
I/O: State of the art and
Future developments

Giorgio Amati

SCAI Dept.

Rome, 18/19 May 2016

Some questions

 Just to know each other:

 Why are you here?

 Which is the typical I/O size you work with?

 GB?

 TB?

 Is your code parallelized?

 How many cores are you using?

 Are you working in a small group or you need to exchange
data with other researchers?

 Which language do you use?

“Golden” rules about I/O

 Reduce I/O as much as possible: only relevant data must be
stored on disks

 Save data in binary/unformatted form:

 asks for less space comparing with ASCI/formatted ones

 It is faster (less OS interaction)

 Save only what is necessary to save for restart or check-
pointing, everything else, unless for debugging reason or
quality check, should be computed on the fly.

 Dump all the quantities you need once, instead of using
multiple I/O calls: if necessary use a buffer array to store all
the quantities and the save the buffer using only a few I/O
calls.

 Why?

What is I/O?

 Raw data

 fwritef, fscanf, fopen, fclose, WRITE, READ, OPEN, CLOSE

 Call to an external library: MPI I/O, HDF5, NetCDF, ecc…

 Scalar/parallel/network Filesystems

1. I/O nodes and Filesystem cache

2. I/O network (IB, SCSI, Fibre, ecc..)

3. I/O RAID controllers and Appliance (Lustre, GPFS)

4. Disk cache

5. FLASH/Disk (one or more Tier)

 Tape

Latencies

 I/O operations involves

 OS & libraries

 IO devices (e.g. RAID controllers)

 Disks

 I/O latencies of disks are of the order of
microseconds

 RAM latencies of the order of 100-1000
nanoseconds

 FP unit latencies are of the order of 1-10

nanoseconds

  I/O very slow compared to RAM of FP unit

Architectural trends

Peak Performance Moore law

FPU Performance Dennard law

Number of FPUs Moore + Dennard

App. Parallelism Amdahl's law

Architectural trends

Number of cores 10^9

Memory x core

Memory BW/core 500GByte/sec

Memory hierachy Reg, L1, L2, L3, …

100Mbyte or less

2020 estimates

Architectural trends

Network links/node 100

Disk perf

Number of disks 100K

100Mbyte/sec

2020 estimates

Wire BW/core 1GByte/sec

What is parallel I/O?

 A more correct definition in the afternoon

 Serial I/O

 1 task writes all the data

 Parallel I/O

 All task write its own data in a different file

 All task write its own data in a single file

 MPI/IO, HDF5, NetCDF, CGNS,……

Why parallel I/O?

 New Architectures: many-many core (up to 10^9)

 As the number of task/threads increases I/O overhead start to
affect performance

 I/O (serial) will be a serious bottleneck

 Parallel I/O is mandatory else no gain in using many-many
core

 Other issues:

 domain decomposition

 data format: ASCII vs binary

 endianess

 blocksize

 data management

I/O: Domain Decomposition

 I want to restart a simulation using a different number of
tasks: three possible solutions

 pre/post processing (merging & new decomposition)

 serial dump/restore

 Parallel I/O

I/O: ASCII vs. binary/1

 ASCII is more demanding respect binary in term of disk
occupation

 Numbers are stored in bit (single precision floating point
number  32 bit)

 1 single precision on disk (binary)  32 bit

 1 single precision on disk (ASCII)  80 bit

 10 or more char (1.23456e78)

 Each char asks for 8 bit

 Not including spaces, signs, return, …

 Moreover there are rounding errors, …

I/O: ASCII vs. binary/2

 Some figures from a real world application

 openFOAM

 Test case: 3D Lid Cavity, 200^3, 10 dump

 Formatted output (ascii)
 Total occupation: 11 GB

 Unformatted output (binary)
 Total occupation: 6.1 GB

 A factor 2 in disk occupation!!!!

I/O: endianess

 IEEE standard set rules for floating point operations

 But set no rule for data storage

 Single precision FP: 4 bytes (B0,B1,B2,B3)

 Big endian (IBM): B0 B1 B2 B3

 Little endian (INTEL): B3 B2 B1 B0

 Solutions:

 Hand made conversion

 Compiler flags (intel, pgi)

 I/O libraries (HDF5)

I/O: blocksize

 The blocksize is the basic (atomic) storage size

 One file of 100 bit will occupy 1 blocksize, that could be > 4MB
ls -lh TEST_1K/test_1

-rw-r--r-- 1 gamati01 10K 28 gen 11.22 TEST_1K/test_1

…

du -sh TEST_1K/test_1

512K TEST_0K/test_1

…

du -sh TEST_1K/

501M TEST_10K/

…

 Always use tar commando to save space

ls -lh test.tar

-rw-r--r-- 1 gamati01 11M 5 mag 13.36 test.tar

I/O: managing data

 TB of different data sets

 Hundreds of different test cases

 Metadata

 Share data among different researchers

 different tools (e.g. visualization tools)

 different OS (or dialect)

 different analysis/post processing

 You need a common “language”

 Use I/O libraries

 Invent your own data format

Some figures/1

Simple CFD program, just to give you an idea of performance loss
due to I/O.

 2D Driven Cavity simulation

 2048*2048, Double precision (about 280 MB), 1000 timestep

 Serial I/O = 1.5’’

 1% of total serial time

 16% of total time using 32 Tasks (2 nodes)  1 dump = 160
timestep

 Parallel I/O = 0.3’’ (using MPI I/O)

 3% of total time using 32 Tasks (2 Nodes)  1 dump = 30
timestep

 An what using 256 tasks?

Some figures/2

Performance to dump huge file using Galileo: same code with
different I/O strategies….

 RAW (512 files, 2.5GB per file)

 Write: 3.5 GB/s

 Read: 5.5 GB/s

 HDF5 (1 file, 1.2TB)

 Write: 2.7 GB/s

 Read: 3.1 GB/s

 MPI-IO (19 files, 64GB per file)

 Write: 3.1 GB/s

 Read: 3.4 GB/s

Some strategies

I/O is the bottleneck  avoid when possible
I/O subsystem work with locks  simplify application
I/O has its own parallelism  use MPI-I/O
I/O is slow  compress (to reduce) output data
Raw data are not portable  use library

I/O C/Fortran APIs are synchronous  use dedicated I/O tasks

Application DATA are too large  analyze it “on the fly”,

(e.g. re-compute vs. write)

At the end: moving data

 Now I have hundreds of TB. What I can do?

 Storage using Tier-0 Machine is limited in time (e.g. PRACE
Project data can be stored for 3 Month)

 Data analysis can be time consuming (eyen years)

 I don’t want to delete data

 I have enough storage somewhere else?

How can I move data?

Moving data: theory

 BW requirements to move Y Bytes in Time X

moving data: some figures/1

 Moving outside CINECA

 scp  10 MB/s

 rsync  10 MB/s

 I must move 50TB of data:

 Using scp or rsync  60 days

 No way!!!!!

 Bandwidth depends on network you are using.
Could be better, but in general is even worse!!!

moving data: some figure/2

 Moving outside CINECA

 gridftp  100 MB/s

 globusonline  100 MB/s

 I must move 50TB of data:

 Using gridftp/globusonline  6 days

 Could be a solution…

 Note

 We get these figures between CINECA and a remote cluster
using a 1Gb Network

moving data: some hints

 Size matters: moving many little files cost more then moving
few big files, even if the total storage is the same!

 Moving file from Fermi to a remote cluster via Globusonline

 You can loose a factor 4, now you need 25 days instead of 6 to
move 50TB!!!!!

Size Num. Of files Mb/s

10 GB 10 227

100 MB 1000 216

1 MB 100000 61

moving data: some hints

 Plan your data-production carefully

 Plan your data-production carefully (again!)

 Plan your data-production carefully (again!)

 Clean your dataset from all unnecessary stuff

 Compress all your ASCII files

 Use tar to pack as much data as possible

 Organize your directory structure carefully

 Syncronize with rsync in a systematic way

 One example:

 We had a user who wants to move 20TB distributed over more
then 2’000’000 files…

 rsync asks many hours (about 6) only to build the file list,

without any synchronization at all

