
Production Environment

Introduction to Marconi HPC Cluster, for
users and developers

HPC User Support @ CINECA

27/06/2016

PBS Scheduler

● The production environment on Marconi is based on a
batch system, i.e. via job submission to a system of queues

• The scheduler/resource manager installed on Marconi is
PBS (Portable Batch System) Professional (Altair)

• PBS is in charge of scheduling all the submitted jobs
according to some criteria, allocating jobs among the
available computing resources

Running tests on the front-end

• A serial program can be executed in the
standard UNIX way:

> ./program
This is allowed only for very short runs, since
the interactive environment has a 10
minutes time limit: the "batch" mode is
required for longer runs

How to prepare a job for its execution
on batch mode

A first, efficient way to submit job to the queueing system is based
on the use of a “job script”

The job script scheme is:

 #!/bin/bash

 #PBS keywords

 variables environment

 execution line

PBS keywords: resources

• A job requests resources through the PBS
keywords

• PBS matches the requested resources with
available resources, according to rules defined by
the administrator

• When resources are allocated to the job, the job
can be executed

PBS keywords: resources
The syntax of the request depends on which type is concerned:

#PBS -l select=N:chunk=…[+[N:]chunk=...] (chunk resources →
execution units, e.g. ncpus, mpiprocs)

#PBS -l <resource>=<value> (server level resources, e.g.
walltime)

For example:
#PBS -l walltime=10:00
#PBS -l select=1:ncpus=1
Or
#PBS -l select=2:ncpus=8+4:ncpus=16

Resources can be also be required using options of the qsub command, more on this
later

PBS directives: chunk resources –
number of cores

The number of cpus required for a serial or parallel MPI/OpenMP/mixed job
must be required with the "select" directive:

#PBS -l select=NN:ncpus=CC:mpiprocs=TT

where:

NN: number of chunks (max depending on the queue)

ncpus=CC: number of physical cores per chunk

mpiprocs=TT: number of MPI tasks per chunk

for example:

#PBS -l select=1:ncpus=1 --> serial job

#PBS -l select=2:ncpus=8:mpiprocs=8 --> MPI job (2 chunks and 8
procs/tasks per chunk → 16 MPI tasks)

#PBS -l select=2:ncpus=8:mpiprocs=1 --> mixed job (2 MPI tasks and 8
threads/task)

PBS directives: chunk resources -
memory

You can specify the requested memory up to to maximum memory available on
the nodes using the "mem" directive:

#PBS -l select=NN:ncpus=CC:mpiprocs=TT:mem=xxxGB

Please note: if you required more memory than the one “corresponding” to the
number of assigned cpus (i.e., mem > ncpus* (total memory)/(number of cores
in the node)), the number of "effective cores" and the cost of your job will
increase

PBS directives: global (server)
resources

Resources as the computing time, must be requested in this form:
#PBS -l walltime=<value>

where

<value>: express the actual elapsed time (wall-clock) in the format
hh:mm:ss

for example:

#PBS -l walltime=1:00:00 (one hour)

Other PBS directives

#PBS -l select=1:ncpus=18:mpiprocs=18:mem=120GB # resources
#PBS -l walltime=1:00:00 # hh:mm:ss

#PBS -A <my_account> # name of the account

#PBS –N jobname # name of the job

#PBS -o job.out # standard (PBS) output file

#PBS -e job.err # standard (PBS) error file

#PBS -j eo # merge std-err and std-out

#PBS -m mail_events # specify email notification
(a=aborted,b=begin,e=end,n=no_mail)

#PBS -M user_list # set email destination
(email address)

The User Environment

There are a number of environment variables provided to the PBS job. Some of
them are taken from the user's environment and carried with the job. Others are
created by PBS.

Short example lists some of the more useful variables:

PBS_JOBNAME=jobb
PBS_ENVIRONMENT=PBS_BATCH
PBS_JOBID=453919.io01
PBS_QUEUE=shared

PBS_O_WORKDIR=/gpfs/scratch/usercin/aer0
PBS_O_HOME=/marconi/usercin/aer0
PBS_O_QUEUE=route
PBS_O_LOGNAME=aer0
PBS_O_SHELL=/bin/bash
PBS_O_HOST=nodexxx.marconi.cineca.it
PBS_O_MAIL=/var/spool/mail/aer0
PBS_O_PATH=/cineca/bin:/marconi/cineca/sysprod/pbs/default/bin: ...

PBS job script template

#!/bin/bash
#PBS -l walltime=2:00:00
#PBS -l select=1:ncpus=18:mpiprocs=18:mem=100GB
#PBS -o job.out
#PBS -e job.err
#PBS -A <account_no>
#PBS -m mail_events
#PBS -M user@email.com

cd $PBS_O_WORKDIR

module load autoload intelmpi/openmpi
module load somelibrary

mpirun -n 18 ./myprogram < myinput

Job script examples

Serial job script:

#!/bin/bash

#PBS -o job.out

#PBS -j eo

#PBS -l walltime=0:10:00

#PBS -l select=1:ncpus=1

#PBS -A <my_account>

cd $CINECA_SCRATCH/test/

module load R

R < data > out.txt

Job script examples
OpenMP job script

#!/bin/bash

#PBS -l walltime=1:00:00

#PBS -l select=1:ncpus=8

#PBS -o job.out

#PBS -e job.err

#PBS -A <my_account>

cd $PBS_O_WORKDIR ! this is the dir where the job was submitted from

module load intel

./myprogram

N.B. Asking for ncpus=8 automatically sets OMP_NUM_THREADS=8.

Hence ./myprogram runs with 8 OMP threads

Job script examples

MPI Job Scripts

#!/bin/bash
#PBS -l walltime=1:00:00
#PBS -l select=2:ncpus=10:mpiprocs=10 # 2 nodes, 10 procs/node = 20

 # MPI tasks
#PBS -o job.out
#PBS -e job.err
#PBS -A <my_account>

cd $PBS_O_WORKDIR ! this is the dir where the job was submitted from

module load intel intelmpi
mpirun ./myprogram < myinput > myoutput

Job script examples
MPI+OpenMP job script

#!/bin/bash

#PBS -l walltime=1:00:00

#PBS -l select=2:ncpus=8:mpiprocs=2

#PBS -o job.out

#PBS -e job.err

#PBS -A <my_account>

cd $PBS_O_WORKDIR

export OMP_NUM_THREADS=4

module load intel intelmpi

mpirun ./myprogram

N.B. If you don't set the OMP_NUM_THREADS variable it will be equal to

ncpus (8 in this example), hence you will have 2 MPI tasks and 8 threads/task

→ 16 threads on 8 cpus → core “overloading”

Array Jobs

An efficient way to perform multiple similar runs, either serial or parallel, by submitting
a unique job.

 The maximum allowed number of runs in an array job is set by the max_array_size
parameter (typically a server attribute, the default is 10.000). If a limit is set on the
maximum number of running jobs per user it will also apply to job arrays

#!/bin/bash
#PBS -N job_array
#PBS -l select=1:ncpus=1:mpiprocs=1
#PBS -l walltime=12:00:00
#PBS -A <account_name>
#PBS -J 1-20
#PBS -r y

cd $PBS_O_WORKDIR

./exe < input$PBS_ARRAY_INDEX.txt > $PBS_ARRAY_INDEX.out

PBS commands

qsub

 qsub <job_script>

Your job will be submitted to the PBS scheduler and
executed when there will be available resources (according
to your priority and the queue you requested)

qstat

 qstat -u $USER
Shows the list of all your scheduled jobs, along with their
status (idle, running, exiting, …) Also, shows the job id
required for other qstat options

PBS commands

qstat

 qstat -f <job_id>

Provides a long list of informations for the <job_id> job.

In particular, if your job isn’t running yet, you'll be notified
about its estimated start time or, if you made an error on
the job script, you will be informed that the job will never
start

qdel

 qdel <job_id>
Removes the job from the scheduled jobs by killing it

PBS commands

qalter

 qalter -l <resources> <job_id>
Alter one or more attributes of one or more PBS queuing
jobs

More information about these commands are available with
the man command

PSB Scheduler configuration and
queues on MARCONI

• It is possible to submit jobs of different types, using only one "routing"
queue: just declare how many resources (ncpus, walltime) you need
and your job will be directed into the right queue with a right priority.

• The maximum number of nodes that you can request is around 167
(6000 cpus) with a maximum walltime of 24 hours

• If you do not specify the walltime, a default value of 30 minutes will be
assumed; if you do not specify the number of cpus a default value of
1 will be taken

PSB Scheduler on MARCONI

Queue Name ncpus Max
Walltime

Max
running jobs

per user
Notes Priority

route

debug min = 1
max = 72 30 min 5 Managed

by route 70

prod min = 1
max = 2304 24 h 20 Managed

by route 50

bigprod min = 2305
max = 6000 24 h [*] Managed

by route 60

special min = 1
max = 36 180 h -

Ask
superc@cineca.it
#PBS -q special

100

serial 1 4 h [**] on login nodes
#PBS -q serial 30

[*] max_run_cpus = 6000 (per group) and 12.000 (total for the queue)
[**] max_run_ncpus = 12/16 (total for the queue)

mailto:superc@cineca.it

Job’s priority on MARCONI

The PBS scheduler estimates the job priority by taking into
account the following parameters:

• prj_priority = 0 [default_value]

• prj_quota_ratio = left ratio of the monthly quota (the quota is
calculated as total_budget / total_no_of_months), varies from 1 to
0

• requested resources: ncpus, walltime

• eligible time

Usage of serial queue

Serial job script with specific queue request:

#!/bin/bash

#PBS -o job.out

#PBS -j eo

#PBS -l walltime=0:10:00

#PBS -l select=1:ncpus=1

#PBS -A <my_account>

#PBS -q serial

#

cd $CINECA_SCRATCH/test/

cp /gss/gss_work/DRES_my/* .

Example: an interactive session with
MPI program “myprogram”

"Interactive" PBS batch job, using the "-I" (capital i) option:
– the job is queued and scheduled as any PBS batch job

– when executed, the standard input, output, and error streams are
connected to the terminal session from which qsub was submitted.

> qsub -A <account_no> -I -lselect=1:ncpus=2:mpiprocs=2
qsub: waiting for job ... to start
qsub: job ... ready
> mpirun ./myprogram
> ^D (or “exit”)

If you want to export variables to the interactive session, use the -v option. For
example, if "myprogram" is not compiled statically, you have to define and export
the LD_LIBRARY_PATH variable:

> export LD_LIBRARY_PATH= ...
> qsub -I -v LD_LIBRARY_PATH ...

Graphic session

• It is recommended the usage of RCM, Remote Connection Manager,
available for:

–windows
–mac
–linux

• Client/server application
every time you interact with the application, on the server side some
operations need to be performed. This can take some time depending
on bandwidth and latency of your Internet connection and workload of
the clusters.

• Available at:
https://hpc-forge.cineca.it/svn/RemoteGraph/branch/multivnc/build/dist/Releases/?p=817

Working with displays
Start the application double clicking on the RCM application icon (Windows) or
launching the RCM binary from a shell (Linux). Press the "NEW LOGIN" button:

Insert the host name or select a previous session from the drop-down menu,
your username and password, then press “Login”:

https://hpc-forge.cineca.it/svn/RemoteGraph/branch/multivnc/build/dist/Releases/?p=817

Working with displays

 Create a new display:

 A new window will appear to allow users to set:

Working with displays

 Connect to a display:

 Display information:

Working with displays

 Share a display:

 Send the saved file to the users who needs to access to the shared display.
To connect to a shared display click on the "OPEN" button and select the
received .vnc file:

Working with displays
Kill a display:

Just press “KILL” beside the display you don’t want to use anymore, and it will
removed from the list of the available displays. This operation can take some
time, depending on the workload of the clusters.

Note that by pressing “KILL”, the related display will be not reachable anymore
and you will lost not saved data.

Example of job execution using
Totalview within RCM

All the software that comes with a graphic user interface (GUI) can
be used within a RCM session

 With respect to other GUIs that can be run on RCM, Totalview is a
 little peculiar and must be run directly on the nodes that execute the
 parallel code

Example of job execution using
Totalview within RCM

• establish connection through RCM with MARCONI

• open a terminal and prepare the job script
#!/bin/bash

#PBS -l walltime=00:30:00

#PBS -l select=1:ncpus=4:mpiprocs=4:mem=15gb

#PBS -N totalview

#PBS -o job.out

#PBS -e job.err

#PBS -A your_account_here # account number (type saldo –b)

module load autoload <openmpi|intelmpi> #select the compiler used to compile your program

module load totalview

cd $PBS_O_WORKDIR

totalview mpirun -a poisson.exe -n 4

Example of job execution using
Totalview within RCM

Submit the job and pass the variable DISPLAY to the execution nodes.

qsub -v DISPLAY=`hostname`$DISPLAY job.sh

	Slide1
	Slide2
	Slide 3
	Slide30
	Slide17
	Slide18
	Slide19
	Slide37
	Slide36
	Slide6
	Slide38
	Slide7
	Slide27
	Slide32
	Slide33
	Slide34
	Slide35
	Slide8
	Slide9
	Slide10
	Slide5
	Slide 22
	Slide39
	Slide31
	Slide 26
	Slide20
	Slide23
	Slide24
	Slide22
	Slide25
	Slide26
	Slide40
	Slide41
	Slide42

