each account you’re assigned at

(a more detailed report is provided by “saldo –r”).

ACCOUNTING

The account provided for this course is “train_cnl2016” (you have to specify it on your

job scripts). It expires Monday the 15th and is shared between all the students; there are

plenty of hours for everybody, but don’t waste them!

MODULES

CINECA’s work environment is organized with modules, a set of installed compilers,

libraries, tools and applications available for all users.

“loading” a module means defining all the environment variables that point to the path of

what you have loaded.

After a module is loaded, an environment variable is set of the form

“MODULENAME_HOME”

MODULE COMMANDS

> module available (or just “> module av”)

Shows the full list of the modules available in the profile you’re into, divided by: environment, libraries, compilers,

tools, applications

> module load <module_name>

Loads a specific module

> module show <module_name>

Shows the environment variables set by a specific module

> module help <module_name>

Gets all informations about how to use a specific module

> module list

Shows the loaded modules

The Numerical Libraries you will learn about and use during the course are also available via module

system

LIBRARY MODULES

Once loaded, they set the environment variable LIBRARYNAME_LIB .

If needed, there is also LIBRARYNAME_INC for the header files.

More on that during the course…

COMPILING ON GALILEO

In EURORA you can choose between three different compiler families: gnu, intel and pgi

You can take a look at the versions available with “module av” and then load the module you want.

Defaults are: gnu 4.9.2, intel xe 2015, pgi 16.3

module load intel # loads default intel compilers suite

module load intel/pe-xe-2016--binary #loads specific compilers suite

Compiler’s
name

GNU INTEL PGI

Fortran gfortran ifortran pgf77

C gcc icc pgcc

C++ g++ icpc pgCC

Get a list of the

compilers flags with

the command man

PARALLEL COMPILING ON GALILEO

For parallel programming, two families of compilers are available: openmpi (recommended) and intelmpi .

There are different versions of openmpi, depending on which compiler has been used for creating them. Default

is openmpi/1.8.4--gnu--4.9.2

module load autoload openmpi # loads default openmpi compilers suite

module load autoload openmpi/1.8.4--intel--cs-xe-2015--binary # loads specific compilers suite

Warning: mpi compiler needs to be loaded after the corresponding basic compiler suite. You can load both

compilers at the same time with “autoload”

If another type of compiler was previously loaded, you may get a

“conflict error”. Unload the previous module with “module unload”

Once you have loaded the proper library module, specify its linking by adding a reference in the compiling

command.

Two ways to link a library:

-L$LIBRARY_LIB -lname – or – -L$LIBRARY_LIB/libname.a

For some libraries, it may be necessary to include the header path

-I$LIBRARY_INC

$ mpicc -I$HDF5_INC input.c -L$HDF5_LIB -lhdf5 \

-L$SZIP_LIB -lsz -LZLIB_LIB -lz

$ mpicc -I$HDF5_INC input.c -L$HDF5_LIB/libhdf5.a \

-L$SZIP_LIB/libsz.a -L$ZLIB_LIB/libz.a

COMPILING WITH LIBRARIES

COMPILING WITH LIBRARIES

Galileo lets you choose between static and dynamic linking, with the latter one as a default.

Static linking means that the library references are resolved at compile time, so the necessary functions

and variables are already contained in the executable produced. It means a bigger executable but no need

for linking the library paths at runtime.

Dynamic linking means that the library references are resolved at run time, so the executable searches for

them in the paths provided. It means a lighter executable and no need to recompile the program after every

library update, but need a lot of environment variables to define at runtime.

For enabling static linking: -static (gnu), -intel-static (intel), -Bstatic (pgi)

Now that we have our GALILEO program, it’s time to learn how to prepare a job for its

execution

LAUNCHING JOBS

GALILEO uses a scheduler called PBS.

The job script scheme is:

- #!/bin/bash

- PBS keywords

- variables environment

- execution line

PBS KEYWORDS

#PBS –N jobname # name of the job

#PBS -o job.out # output file

#PBS -e job.err # error file

#PBS -l select=1:ncpus=8:mpiprocs=2:mem=8GB # resources requested *

#PBS -l walltime=1:00:00 # max 24h, depending on the queue

#PBS -q parallel # queue desired

#PBS -A <my_account> # name of the account

#PBS -m abe # mail events

#PBS -M <email1,email2,...> # list of emails

* select = number of chunks (not exactly the nodes) requested

ncpus = number of cpus per chunk requested

mpiprocs = number of mpi tasks per chunk

mem = amount of RAM per chunk

For pure MPI jobs, ncpus = mpiprocs

For OpenMP jobs, mpiprocs < ncpus

#PBS -A train_cnl2016 # your account name

#PBS -q R1620674 # special queue reserved for you

#PBS -W group_list=train_cnl2016 # needed for entering in private queue

KEYWORDS SPECIFIC FOR THE COURSE

“R1620674” queue is a reserved queue composed by a node equipped with 2 GPUs and

a node equipped with 2 MICs.

In order to grant fast runs to all the students, we ask you to not launch too big jobs (you

won’t need them, anyways). Please don’t request more than half a node at a time!

ENVIRONMENT SETUP AND EXECUTION
LINE

The command that “split” the executable on the processes is mpirun:

mpirun –n 8 ./myexe arg_1 arg_2

–n is the number of cores you want to use.

In order to use mpirun, openmpi (or intelmpi) has to be loaded. Also, if you linked dynamically, you have to

remember to load every library module you need.

The environment setting usually start with “cd $PBS_O_WORKDIR”. That’s because by default you are

launching on your home space and may not find the executable you want to launch.

$PBS_O_WORKDIR points at the folder you’re submitting the job from.

#!/bin/bash

#PBS -l walltime=0:10:00

#PBS -l select=1:ncpus=4:mpiprocs=4:mem=4GB

#PBS -o job.out

#PBS -e job.err

#PBS -q R1620674

#PBS -A train_cnl2016

#PBS -W group_list=train_cnl2016

cd $PBS_O_WORKDIR

module load autoload openmpi

module load somelibrary

mpirun ./myprogram < myinput > myoutput

Galileo JOB SCRIPT EXAMPLE

For GPU accelerators

add this to the select line:

:ngpus=2

For MIC accelerators

add this to the select line:

:nmics=2

PBS COMMANDS

qsub

qsub <job_script>

Your job will be submitted to the PBS scheduler and executed

when there will be nodes available (according to your priority and the

queue you requested)

qstat

qstat -u $USER

Shows the list of all your scheduled jobs, along with their status (idle,

running, closing,…)

Also, shows you the job id required for other qstat options

PBS COMMANDS

qstat -f <job_id>

Provides a long list of informations for the job requested.

In particular, if your job isn’t running yet, you'll be notified about its

estimated start time or, if you made an error on the job script, you will

learn that the job won’t ever start

qdel

qdel <job_id>

Removes the job from the scheduler, killing it

USEFUL DOCUMENTATION

Exercises on Numerical Librearies:

Slides:

Bologna/HPC_Numerical_Libraries/

dfefHth

dtethfH

ift

ift

2

2)(

Fourier Transforms

Frequency Domain Time Domain

Real Space Reciprocal Space

Discrete Fourier Transforms (DFT)

frequencies from 0 to fc (maximum frequency) are mapped in the values

with index from 0 to N/2-1, while negative ones are up to -fc

mapped with index values of N / 2 to N

Scale like N*N

1

0

/2
N

k

Nikn

kn ehH

1

0

/21 N

n

Nikn

nk eH
N

h

25 of 49

Fast Fourier Transform (FFT)

The DFT can be calculated very efficiently

using the algorithm known as the FFT, which uses

symmetry properties of the DFT sum.

DFT of even terms

DFT of odd terms

exp(2i/N)

Fast Fourier Transform (FFT)

F
o

= F
oe

+ W
k/2

F
oo

F
e

= F
ee

+ W
k/2

F
eo

Now Iterate:

You obtain a series for each value of fn

F
oeoeooeo..oe

= fn

Scale like N*logN (binary tree)

Fast Fourier Transform (FFT)

How to compute a FFT on a distributed memory system

• On a 1D array:

– Algorithm limits:

• All the tasks must know the whole initial array

• No advantages in using distributed memory

systems

– Solutions:

• Using OpenMP it is possible to increase the

performance on shared memory systems

• On a Multi-Dimensional array:

– It is possible to use distributed memory

systems

Introduction

Multi-dimensional FFT(an example)

z

h(1...N,j,k)

1) For each value of j and k

Apply FFT to h(1...N,j,k)

2) For each value of i and k

Apply FFT to h(i,1...N,k)

3) For each value of i and j

Apply FFT to h(i,j,1...N)

31 of 49

Parallel FFT Data Distribution

P0

P1

P2

P3

Distribute data along one coordinate (e.g. Z)

3D Grid

This is know as “Slab Decomposition” or 1D Decomposition

Transform along x and y

P0
P1

P2 P3

each processor trasform its own sub-grid along the x and y independently of the other

y

x

Data redistribution involving x and z

P0

P1

P2

P3

P0 P1 P2 P3

The data are now distributed along x

x
x

y

y

zz

FFT along z

P0 P1 P2 P3

each processor transform its own sub-grid

along the z dimension independently of the other

z

Data are re-distributed, back from x to z

P0

P1

P2

P3

P0 P1 P2 P3

The 3D array now has the original layout, but each element

Has been substituted with its FFT.

x

y

x

y

Limit of Slab Decomposition

 Pro:
 Simply to implement

 Moderate communications

 Con:
 Parallelization only along one direction

 Maximum number of MPI tasks bounded by the size of the

larger array index

 Possible Solutions:
 2D (Pencil) Decomposition

2D Domain Decomposition

Slab vs Pencil Decomposition

 Slab (1D) decomposition:

 Faster on a limited number of cores

 Parallelization is limited by the length of the largest

axis of the 3D data array used

 Pencil (2D) decomposition:

 Faster on massively parallel supercomputers

 Slower using large size arrays on a moderate number

of cores (more MPI communications)

The simplest way to compute a FFT on a modern HPC system

http://www.fftw.org

Written in C

Fortran wrapper is also provided

FFTW adapt itself to your machines, your cache, the size

of your memory, the number of register, etc...

FFTW doesn't use a fixed algorithm to make DFT

FFTW chose the best algorithm for your machines

Computation is split in 2 phases:

PLAN creation

Execution

FFTW support transforms of data with arbitrary length,

rank, multiplicity, and memory layout, and more....

Many different versions:

FFTW 2:

Released in 2003

Well tested and used in many codes

Includes serial and parallel transforms for both shared

and distributed memory system

FFTW 3:

 Released in February 2012

Includes serial and parallel transforms for both shared

and distributed memory system

Hybrid implementation MPI-OpenMP

Last version is FFTW 3.3.3

Some Useful Instructions

MPI
OpenMP

•Module Loading:

module load autoload fftw/3.3.5--intelmpi--2017—binary

Including header:

•-I$FFTW_INC

•Linking:

-L$FFTW_LIB –lfftwf3_mpi -lfftwf3_omp -lfftw3f -lm (single precision)

-L$FFTW_LIB –lfftw3_mpi -lfftw3_omp –lfftw3 -lm (double precision)

•An example:

How can I compile a code that uses FFTW?

• Function in C became function in FORTRAN if they have a return value, and

subroutines otherwise.

• All C types are mapped via the iso_c_binning standard.

• FFTW plans are type(C_PTR) in FORTRAN.

•The ordering of FORTRAN array dimensions must be reversed when they are

passed to the FFTW plan creation

Some important Remarks for FORTRAN users

Including FFTW Lib:
• C:

• Serial:
#include <fftw.h>

• MPI:
#include <fftw-mpi.h>

• FORTRAN:
• Serial:

include 'fftw3.f03‘
•MPI:

include 'fftw3-mpi.f03‘

MPI initializzation:
• C:

void fftw_mpi_init(void)
• FORTRAN:

fftw_mpi_init()

Initialize FFTW

C:
• Fixed size array:

fftx_complex data[n0][n1][n2]
• Dynamic array:

data = fftw_alloc_complex(n0*n1*n2)
• MPI dynamic arrays:

fftw_complex *data
ptrdiff_t alloc_local, local_no, local_no_start
alloc_local= fftw_mpi_local_size_3d(n0, n1, n2, MPI_COMM_WORLD, &local_n0,&local_n0_start)
data = fftw_alloc_complex(alloc _local)

FORTRAN:
• Fixed size array (simplest way):

complex(C_DOUBLE_COMPLEX), dimension(n0,n1,n2) :: data
• Dynamic array (simplest way):

complex(C_DOUBLE_COMPLEX), allocatable, dimension(:, :, :) :: data
allocate (data(n0, n1, n2))

• Dynamic array (fastest method):
complex(C_DOUBLE_COMPLEX), pointer :: data(:, :, :))
type(C_PTR) :: cdata
cdata = fftw_alloc_complex(n0*n1*n2)
call c_f_pointer(cdata, data, [n0,n1,n2])

• MPI dynamic arrays:
complex(C_DOUBLE_COMPLEX), pointer :: data(:, :, :)
type(C_PTR) :: cdata
integer(C_INTPTR_T) :: alloc_local, local_n2, local_n2_offset
alloc_local = fftw_mpi_local_size_3d(n2, n1, n0, MPI_COMM_WORLD, local_n2, local_n2_offset)
cdata = fftw_alloc_complex(alloc_local)
call c_f_pointer(cdata, data, [n0,n1,local_n2])

Array creation

3D Complex to complex DFT:
• C:
fftw_plan = fftw_plan_dft_3d(int nx, int ny, int nz, fftw_complex *in, fftw_complex *out, fftw_direction dir, unsigned flags)

fftw_plan = fftw_mpi_plan_dft_3d(int nx, int ny, int nz, fftw_complex *in, fftw_complex *out,MPI_COMM_WORLD, fftw_direction dir,
int flags)

•FORTRAN:
plan = ftw_plan_dft_3d(nz, ny, nx, in, out, dir, flags)

plan = ftw_mpi_plan_dft_3d(nz, ny, nx, in, out, MPI_COMM_WORLD, dir, flags)

1D Complex to complex DFT:
• C:
fftw_plan = fftw_plan_dft_1d(int nx, fftw_complex *in, fftw_complex *out, fftw_direction dir, unsigned flags)

•FORTRAN:
plan = ftw_plan_dft_1d(nz, in, out, dir, flags)

2D Complex to complex DFT:
• C:
fftw_plan = fftw_plan_dft_2d(int nx, int ny, fftw_complex *in, fftw_complex *out, fftw_direction dir, unsigned flags)

fftw_plan = fftw_mpi_plan_dft_2d(int nx, int ny, fftw_complex *in, fftw_complex *out,MPI_COMM_WORLD, fftw_direction dir, int
flags)
•FORTRAN:
plan = ftw_plan_dft_2d(ny, nx, in, out, dir, flags)

plan = ftw_mpi_plan_dft_2d(ny, nx, in, out, MPI_COMM_WORLD, dir, flags)

FFTW_FORWARD

FFTW_BACKWARD

FFTW_ESTIMATE

FFTW_MEASURE

Plan Creation (C2C)

3D Real to complex DFT:
• C:
fftw_plan = fftw_plan_dft_r2c_3d(int nx, int ny, int nz, fftw_complex *in, fftw_complex *out, fftw_direction dir, unsigned flags)

fftw_plan = fftw_mpi_plan_dft_r2c_3d(int nx, int ny, int nz, fftw_complex *in, fftw_complex *out,MPI_COMM_WORLD,
fftw_direction dir, int flags)

•FORTRAN:
ftw_plan_dft_r2c_3d(nz, ny, nx, in, out, dir, flags)

ftw_mpi_plan_dft_r2c_3d(nz, ny, nx, in, out, MPI_COMM_WORLD, dir, flags)

1D Real to complex DFT:
• C:
fftw_plan = fftw_plan_dft_r2c_1d(int nx, double *in, fftw_complex *out, fftw_direction dir, unsigned flags)

•FORTRAN:
ftw_plan_dft_r2c_1d(nz, in, out, dir, flags)

2D Real to complex DFT:
• C:
fftw_plan = fftw_plan_dft_r2c_2d(int nx, int ny, double *in, fftw_complex *out, fftw_direction dir, unsigned flags)

fftw_plan = fftw_mpi_plan_dft_r2c_2d(int nx, int ny, double *in, fftw_complex *out,MPI_COMM_WORLD, fftw_direction dir, int
flags)

•FORTRAN:
ftw_plan_dft_r2c_2d(ny, nx, in, out, dir, flags)

ftw_mpi_plan_dft_r2c_2d(ny, nx, in, out, MPI_COMM_WORLD, dir, flags)

FFTW_FORWARD

FFTW_BACKWARD

FFTW_ESTIMATE

FFTW_MEASURE

Plan Creation (R2C)

Complex to complex DFT:
• C:
void fftw_execute_dft(fftw_plan plan, fftw_complex *in, fftw_complex *out)
void fftw_mpi_execute_dft (fftw_plan plan, fftw_complex *in, fftw_complex *out)

•FORTRAN:
fftw_execute_dft (plan, in, out)
fftw_mpi_execute_dft (plan, in, out)

Real to complex DFT:
• C:
void fftw_execute_dft (fftw_plan plan, double *in, fftw_complex *out)
void fftw_mpi_execute_dft (fftw_plan plan, double *in, fftw_complex *out)

•FORTRAN:
fftw_execute_dft (plan, in, out)
Fftw_mpi_execute_dft (plan, in, out)

Plan Execution

Destroying PLAN:
• C:
void fftw_destroy_plan(fftw_plan plan)
• FORTRAN:
fftw_destroy_plan(plan)

FFTW MPI cleanup:
• C:
void fftw_mpi_cleanup ()
• FORTRAN:
fftw_mpi_cleanup ()

Deallocate data:
• C:
void fftw_free (fftw_complex data)
• FORTRAN:
fftw_free (data)

Finalizing FFTW

Some Useful Examples

program FFTW1D

use, intrinsic :: iso_c_binding

implicit none

include 'fftw3.f03'

integer(C_INTPTR_T):: L = 1024

integer(C_INT) :: LL

type(C_PTR) :: plan1

complex(C_DOUBLE_COMPLEX), dimension(1024) :: idata, odata

integer :: i

character(len=41), parameter :: filename='serial_data.txt'

LL = int(L,C_INT)

!! create MPI plan for in-place forward DF

plan1 = fftw_plan_dft_1d(LL, idata, odata, FFTW_FORWARD, FFTW_ESTIMATE)

!! initialize data

do i = 1, L

if (i .le. (L/2)) then

idata(i) = (1.,0.)

else

idata(i) = (0.,0.)

endif

end do

!! compute transform (as many times as desired)

call fftw_execute_dft(plan1, idata, odata)

!! deallocate and destroy plans

call fftw_destroy_plan(plan1)

end

1D Serial FFT - Fortran

include <stdlib.h>

include <stdio.h>

include <math.h>

include <fftw3.h>

int main (void)

{

ptrdiff_t i;

const ptrdiff_t n = 1024;

fftw_complex *in;

fftw_complex *out;

fftw_plan plan_forward;

/* Create arrays. */

in = fftw_malloc (sizeof (fftw_complex) * n);

out = fftw_malloc (sizeof (fftw_complex) * n);

/* Initialize data */

for (i = 0; i < n; i++) {

if (i <= (n/2-1)) {

in[i][0] = 1.;

in[i][1] = 0.;

}

else {

in[i][0] = 0.;

in[i][1] = 0.;

}

}

/* Create plans. */

plan_forward = fftw_plan_dft_1d (n, in, out, FFTW_FORWARD, FFTW_ESTIMATE);

/* Compute transform (as many times as desired) */

fftw_execute (plan_forward);

/* deallocate and destroy plans */

fftw_destroy_plan (plan_forward);

fftw_free (in);

fftw_free (out);

return 0;

}

1D Serial FFT - C

program FFT_MPI_3D

use, intrinsic :: iso_c_binding

implicit none

include 'mpif.h'

include 'fftw3-mpi.f03'

integer(C_INTPTR_T), parameter :: L = 1024

integer(C_INTPTR_T), parameter :: M = 1024

type(C_PTR) :: plan, cdata

complex(C_DOUBLE_COMPLEX), pointer :: fdata(:,:)

integer(C_INTPTR_T) :: alloc_local, local_M, local_j_offset

integer(C_INTPTR_T) :: i, j

complex(C_DOUBLE_COMPLEX) :: fout

integer :: ierr, myid, nproc

! Initialize

call mpi_init(ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, nproc, ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)

call fftw_mpi_init()

! get local data size and allocate (note dimension reversal)

alloc_local = fftw_mpi_local_size_2d(M, L, MPI_COMM_WORLD, local_M, local_j_offset)

cdata = fftw_alloc_complex(alloc_local)

call c_f_pointer(cdata, fdata, [L,local_M])

! create MPI plan for in-place forward DFT (note dimension reversal)

plan = fftw_mpi_plan_dft_2d(M, L, fdata, fdata, MPI_COMM_WORLD, FFTW_FORWARD, FFTW_MEASURE)

2D Parallel FFT – Fortran (part1)

! initialize data to some function my_function(i,j)

do j = 1, local_M

do i = 1, L

call initial(i, (j + local_j_offset), L, M, fout)

fdata(i, j) = fout

end do

end do

! compute transform (as many times as desired)

call fftw_mpi_execute_dft(plan, fdata, fdata)!

! deallocate and destroy plans

call fftw_destroy_plan(plan)

call fftw_mpi_cleanup()

call fftw_free(cdata)

call mpi_finalize(ierr)

end

2D Parallel FFT – Fortran (part2)

include <stdlib.h>

include <stdio.h>

include <math.h>

include <mpi.h>

include <fftw3-mpi.h>

int main(int argc, char **argv)

{

const ptrdiff_t L = 1024, M = 1024;

fftw_plan plan;

fftw_complex *data ;

ptrdiff_t alloc_local, local_L, local_L_start, i, j, ii;

double xx, yy, rr, r2, t0, t1, t2, t3, tplan, texec;

const double amp = 0.25;

/* Initialize */

MPI_Init(&argc, &argv);

fftw_mpi_init();

/* get local data size and allocate */

alloc_local = fftw_mpi_local_size_2d(L, M, MPI_COMM_WORLD, &local_L, &local_L_start);

data = fftw_alloc_complex(alloc_local);

/* create plan for in-place forward DFT */

plan = fftw_mpi_plan_dft_2d(L, M, data, data, MPI_COMM_WORLD, FFTW_FORWARD, FFTW_ESTIMATE);

2D Parallel FFT – C (part1)

/* initialize data to some function my_function(x,y) */

/*……..*/

/* compute transforms, in-place, as many times as desired */

fftw_execute(plan);

/* deallocate and destroy plans */

fftw_destroy_plan(plan);

fftw_mpi_cleanup();

fftw_free (data);

MPI_Finalize();

}

2D Parallel FFT – C (part2)

The most important FFT Fortran Library that use 2D (Pencil) Domain Decomposition

General-purpose 2D pencil decomposition module to support building large-scale parallel applications on distributed memory systems.

Highly scalable and efficient distributed Fast Fourier Transform module, supporting three dimensional FFTs (both complex-to-complex
and real-to-complex/complex-to-real).

Halo-cell support allowing explicit message passing between neighbouring blocks.

Parallel I/O module to support the handling of large data sets.

Shared-memory optimisation on the communication code for multi-code systems.

Written in Fortran

Best performance using Fortran 2003 standard

No C wrapper is already provided

Structure: Plan Creation – Execution – Plan Destruction

Uses FFTW lib (or ESSL) to compute 1D transforms

More efficient on massively parallel supercomputers.

Well tested

Additional features

Parallel Three-Dimensional Fast Fourier Transforms
(P3DFFT)

General-purpose 2D pencil decomposition module to support building
large-scale parallel applications on distributed memory systems.

Highly scalable and efficient distributed Fast Fourier Transform module,
supporting three dimensional FFTs (both complex-to-complex and real-to-
complex/complex-to-real).

Sine/cosine/Chebyshev/empty transform

Shared-memory optimisation on the communication code for multi-code
systems.

Written in Fortran 90

C wrapper is already provided

Structure: Plan Creation – Execution – Plan Destruction

Uses FFTW lib (or ESSL) to compute 1D transforms

More efficient on massively parallel supercomputers.

Well tested but not stable as 2Decomp&FFT

Additional features

Some useful papers

 Auto-tuning of the FFTW Library for Massively Parallel Supercomputers.

 M. Guarrasi, G. Erbacci, A. Emerson;

 2012, PRACE white paper;

 Available at this link;

 Scalability Improvements for DFT Codes due to the Implementation of the 2D Domain

Decomposition Algorithm.

 M. Guarrasi, S. Frigio, A. Emerson, G. Erbacci

 2013, PRACE white paper;

 Available at this link

 Testing and Implementing Some New Algorithms Using the FFTW Library on Massively Parallel

Supercomputers.

 M. Guarrasi, N. Li, S. Frigio, A. Emerson, G. Erbacci;

 Accepted for ParCo 2013 conference proceedings.

 2DECOMP&FFT – A highly scalable 2D decomposition library and FFT interface.

 N. Li, S. Laizet;

 2010, Cray User Group 2010 conference;

 Available at this link

 P3DFFT: a framework for parallel computations of Fourier transforms in three dimensions.

 D. Pekurovsky;

 2012, SIAM Journal on Scientific Computing, Vol. 34, No. 4, pp. C192-C209

 The Design and Implementation of FFTW3.

 M. Frigio, S. G. Johnson;

 2005, Proceedings of the IEEE.

http://www.prace-project.eu/IMG/pdf/wp55_auto-tuning_of_fftw_library_for_massively_parallel_supercomputers-cineca-prace2ip-wp12.1.pdf
http://www.prace-project.eu/IMG/pdf/wp85.pdf
http://www.2decomp.org/pdf/17B-CUG2010-paper-Ning_Li.pdf

 ANL – Argonne National Laboratory

 Begun September 1991

 Uses the MPI standard for all message-passing communication

 C, Fortran, and C++

 Consists of a variety of libraries; each library manipulates a

particular family of objects and the operations one would like to

perform on the objects

 PETSc has been used for modelling in all of these areas:

Acoustics, Aerodynamics, Air Pollution, Arterial Flow, Brain Surgery, Cancer Surgery

and Treatment, Cardiology, Combustion, Corrosion, Earth Quakes, Economics,

Fission, Fusion, Magnetic Films, Material Science, Medical Imaging, Ocean

Dynamics, PageRank, Polymer Injection Molding, Seismology, Semiconductors, ...

PETSc – Portable, Extensible Toolkit for Scientific Computation

Is a suite of data structures and routines for the scalable (parallel) solution
of scientific applications mainly modelled by partial differential equations.

PETSc main features

Relationship between libraries

Goals

 Portable

 Performance

 Scalable parallelism

Approach

 Variety of libraries
 Objects (One interface – One or more

implementations)
 Operations on the objects

Benefit

 Code reuse

 Flexibility

 Hide within objects the details of the communication

PETSc programming model

PETSc numerical component

PetscInitialize(int *argc, char ***args, const char

file[], const char help[])

 Setup static data and services

 Setup MPI if it is not already

PetscFinalize()

 Calculates logging summary

 Finalize MPI (if PetscInitialize() began MPI)

 Shutdown and release resources

Writing PETSc programs:

initialization and finalization

#include "petsc.h"

#undef __FUNCT__

#define __FUNCT__ "main"

int main(int argc,char **args)

{

PetscErrorCode ierr;

PetscMPIInt rank;

PetscInitialize(&argc, &args,(char *)0, PETSC_NULL);

MPI_Comm_rank(PETSC_COMM_WORLD, &rank);

ierr = PetscPrintf(PETSC_COMM_SELF,"Hello by procs %d!\n",

rank); CHKERRQ(ierr);

ierr = PetscFinalize();

return 0;

}

Example: hello.c

program main

integer :: ierr, rank

character(len=6) :: num

character(len=30) :: hello

#include "finclude/petsc.h"

call PetscInitialize(PETSC_NULL_CHARACTER,ierr)

call MPI_Comm_rank(PETSC_COMM_WORLD, rank, ierr)

write(num,*) rank

hello = 'Hello by process '//num

call PetscPrintf(PETSC_COMM_SELF, hello//achar(10), ierr)

call PetscFinalize(ierr)

end program

Example: hello.F90

Vec and Mat

What are PETSc vectors?

 Fundamental objects for storing field solutions, right-hand
sides, etc.

 Each process locally owns a subvector of contiguously
numbered global indices

Features

 Has a direct interface to the values

 Supports all vector space operations

 VecDot(), VecNorm(), VecScale(), …

 Also unusual ops, e.g. VecSqrt(), VecInverse()

 Automatic communication during assembly

 Customizable communication (scatters)

Vectors

VecCreate(MPI_Comm comm, Vec *v)

 Vector types: sequential and parallel (MPI based)

 Automatically generates the appropriate vector type
(sequential or parallel) over all processes in comm

VecSetSizes(Vec v, int m, int M)

 Sets the local and global sizes, and checks to determine

compatibility

VecSetFromOptions(Vec v)

 Configures the vector from the options database

VecDuplicate(Vec old, Vec *new)

 Does not copy the values

Creating a vector

VecGetSize(Vec v, int *size)

VecGetLocalSize(Vec v, int *size)

VecGetOwnershipRange(Vec vec, int *low, int *high)

VecView(Vec x, PetscViewer v)

VecCopy(Vec x, Vec y)

VecSet(Vec x, PetscScalar value)

VecSetValues(Vec x, int n, int *idx,

PetscScalar *v, INSERT_VALUES)

VecDestroy(Vec *x)

Vector basic operations

Once all of the values have been inserted with VecSetValues(),

one must call

VecAssemblyBegin(Vec x)

VecAssemblyEnd(Vec x)

to perform any needed message passing of nonlocal components.

A three step process

 Each process tells PETSc what values to set or add to a
vector component. Once all values provided,

 begin communication between processes to ensure that
values end up where needed (allow other operations, such
as some computation, to proceed).

 Complete the communication

Vector assembly

VecGetSize(x, &N); /* Global size */

MPI_Comm_rank(PETSC_COMM_WORLD, &rank);

if (rank == 0) {

for (i=0; i<N; i++)

VecSetValues(x, 1, &i, &i, INSERT_VALUES);

}

/* These two routines ensure that the data is

distributed to the other processes */

VecAssemblyBegin(x);

VecAssemblyEnd(x);

Vector – Example 1

VecGetOwnershipRange(x, &low, &high);

for (i=low; i<high; i++)

VecSetValues(x, 1, &i, &i, INSERT_VALUES);

/* These routines must be called in case some other

process contributed a value owned by another process

*/

VecAssemblyBegin(x);

VecAssemblyEnd(x);

Vector – Example 2 (Do it in Parallel!)

Numerical vector operations

It is sometimes more efficient to directly access the storage for the local
part of a PETSc Vec.

 E.g., for finite difference computations involving elements of the
vector

VecGetArray(Vec, double *[])

 Access the local storage

VecRestoreArray(Vec, double *[])

 You must return the array to PETSc when you finish

Allows PETSc to handle data structure conversions

 For most common uses, these routines are inexpensive and do
not involve a copy of the vector.

Working with local vector

Vec vec;

Double *avec;

[…]

VecCreate(PETSC_COMM_WORLD,&vec);

VecSetSizes(vec,PETSC_DECIDE,n);

VecSetFromOptions(vec);

[…]

VecGetArray(vec, &avec);

/* compute with avec directly, e.g.: */

PetscPrintf(PETSC_COMM_WORLD,

“First element of local array of vec in

each process is %f\n”, avec[0]);

VecRestoreArray(vec, &avec);

Vector – Example 3

[…]

PetscViewer viewer_fd;

Vec va;

[…]

ierr = PetscViewerBinaryOpen(PETSC_COMM_WORLD, “data/va_200.bin”,

FILE_MODE_READ, &viewer_fd);CHKERRQ(ierr);

ierr = VecCreate(PETSC_COMM_WORLD, &va); CHKERRQ(ierr);

ierr = VecLoad(va, viewer_fd); CHKERRQ(ierr);

ierr = PetscViewerDestroy(&viewer_fd); CHKERRQ(ierr);

CHKMEMQ;

VecView(va, PETSC_VIEWER_STDOUT_WORLD);

VecGetSize(va, &size_global); CHKERRQ(ierr);

VecGetLocalSize(va, &size_local); CHKERRQ(ierr);

VecGetOwnershipRange(va, &low_idx, &high_idx); CHKERRQ(ierr);

[…]

VecDestroy(&va);

[…]

2_petsc_vec.c

What are PETSc matrices?

 Fundamental objects for storing linear operators

 Each process locally owns a submatrix of contiguous rows

Features

 Supports many data types

 AIJ, Block AIJ, Symmetric AIJ, Block Diagonal, etc.

 Supports structures for many packages

 Spooles, MUMPS, SuperLU, UMFPack, DSCPack

 A matrix is defined by its interface, the operations that you can
perform with it, not by its data structure

Matrices

MatCreate(MPI_Comm comm, Mat *A)

 Matrices types: sequential and parallel (MPI based).

 Automatically generates the appropriate matrix type

(sequential or parallel) over all processes in comm.

MatSetSizes(Mat A, int m, int n, int M, int N)

 Sets the local and global sizes, and checks to determine

compatibility

MatSetFromOptions(Mat A)

 Configures the matrix from the options database.

MatDuplicate(Mat B, MatDuplicateOption op, Mat *A)

 Duplicates a matrix including the non-zero structure.

Creating a matrix

MatView(Mat A, PetscViewer v)

MatGetOwnershipRange(Mat A, PetscInt *m, PetscInt* n)

MatGetOwnershipRanges(Mat A, const PetscInt **ranges)

 Each process locally owns a submatrix of contiguously

numbered global rows.

MatGetSize(Mat A, PetscInt *m, PetscInt* n)

MatSetValues(Mat A, int m, const int idxm[],

int n, const int idxn[],

const PetscScalar values[],

INSERT_VALUES| ADD_VALUES)

Matrix basic operations

Once all of the values have been inserted with MatSetValues(),

one must call

MatAssemblyBegin(Mat A, MatAssemblyType type)

MatAssemblyEnd(Mat A, MatAssemblyType type)

to perform any needed message passing of nonlocal components.

Matrix assembly

Mat A;

int column[3], i;

double value[3];

[…]

MatCreate(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,n,n,&A);

MatSetFromOptions(A);

value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;

if (rank == 0) {

for (i=1; i<n-2; i++) {

column[0] = i-1; column[1] = i; column[2] = i+1;

MatSetValues(A,1,&i,3,column,value,INSERT_VALUES);

}}

MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);

MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

Matrix – Example 1

Mat A;

int column[3], i, start, end, istart, iend;

double value[3];

[…]

MatCreate(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,n,n,&A);

MatSetFromOptions(A);

MatGetOwnershipRange(A,&istart,&iend);

value[0] = -1.0; value[1] = 2.0; value[2] = -1.0;

for (i=istart; i<iend; i++) {

column[0] = i-1; column[1] = i; column[2] = i+1;

MatSetValues(A,1,&i,3,column,value,INSERT_VALUES);

}

MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);

MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

Matrix – Example 2

Numerical matrix operations

Preallocation of memory is critical for achieving good performance

during matrix assembly, as this reduces the number of allocations and

copies required.

PETSc sparse matrices are dynamic data structures.

Can add additional nonzeros freely.

Dynamically adding many nonzeros

 requires additional memory allocations

 requires copies

 can kill performance

Memory pre-allocation provides the freedom of dynamic data

structures plus good performance

Matrix memory pre-allocation

Matrix AIJ format

MatCreateSeqAIJ(PETSC COMM SELF, int m, int n,

int nz, int *nnz, Mat *A)

1. If (nz == 0 && nnz == PETSC_NULL)

→ PETSc to control all matrix memory allocation

1. Set nz = <value>

→ Specify the expected number of nonzeros for each row.

 Fine if the number of nonzeros per row is roughly the same

throughout the matrix

 Quick and easy first step for pre-allocation

Pre-allocation

of sequential sparse matrix (1/2)

MatCreateSeqAIJ(PETSC COMM SELF, int m, int n,

int nz, int *nnz, Mat *A)

3. Set nnz[0] = <nonzeros in row 0>

...

nnz[m] = <nonzeros in row m>

→ indicate (nearly) the exact number of elements intended

for the various rows

If one underestimates the actual number of nonzeros in a given

row, then during the assembly process PETSc will

automatically allocate additional needed space.

This extra memory allocation can slow the

computation!

Pre-allocation

of sequential sparse matrix (2/2)

Each process locally owns a submatrix of contiguously numbered
global rows.

Each submatrix consists of diagonal and off-diagonal parts.

P0

P1

P2

Parallel sparse matrices

MatCreateMPIAIJ(MPI_Comm comm,

int m, int n, int M, int N,

int d_nz, int *d_nnz,

int o_nz, int *o_nnz,

Mat *A)

1. If (d_nz == o_nz == 0 && d_nnz == o_nnz == PETSC_NULL)

→ PETSc to control dynamic allocation of matrix memory space

1. Set d_nz = <value> and o_nz = <value>

→ Specify nonzero information for the diagonal (d_nz) and

off-diagonal (o_nz) parts of the matrix.

Pre-allocation

of parallel sparse matrix (1/2)

MatCreateMPIAIJ(MPI Comm comm,

int m, int n, int M, int N,

int d_nz, int *d_nnz,

int o_nz, int *o_nnz,

Mat *A)

3. Set d_nnz[0] = <nonzeros in row 0, diagonal part>

...
d_nnz[m] = <nonzeros in row m, diagonal part >

o_nnz[0] = <nonzeros in row 0, off-diagonal part>

...
o_nnz[m] = <nonzeros in row m , off-diagonal part >

→ Specify nonzero information for the diagonal (d_nnz) and

off-diagonal (o_nnz) parts of the matrix.

Pre-allocation

of parallel sparse matrix (2/2)

MatGetInfo(Mat mat, MatInfoType flag, MatInfo *info)

Or

Runtime option: -info –mat_view_info

typedef struct {

PetscLogDouble block_size;

PetscLogDouble nz_allocated, nz_used, nz_unneeded;

PetscLogDouble memory;

PetscLogDouble assemblies;

PetscLogDouble mallocs;

PetscLogDouble fill_ratio_given, fill_ratio_needed;

PetscLogDouble factor_mallocs;

} MatInfo;

Verifying Predictions (1/2)

[...]

MatInfo info;

Mat A;

double numMal, nz_a, nz_u;

[...]

MatGetInfo(A, MAT_LOCAL, &info);

numMal = info.mallocs;

nz_a = info.nz_allocated;

nz_u = info.nz_used;

[...]

Verifying Predictions (2/2)

[…]

PetscViewer viewr_fd;

Mat mC;

[…]

ierr = PetscViewerBinaryOpen(PETSC_COMM_WORLD, “data/mC.bin”,

FILE_MODE_READ, &viewr_fd); CHKERRQ(ierr);

ierr = MatCreate(PETSC_COMM_WORLD, &mC); CHKERRQ(ierr);

ierr = MatSetType(mC, MATAIJ); CHKERRQ(ierr);

ierr = MatLoad(mC, viewr_fd); CHKERRQ(ierr);

ierr = PetscViewerDestroy(&viewr_fd); CHKERRQ(ierr);

CHKMEMQ;

MatGetSize(mC,&row_global,&col_global); CHKERRQ(ierr);

MatGetOwnershipRange(mC,&row_local_min,&row_local_max);

[…]

MatDestroy(&mC);

[…]

3_petsc_mat.c

KSP and SNES

KSP: linear equations solvers

The object KSP provides uniform and efficient access to all of the

package’s linear system solvers

KSP is intended for solving nonsingular systems of the form

Ax = b.

KSPCreate(MPI_Comm comm, KSP *ksp)

KSPSetOperators(KSP ksp, Mat Amat, Mat Pmat,

MatStructure flag)

KSPSolve(KSP ksp, Vec b, Vec x)

KSPGetIterationNumber(KSP ksp, int *its)

KSPDestroy(KSP ksp)

PETSc KSP methods

