

Introduction to Marconi architecture

Carlo Cavazzoni <u>Nico Sanna</u>

1.2Mwatt2.4Mwatt2.3Mwatt2.3Mwatt3.2Mwatt50 rack120 rack120 rack120 rack150 rack100mq240mq240mq240mq300mq

"traditional" RISK and CISC chips are designed for maximum performance for all possible workloads

A lot of silicon to maximize single thread performace

Compute Power

Change of paradigm

New chips designed for maximum performance in a small set of workloads

Simple functional units, poor single thread performance, but maximum throughput

Compute Power

High level system Characteristics

Tender proposal

Partition	Installation	CPU	# nodes	# of Racks	Power
A1 – Broadwell (2.1PFlops)	April 2016	E5-2697 v4	1512	25	700KW
A2 - Knight Landing (11 Pflops)	September 2016	KNL	3600	50	1300KW
A3 – Skylake (4.5PFlops)	June 2017	E5-2680 v5	1512	25	700KW

Network: Intel OmniPath

Marconi - Compute

Partizione A1

1512 Lenovo NeXtScale Server -> 2PFlops processore Intel E5-2697 v4 Broadwell 18 cores @ 2.3GHz. dual socket node: 36 core e 128GByte / nodo

Partizione A2

3600 server Intel AdamPass -> 11PFlops processore Intel PHI code name Knight Landing 68 cores @ 1.4GHz. single socket node: 96GByte DDR4 + 16GByte MCDRAM

Partizione A3 1512 Lenovo Stark Server -> 4.5PFlops processore Intel E5-2680v5 SkyLake 20 cores @ 2.??GHz dual socket node: 40 core e 196GByte /nodo

Marconi - Network

Network type: new Intel Omnipath Largest Omnipath cluster of the world

Network topology: Fat-tree 2:1 oversubscription tapering at the level of the core switches only

Core Switches: 5 x OPA Core Switch "Sawtooth Forest" 768 ports each

Hdge Switch: 216 OPA Edge Switch "Eldorado Forest" 48 ports each

Maximum system configuration: 5(opa) x 768(ports) x 2(tapering) -> 7680 servers

32 nodes fully interconnected island

System layout

OCINECA Floor Plan

System A1:

- Mgmt (1x)
- Storage-Nodes (1x)
- GSS (4 x)
- OPA (5 x)
- BDW (21 x)

System A2:

• KNL (51 x)

System A3: • SKL (21 x)

9

Phase 1: Broadwell nodes

- Similar to Haswell cores present on Galileo.
- Expect only a small difference in single core performance wrt Galileo, but a big difference compared to Fermi.
- More cores/node (36) should mean better OpenMP performance (e.g. for Gromacs), but also MPI performance will improve (faster network).
- Life much easier for SPMD programming models.

cores/node	36
Memory/node	128 GB

Using MD on Marconi Phase

Phase 2: Knights Landing (KNL)

- A big unknown because very few people currently have access to KNL.
- But we know the architecture of KNL and the differences and

Intel® Xeon Phi™ Coprocessor Block Diagram

Knights Landing Overview

Stand-alone, Self-boot CPU Up to 72 new Silvermont-based cores 4 Threads per core. 2 AVX 512 vector units Binary Compatible¹ with Intel® Xeon® processor 2-dimensional Mesh on-die interconnect MCDRAM: On-Package memory: 400+ GB/s of BW²

DDR memory

Intel[®] Omni-path Fabric

3+ TFLops (DP) peak per package ~3x ST performance over KNC

Many Trailblazing Improvements in KNL

Improvements	What/Why
Self Boot Processor	No PCIe bottleneck
Binary Compatibility with Xeon	Runs all legacy software. No recompilation.
New Core: SLM based	~3x higher ST performance over KNC
Improved Vector density	3+ TFLOPS (DP) peak per chip
AVX 512 ISA	New 512-bit Vector ISA with Masks
Scatter/Gather Engine	Hardware support for gather and scatter
New memory technology: MCDRAM + DDR	Large High Bandwidth Memory \rightarrow MCDRAM Huge bulk memory \rightarrow DDR
New on-die interconnect: Mesh	High BW connection between cores and memory

Intel[®] AVX Technology

KNL

3 Memory Modes

- Mode selected at boot
- MCDRAM-Cache covers all DDR

Cache Model

Hybrid Model

Summary

- Knights Landing (KNL) is the first self-boot Intel® Xeon Phi™ processor
- Many improvements for performance and programmability
 - Significant leap in scalar and vector performance
 - Significant increase in memory bandwidth and capacity
 - Binary compatible with Intel[®] Xeon[®] processor
- Common programming models between Intel[®] Xeon[®] processor and Intel[®] Xeon Phi[™] processor
- KNL offers immense amount of parallelism (both data and thread)
 - Future trend is further increase in parallelism for both Intel[®] Xeon[®] processor and Intel[®] Xeon Phi[™] processor
 - Developers need to prepare software to extract full benefits from this trend

Xeon Phi KNC-KNL comparision

	KNC (Galileo)	KNL (Marconi)
#cores	61 (pentium)	68 (Atom)
Core frequency	1.238 GHz	1.4 Ghz
Memory	16GB GDDR5	96GB DDR4 +16Gb MCDRAM
Internal network	Bi-directional Ring	Mesh
Vectorisation	512 bit /core	2xAVX-512 /core
Usage	Co-processor	Standalone
Performance (Gflops)	1208 (dp)/2416 (sp)	~3000 (dp)
Power	~300W	~200W

A KNC core can be 10x slower than a Haswell core. A KNL core is expected to be 2-3X slower. Big differences also in memory bandwidth.

Top500 List: Marconi – A1

<u>F</u> ile <u>E</u> dit	<u>V</u> iew ome to	Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> el HPC@C × III Data Storage Re	p esou ×	Top500 List - June 2.	× +				
()	ww.top	500.org/list/2016/06/			C	۹ top500)	÷	☆ (
G Google			O GROMACS	🛗 Customer Portal	🛱 CINECA JIR	A 🔏 CINE	CA Technica	l Portal	🕷 Welc
	RANK	SITE	SYSTEM		CORES	(TFLOP/S)	(TFLOP/S)	(KW)	
	1	National Supercomputing Center in Wo China	uxi Sunway 1 Sunway S Sunway NRCPC	FaihuLight - Sunway MPI SW26010 260C 1.45GHz,	P, 10,649,600	93,014.6	125,435.9	15,371	
	2	National Super Computer Center in Guangzhou China	Tianhe-2 TH-IVB-F E5-26921 Express-7 NUDT	(MilkyWay-2) - EP Cluster, Intel Xeon 12C 2.200GHz, TH 2, Intel Xeon Phi 31S1P	3,120,000	33,862.7	54,902.4	17,808	
	3	DOE/SC/Oak Ridge National Laborator United States	y Titan - Ci 2.200GHz interconn Cray Inc.	ray XK7 , Opteron 6274 16 s, Cray Gemini nect, NVIDIA K20x	6C 560,640	17,590.0	27,112.5	8,209	٦
	4	DOE/NNSA/LLNL United States	Sequoia - 16C 1.60 IBM	- BlueGene/Q, Power BQ GHz, Custom	C 1,572,864	17,173.2	20,132.7	7,890	
	5	RIKEN Advanced Institute for Computational Science (AICS) Japan	K comput Tofu inter Fujitsu	ter, SPARC64 VIIIfx 2.0GH connect	iz, 705,024	10,510.0	11,280.4	12,660	# /f
	6	DOE/SC/Argonne National Laboratory United States	Mira - Blu 1.60GHz, IBM	ueGene/Q, Power BQC 16 Custom	6C 786,432	8,586.6	10,066.3	3,945	

Top500 List: Marconi – A1

<u>F</u> ile <u>E</u> dit	<u>V</u> iew	Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> el	p									
📷 Welc	ome to	o HPC@C 🗙 🛗 Data Storage Re	esou × Top500 List - June 2	× 🕂								
(€) (i) w	ww.top	p500.org /list/2016/06/		G	۹ top50	0	÷	☆自		- 1		
G Google	40 40	Meteo France	GROMACS Customer Portal Proux - DUIX DLC 720, Xeon E5-2698v4 20C 2.2GHz, Infiniband FDR Bull, Atos Group	CINECA JI 72,000	2,168.U	ECA Technic 2,034.4	830	# Welcom	e to SCA		Bioph	ysical :
	41	Moscow State University - Research Computing Center Russia	Lomonosov 2 - T-Platform A-Class Cluster, Xeon E5-2697v3 14C 2.6GHz, Infiniband FDR, Nvidia K40m T-Platforms	42,688	2,102.0	2,962.3	1,079					
	42	LvLiang Cloud Computing Center China	Tianhe-2 LvLiang Solution - Tianhe-2 LvLiang, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	174,720	2,071.4	3,074.5	997					
	43	Japan Atomic Energy Agency (JAEA) Japan	SGI ICE X, Xeon E5-2680v3 12C 2.5GHz, Infiniband FDR SGI	60,240	1,929.4	2,409.6						
_	44	Commissariat a l'Energie Atomique (CE France	EA) Tera-1000-1 - bullx DLC 720, Xeon E5-2698v3 16C 2.3GHz, Infiniband FDR Bull, Atos Group	70,272	1,871.0	2,586.0	1,042	-				
	45	CINECA Italy	Fermi - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	163,840	1,788.9	2,097.2	822					
	46	CINECA Italy	Marconi - Lenovo NeXtScale nx360M5, Xeon E5-2697v4 18C 2.3GHz, Omni-Path Lenovo	54,432	1,723.9	2,003.1		-				
	47	Government United States	SwiftLucy - Cluster Platform 3000 BL460c Gen9, Xeon E5-2680v3 12C 2.5GHz, Infiniband FDR	57,600	1,703.3	2,304.0						

Marconi – A1 HPL

Single node Linpack:

1 MPI task, 36 threads perf range: 1.19 - 1.3TFlops N = 104832, NB = 192 (90GByte)

Full system Linpack: 1 MPI task per node perf range: 1.6 – 1.7PFs. Max Perf: 1.72389PFs with Turbo-OFF.

Turbo-ON -> throttling

Ν	NB	Ρ	Q	T:	ime	Gflops
4320000 start time	192 Mon	30 May 30	50 16:43:07	31178 2016	.23	1.72389e+06
end time	Tue	May 31	01:22:46	2016		
(eps*(A	_00*	x _o	0+ b _0	o)*N)=	0.0007856	PASSED
1 tests w 1 tests c 0 tests c	ith t omple omple	he foll ted and ted and	lowing res d passed o d failed o	sults: residual cho residual cho	ecks, ecks,	
(4320000 start time end time (eps*(A 1 tests w 1 tests c 0 tests c	4320000 192 start time Mon end time Tue (eps*(A _oo* 1 tests with t 1 tests comple 0 tests comple	4320000 192 30 start time Mon May 30 end time Tue May 31 (eps*(A _oo* x _oo 1 tests with the fol 1 tests completed and 0 tests completed and	4320000 192 30 50 start time Mon May 30 16:43:07 end time Tue May 31 01:22:46 (eps*(A _oo* x _oo+ b _oc 1 tests with the following res 1 tests completed and passed r 0 tests completed and failed r	4320000 192 30 50 31178 start time Mon May 30 16:43:07 2016 end time Tue May 31 01:22:46 2016 (eps*(A _oo* x _oo+ b _oo)*N)= 1 tests with the following results: 1 tests completed and passed residual che 0 tests completed and failed residual che	<pre>4320000 192 30 50 31178.23 start time Mon May 30 16:43:07 2016 end time Tue May 31 01:22:46 2016 (eps*(A _oo* x _oo+ b _oo)*N)= 0.0007856 1 tests with the following results: 1 tests completed and passed residual checks, 0 tests completed and failed residual checks,</pre>

Marconi: Intel E5-2697 v4 Broadwell, 18 cores @ 2.3GHz.

- Phase 3. Intel Skylake processors (mid-2017)
 - Successor to Haswell, and launched in 2015.
 - Expect increase in performance and power efficiency.

Tick-Tock Development Model: Sustained Microprocessor Leadership

Innovation delivers new microarchitecture with Skylake

inside' XEON'	2015 Purley Ro	oadmap Position	ning ^{Shippir} 2017	In Development
Expandable	Brickland Platform Intel® Xeon® processor E7- 8800/4800/2800 v2 product families/Intel® C602J chipset, Intel® C104/C102 Scalable Memory Buffer	<mark>ckland Platform</mark> rocessor E7-8800/4800 v3 /Intel [®] C602J chipset, Intel® Scalable Memory Buffer	Brickland Platform [®] Xeon [®] processor E7-8800/4800 v4 oduct families/Intel [®] C602J chipset, ⁰ C114/C112 Scalable Memory Buffer	Purley Platform Intel® Xeon® processor
Efficient Performance 4S/Performance Comms	Romley-EP 4S Platform Intel® Xeon® processor E5-4600 v2 product family/Intel® C600 series chipset	<u>Grantley-EP 4S Platform</u> Keon® processor E5-4600 v3 product amily/Intel® C610 series chipset	<u>Grantley-EP 4S Platform</u> Intel [®] Xeon [®] processor E5-4600 v4 product family/Intel [®] C610 series chipset	OP product family VS Skylake Server CPU Intel® Omni-Path Architecture (Storm Lake Gen 1)
Efficient Performance 2S/Performance & Mid-Range Storage/Performance Comms	<u>Grantley-EP 2S Platform</u> Intel® Xeon® processor E5-2600 v3 product family Intel® C610 series chipset Intel® Ethernet XL710 controller	<u>Grantley-EP 2S I</u> Intel® Xeon® processor E5-2600 v4 produc Intel® Ethernet XL7 [,] Intel® Ethernet X550 con	<u>Platform</u> ct family/Intel [®] C610 series chipset 10 controller troller (Sageville)	Lewisburg PCH Apache Pass e e ontroller controller lintel® Ethernet XL710 controller lintel® Ethernet X550 controller (Sageville)
Performance	Intel® 8900 Chipset option w/ QuickAssist Acceleration (River Forest)	Intel® 8900 Chipset option w/ QuickAss	sist Acceleration (River Forest)	
Intel® Xeon Phi™	Initel® Xeon Phi III coprocessor 7100 / 5100 / 3100 tamin	Intel® Xeon Phi™	Groveport Platform M x200 processor with (optional) integrated	I Fabric
1S Workstation	<u>Grantley-EP 1S Workstation Platform</u> Intel® Xeon® processor E5-1600 v3 product family Intel® C610 series chipset Intel® Ethernet XL710 controller	<mark>Grantley-EP 1S Wo</mark> Intel® Xeon® processor E5-1600 v4 pro Intel® Ethernet ک	orkstation Platform oduct family/Intel [®] C610 series chipset XL710 controller	Basin Falls 1S Workstation Platform Intel [®] Xeon [®] processor product family (Skylake Server socket R) Kaby Lake PCH

ŠŠŤŠŤ

Platform Comparisons

Spec	Grantley with Broadwell-EP CPU	Brickland with Broadwell-EX CPU	Purley with Skylake CPU
CPU TDP (with IVR)	55-145W, 160W WS only	55-145W, 160W WS only 115-165W	
Socket	Socket R3 Socket R1		Socket P
Scalability	2S 2S, 4S, 8S		2S, 4S, 8S
Cores	Up to 22C with Intel® HT Technology	Up to 24C with Intel® HT Technology	Up to 28C with Intel® HT Technology
	4 channels DDR4 per CPU RDIMM, LRDIMM	4 channels DDR4 per CPU RDIMM, LRDIMM	6 channels DDR4 per CPU RDIMM, LRDIMM
Memory	1DPC=up to 2400, 2DPC= up to 2133, 3DPC=up to 1600	DDR3/4 Performance Mode 1333, 1600 DDR3/4 Lockstep mode 1333, 1600, 1866	2133, 2400 2DPC, 2666 1DPC No 3 DPC support
UPI	QPI: 2 v1.1 channels per CPU 9.6 GT/s max	QPI: 3 v1.1 channels per CPU 9.6 GT/s max	UPI: 2-3 channels per CPU (9.6, 10.4 GT/s)
	PCle* 3.0 (2.5, 5.0, 8.0 GT/s)	PCle* 3.0 (2.5, 5.0, 8.0 GT/s)	PCIe* 3.0 (2.5, 5.0, 8.0 GT/s)
PCle*	40 lanes per CPU	32 lanes per CPU	48 lanes per CPU Bifurcation support: x16, x8, x4
РСН	Wellsburg: DMI2 – 4 lanes; Up to 6xUSB3, 8x USB2 ports, 10xSATA3 ports; GbE MAC (+ External PHY)	Patsburg: 14 USB2 ports, 4 SATA2 ports, 2 SATA3 ports	Lewisburg: DMI3 – 4 Ianes; 14xUSB2 ports Up to: 10xUSB3; 14xSATA3, 20xPCIe*3 New: Innovation Engine, 4x10GbE ports, Intel® QuickAssist Technology
External Node Controller Support	None	3 rd Party Node Controller	3 rd Party Node Controller supported on select skus

8

CINECA

(intel)

2S Purley Platform Configuration Example

Typical 2S Configuration

Platform Ingredient Options

Fabric: Storm Lake Integrated, Storm Lake PCIe* card

Storage: SATA: Downieville, SATA: Youngsville, PCIe*: Coldstream, PCIe* Cliffdale

Software: Analytics, Efficiency, Performance, Secure Access, Tools

Networking: Lewisburg as 4x10GbE Integrated Network Solution with PHY, Fortville 4x10/2x40GbE (Controller), Sageville 2x10GBASE-T (Controller), Springville (1x1GBASE-T), Powerville (4x1GBASE-T) Core Ingredients: Coppervale 10GBASE-T, Jacksonville GbE PHY

Accelerators: Intel® QuickAssist Accelerator Technology with Compression and Encryption, Lewisburg can also be used as PCIe* add-in card in end point mode

Intel® Xeon Phi™ Product Family: Knights Corner/Landing Coprocessors and Processors

FW/Bios: Manageability, Node Manager, Intel® RSTe, ME11, Intel® Trusted Execution Technology and Intel® Platform Protection Technology with Boot Guard

DDR4 DIMMs

DDR4/Apache Pass

** Optional PCIe* uplink connection for Intel® QuickAssist Technology and Intel® Ethernet Example DIMM population shown; please look up Apache Pass customer collateral for specific rules on DDR4/Apache Pass DIMM populations

