
Scientific and Technical Computing in C

Stefano Tagliaventi Luca Ferraro
CINECA Roma - SCAI Department

Rome, 3-5 February 2016

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Outline

1 Pointer Types
Pointers Basics
Pointers and Arrays
Generic Pointers

2 Characters and Strings

3 Input and Output

4 Managing Memory

5 Conclusions

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

You May Need More

• You may find yourself in need to return more than one result
from a function

• And you may find yourself in need to pass a big struct to a
function, without paying the price of copying its value

• And, believe it or not, in some part of your program you may
find yourself in need to access a variable whose name is not
known

• And to represent things as multiblock, unstructured grids, or
building structures, or complex molecules, you may find
yourself in need to access variables that don’t even have a
name

• In all these cases, you have to use memory addresses

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Memory? Addresses?

• You can think of memory as a huge array of units of storage
(usually 8 bits bytes)

• The index in this array is termed address
• But how many bytes are needed to store a value?

• It depends on value type and platform
• And it’s even worse...

• Not all locations are good for any value (at least
performancewise)

• Not all locations can be read/written
• What are the starting and ending address?
• The amount of memory seen by your program could vary

during execution
• You could have ‘holes’ in this ideal array
• Or this ideal array could be made of separate, independent

segments

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Enter C Pointers

• Dealing directly with memory addresses is cumbersome
• Easily makes the program non portable
• Makes the program difficult to manage and confusing
• Exhibits low level details you don’t really want to care about

• How to avoid it?
• Named variables leave the whole issue to the compiler

• You use the name and don’t care about address
• C pointers let you manipulate addresses in a transparent and

consistent way
• They contain memory addresses
• Allow you to manipulate addresses disregarding their actual

values
• Associate a C type to the memory location they point to
• And give you a way to read or write this memory location,

much like a named variable

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Pointers Basics

• int i, *p;
• declares an int variable i
• and a ‘pointer to int’ variable p
• in the latter, you can store the address of a memory location

suitable to store an int type value

• p = &i;
• &i evaluates to the address of variable i
• p gets a valid address in
• Got something familiar? Do you remember scanf()?

• *p = 10;
• Expression *p is an lvalue of type int
• You can performe assignment to it
• You can use it in expressions to access the stored value
• * has same precedence and associativity of unary -

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Pointer vs. Pointee

int *p = NULL;
int a = 5;

p: 0
a: 5

p = &a;
p: address of a
a: 5

*p += 10;
p: address of a
a: 15

a += 1;
p: address of a
a: 16

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Avoiding Costly Copies

struct vect3D {
double x, y, z;

};

// REMINDER: I have to make vcross() more efficient! DONE!!
struct vect3d vcross(const struct vect3D *u, const struct vect3D *v) {

struct vect3D c;

c.x = u->y*v->z - u->z*v->y;
c.y = u->z*v->x - u->x*v->z;
c.z = u->x*v->y - u->y*v->x;

return c;
}

• Copying 6 doubles for very little work
• Let’s put pointers to good use
• u->y is a convenient shorthand for (*u).y
• But now we have the address of the arguments and

could make a mistake and change their contents
• Let’s make the pointees const

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Did we say “valid”?

• A valid pointer value is an address that:
• is in the process memory space
• points to something which exists
• and whose type matches

• Invalid pointers
• uninitialized pointers (point to the wrong place, at best)
• the address of a variable that does not exist anymore
• the address of one type put in pointer to another type (unless

you REALLY know what you are doing)
• a null pointer, i.e. a 0 address

• Dereferencing (with *) a null pointer forces runtime error

• Good practice:
• Always initialize pointers
• If you don’t know yet the right address, use NULL from
stddef.h

• 0 may also be used, but less readable

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

A Naive Mistake

struct vect3D {
double x, y, z;

};

// REMINDER: I have to make vcross() more efficient! DONE!! Trying to do better...
struct vect3d *vcross(const struct vect3D *u, const struct vect3D *v) {

struct vect3D c;

c.x = u->y*v->z - u->z*v->y;
c.y = u->z*v->x - u->x*v->z;
c.z = u->x*v->y - u->y*v->x;

return &c; // MADNESS!!
}

• Sparing another copy it’s tempting...
• But it’s very naive!
• c is an automatic variable, and it’s gone when the pointer is

used
• And probably the memory locations have been already

reused and overwritten!

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Returning More Than One Result

#include <math.h>

struct vect3D {
double x, y, z;

};

struct vect3d versor_norm(const struct vect3D *u, double *norm) {
struct vect3D c = {0.0, 0.0, 0.0};
double n, invn;

n = u->x*u->x + u->y*u->y + u->z*u->z;
if (n == 0.0) {
*norm = 0.0;
return c;

}

n = sqrt(n);
*norm = n;
invn = 1.0/n;
c.x = u->x*invn;
c.y = u->y*invn;
c.z = u->z*invn;
return c;

}

• We have to return two results
• Of very different types and meanings
• Assembling them in a bigger struct makes little sense

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Pointers and Arrays

• double *p[10]
• it’s an array of 10 pointers to double

• and double *p[10][3]
• it’s an array of 10 arrays, each of 3 pointers to double

• while double (*p)[10]
• it’s a pointer to array of 10 doubles

• and double (*p)[10][3]
• it’s a pointer to an array of 10 arrays, each of 3 doubles

• Confusing? It’s logical: operator [] has higher precedence
than *

• But easily becomes nasty!
• What’s double (*p[10])[3]?
• And double (*(*p[10])[3][5])[8][2]?

• Best practice: use cdecl tool to familiarize and decrypt

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Pointers Arithmetic

• Useful to poke around in arrays
• p + 7

• will give you an address
• that is 7*sizeof(*p) after the one in p

• You can also use -, +=, -=, ++, and --
• p1 - p2

• if of the same pointer type, will give you an integer value
• more precisely, of ptrdiff_t type (from stddef.h)
• the displacement from p2 to p1 in units of sizeof(*p1)

• Pointer comparison
• == (equal), !=, >, <, >=, <= can be used on pointers of the

same type
• Pointer casting

• Pointer values can be cast to pointers of different type
• Do it VERY carefully, it’s easy to do the wrong thing
• Pointers may also be cast to some integer type, but

it’s highly non portable, don’t do it

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Pointers and Array Equivalence

• *(p+7) can be shortened to p[7]

• Aha!
• Can a pointer be used as an array?

• true

• I see... so is the array name a pointer?
• true, but it’s constant, you can’t change it

• But if I have int a[N], and int *p, may I assign p=a?
• true, you can

• Then, what’s the difference between an array variable and a
pointer variable declarations?

• An array declaration allocates memory for data
• A pointer declaration allocates memory for a data address

only
• And between array and pointer function parameters?

• Irrelevant, an array argument passes a pointer
• You are now ready to understand good old C tricks

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Skeptical? Try to Believe

#include <stdio.h>

double a[] = {1.0, 2.0, 3.0, 4.0, 5.0};

int main() {

double *p;

p = a; // variable p now stores the address of array a

printf("%lf\n", a[2]); // will print 3.0
printf("%lf\n", *(p+2)); // will print 3.0

p[2] = 7.0; // reassigns a[2]

printf("%lf\n", p[2]); // will print 7.0
printf("%lf\n", a[2]); // ditto, it’s the same location

return 0;
}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Array Names and Pointers

int a[10];
int *p = a + 5;

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

a�
?

p 6
int b[5][2];

b[0] b[1] b[2] b[3] b[4]

b[0][0] b[0][1] b[1][0] b[1][1] b[2][0] b[2][1] b[3][0] b[3][1] b[4][0] b[4][1]

b�
?

b[0]�
?

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Averaging, with Pointers

• This one should be quite obvious
• Perfectly equivalent to using const double a[]

• You’ll often encounter something like this, particularly in
libraries

double avg(int n, const double *a) { /* which one is const? */
int i;
double sum = 0.0;

for (i=0; i<n; ++i)
sum += a[i];

return sum/n;
}

const int *p is a pointer to const, int *(const p) is a const pointer

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Calling avg()

• New or old style, array or pointer, simply pass array
dimension and name

• And part of arrays could be managed too, independently of
how it is written

double mydata[N];
double mydata_avg;
double firsthalf_avg, secondhalf_avg;

// read or compute N doubles into mydata[]

mydata_avg = avg(N, mydata);
firsthalf_avg = avg(N/2, mydata);
secondhalf_avg = avg(N - N/2, mydata + N/2);

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Averaging Arrays, with Pointers

• Let’s generalize to sets of m numbers
• And make it generic, as usual
• Now you are ready for the traditional solution
• And for an application of pointer casting

void avg(int n, int m, const double (*a)[], double *b) {
int i, j;
const double *p = (const double *)a;

for (j=0; j<m; ++j)
b[j] = 0;

for (i=0; i<n; ++i)
for (j=0; j<m; ++j)

b[j] += p[i*m + j]; /* mapping two indexes */
/* to one ‘by hand’ */

for (j=0; j<m; ++j)
b[j] /= n;

}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Calling Generic avg()

• New or old style, arrays or pointers, simply pass array
dimension and name

• Using casts for arrays of doubles
• If avg() is written using VLAs, pedantic compilers may give

a warning on function call, even if it’s correct: they are wrong,
check with Standard document or good book

double mydata1[N][12];
double mydata1_avg[12];
double mydata2[N][7];
double mydata2_avg[7];
double mydata3[N][1];
double mydata3_avg[1];
double mydata4[N];
double mydata4_avg;

// read or compute N 12-uples of doubles into mydata1[]
// read or compute N 7-uples of doubles into mydata2[]
// read or compute N 1-uples of doubles into mydata3[]
// read or compute N doubles into mydata4[]

avg(N, 12, mydata1, mydata1_avg);
avg(N, 7, mydata2, mydata2_avg);
avg(N, 1, mydata3, mydata3_avg);
avg(N, 1, (double [N][1])mydata4, &mydata4_avg);

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Averaging Arrays, Another Classic
Flavor

• Again averages sets of m numbers
• For arbitrary m
• This idiom arose when compilers were not good at

optimization

void avg(int n, int m, const double (*a)[], double *b) {
int i, j;
const double *p = (const double *)a;

for (j=0; j<m; ++j)
b[j] = 0;

for (i=0; i<n; ++i)
for (j=0; j<m; ++j) {

b[j] += *p; /* array elements ‘walked by’ */
++p; /* in the same sequence */

}

for (j=0; j<m; ++j)
b[j] /= n;

}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Matrix Algebra, the Old Way

• Let’s write a function to compute the trace of a matrix of
doubles

• And make it generic in the matrix size
• And use a traditional way
• Again, you’ll often encounter something like this, particularly

in libraries

double tr(int n, const double (*a)[]) {
int i;
double sum = 0.0;
const double *p = *a; /* works like casting here, why? */

for (i=0; i<n; ++i)
sum += p[i*n + i];

return sum;
}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Matrix Algebra, Another Old Way

• Let’s write a function to compute the trace of a matrix of
doubles

• And make it generic in the matrix size
• And use another traditional way, from times when compilers

didn’t optimize well

double tr(int n, const double (*a)[]) {
int i;
double sum = 0.0;
const double *p = *a;

for (i=0; i<n; ++i) {
sum += *p;
p += n + 1; /* next element on diagonal */

}

return sum;
}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Matrix Algebra, yet Another Classic
Flavor

• Bottom line, we are working on doubles
• Call it like tr(8, (double *)mp)

• Or call it like tr(8, mp[0])

• Widely used in numerical libraries, but write new code using
VLAs

double tr(int n, const double *a) {
int i;
double sum = 0.0;

for (i=0; i<n; ++i) {
sum += *a;
a += n + 1; /* next element on diagonal */

}

return sum;
}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Matrix Algebra, a Bad Way

• A way of getting rid of all complexity
• It’s the “third” use of type void

• Sometimes you’ll find sloppy code like this
• But not a good idea in this case, it’s dangerous

double tr(int n, const void *a) {
int i;
double sum = 0.0;
double *p = a;

for (i=0; i<n; ++i) {
sum += *p;
p += n + 1; /* next element on diagonal */

}

return sum;
}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

void and Pointers

• void *p; declares a generic pointer
• I.e. a pointer pointing to unknown type
• If type is unknown, size is unknown
• So no arithmetic is possible, only assignment and

comparisons
• The value of any pointer can be converted to a generic one
• A generic pointer can be converted to any pointer type

• So, what’s the danger with tr()?
• tr() assumes something pointing to doubles
• With void *, pointers at any type will do
• A pedantic compiler would warn you at any use of tr()
• And you’d get annoyed and switch off warnings

• But generic pointers are essential to other purposes

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

qsort()

• Declaration (from stdlib.h):
void qsort(
void *base,
size_t count,
size_t size,
int (*compare)(const void *el1, const void *el2));

• Sorts an array of count elements of unknown type, starting
at base

• Each element has size size
• What’s compare?

• qsort() doesn’t know elements type
• And has no clue at how to compare them
• compare is a pointer to a function that knows more

• Yes, a function has an address and function name
evaluates to it

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Sorting with qsort()

• Define a comparison function like:
int comparedoubles(const double *a, const double *b) {

if (*a == *b)
return 0;

if (*a > *b)
return 1;

return -1;
}

• Can you see how it matches the compare parameter?
• Then, if g is an array of 10000 doubles, you can sort it in

ascending order like this:
qsort(g, 10000, sizeof(double), comparedoubles);

• Want it sorted in descending order?
• Substitute < to >

• Have an array sorted in ascending order?
• You can use bsearch() to find an element

Scientific and Technical Computing in C

Stefano Tagliaventi Luca Ferraro
CINECA Roma - SCAI Department

Rome, 3-5 February 2016

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Outline

1 Pointer Types

2 Characters and Strings
Characters
Strings
String Manipulation Functions
Parsing the Command Line

3 Input and Output

4 Managing Memory

5 Conclusions

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Characters

• In C, characters have type char

• I.e. an integer type holding the numeric character code
• But it’s implementation defined if char is signed or not
• Encoding may depend on implementation and OS
• In most implementations, characters numbered 0 to 127

match the standard ASCII character set

• Literal character constants are specified like this: ’C’
• ’\n’ is new line
• ’\t’ is tab
• ’\r’ is carriage return
• ’\\’ is backslash \
• ’\’’ is ’
• ’\"’ is "
• and ’\0’ is ASCII NUL, with code 0, quite important

despite of its value

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

#include <ctype.h>

Function Returns
int isalpha(int c) true if alphabetic character
int isdigit(int c) true if a digit character
int isalnum(int c) isalpha(c) || isdigit(c)
int isprint(int c) true if printable character (including ’ ’)
int iscntrl(int c) !isprint(c)
int islower(int c) true if lowercase alphabetic character
int isupper(int c) true if uppercase alphabetic character
int isspace(int c) true if ’ ’, ’\t’, ’\n’, ...

int tolower(int c)
converts uppercase ones to lowercase

others unchanged

int toupper(int c)
converts lowercase ones to uppercase

others unchanged

• Do you remember? char types are converted to int
in all arithmetic expressions

• Do not play with character codes, use these functions, they
make the code portable

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Strings

• Strings are not first-class citizens in C
• Simply arrays of chars
• The string must be terminated by a ’\0’ character
• Commonly referred to as null terminated strings
• This has annoying consequences

• String lengths must be computed by scanning
• No way for bounds checking
• And a source of program weaknesses

• String constants are specified like this:
"A null terminated string"

• A terminating ’\0’ is automatically appended
• You already met them using printf()

• Use a \ at end of lines to write multiline string constants

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

The Biggest Mistake

char decdigits[10];

//...

strcpy(decdigits, "0123456789");

• The string is 10 characters long
• But it has a terminating ’\0’

• So its internal representation is 11 characters long

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Fixing the Biggest Mistake

char decdigits[] = "0123456789";

• An 11 characters array will be automatically allocated
• (Yes, you could do this for any array)
• But this only fixes the problem on initialization
• Not when you build string dynamically or do simple minded

I/O
• Ever heard of ’buffer overflows’?

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Simple Computational Linguistics

// Frequencies of alphabetic characters in a text

#include <stdio.h>
#include <ctype.h>

#define LETTERS 26
#define CHUNK 256
unsigned counts[LETTERS];
char s[CHUNK+1];

int main() {
int i;

while (fgets(s, sizeof(s), stdin) != NULL) {
char *p = s;

while (*p) {
if (isalpha(*p))

++counts[toupper(*p) - ’A’];
++p;

}
}

for(i=0; i<LETTERS; ++i)
printf("%c\t%9u\n", i + ’A’, counts[i]);

return 0;
}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Putting Characters and Strings to
Work...

• We work on up to 256 characters at the time
• But must accommodate for terminating ’\0’

• fgets() is a robust I/O function
• Reads from a file until end of line
• Stores characters, including ’\n’, into s
• But no more than sizeof(s)-1
• Null terminates the string
• And returns NULL on end of input, or failure

• Loop terminates when p points to terminating ’\0’

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

...Putting Characters and Strings to
Work

• char is an integer type, we can do arithmetic on it
• And alphabetic characters are coded in alphabetic order

• Remember: static variables are initialized to zero

• And some more I/O:
• %c: emits a character from its code
• %9u: prints a right-justified number in a field of width 9
• %s is used for strings, as you’ll see shortly

• Let’s try it right now!
• Giving input from keyboard first, then from file...

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

charfreq.c

// Frequencies of alphabetic characters in a text

#include <stdio.h>
#include <ctype.h>

#define LETTERS 26
#define CHUNK 256
unsigned counts[LETTERS];
char s[CHUNK+1];

int main() {
int i;

while (fgets(s, sizeof(s), stdin) != NULL) {
char *p = s;

while (*p) {
if (isalpha(*p))

++counts[toupper(*p) - ’A’];
++p;

}
}

for(i=0; i<LETTERS; ++i)
printf("%c\t%9u\n", i + ’A’, counts[i]);

return 0;
}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

#include <string.h>

Function Does
size_t strlen(const char *s) returns actual string length
char *strncpy(char *d,

copies n characters from s to d, returns dconst char *s,
size_t n)

char *strncat(char *d,
appends n characters from s to d, returns dconst char *s,

size_t n)
int strcmp(const char *s1, lexicographic comparison of s1 and s2

const char *s2)
int strncmp(const char *s1,

lexicographic comparison of s1 and s2, up to n charactersconst char *s2,
size_t n)

char *strchr(const char *s, returns pointer to first occurrence in s
int c) of character c, NULL if not found

char *strrchr(const char *s,) returns pointer to last occurrence in s
int c) of character c, NULL if not found

char *strcspn(const char *s, returns pointer to first occurrence in s
const char *set) of any character in set, NULL if not found

char *strspn(const char *s, returns pointer to first occurrence in s
const char *set) of any character not in set, NULL if not found

char *strstr(const char *s, returns pointer to first occurrence in s
const char *sub) of string sub, NULL if not found

char *strtok(const char *s, allow to separate string s into tokens,
const char *set) read documentation

• Do you remember? char types are converted to int in many cases
• You’ll also find in use strcpy() and strcat(): dangerous! avoid them
• Way too common mistake: forgetting about and writing code doing the same
• Don’t reinvent the wheel, use library functions!

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

More Friends from stdlib.h

Function Returns conversion of
initial portion of s to

strtof(const char *s, char **p)
3 float1

strtod(const char *s, char **p) double1

atof(const char *s) double

strtold(const char *s, char **p)
3 long double1

atoi(const char *s) int

strtol(const char *s, char **p, int base2) long1

atol(const char *s) long

strtoul(const char *s, char **p, int base2) unsigned long1

strtoll(const char *s, char **p, int base2)3 long long1

atoll(const char *s)
3 long long

strtoull(const char *s, char **p, int base2)3 unsigned long long1

1. If p is not null, sets it to point to first character after converted portion of s
2. The base used in string representation ranges from 2 to 36 (!).
3. C99

• More practical than scanf() family in many cases
• strto...() form preferred
• Use sprintf() to convert the other way around
• Where char **p appears, pass the address of a char *

pointer variable...

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Yes, Pointers can be Pointees!

int **p = NULL;
int *q = NULL;
int a = 5;

p: 0
q: 0
a: 5

p = &q;
p: address of q
q: 0
a: 5

*p = &a;
p: address of q
q: address of a
a: 5

**p += 10;
p: address of q
q: address of a
a: 15

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Time for Improvement

• Our program to compute characters frequencies in texts was
appreciated and we got request for improvements

• It’s the price of success with software

• Some folks dislike uppercase output and want it lowercase
• Some folks disregard frequencies lower than some threshold
• Some more folks do not want zero frequencies to be output

at all
• Actually a restricted form of the previous request

• And some folks want the text to be read by a user specified
file

• To accommodate their requests, let’s refactor first

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Computational Linguistics
Refactored

// Frequencies of alphabetic characters in a text
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>

#define LETTERS 26
#define CHUNK 256
unsigned counts[LETTERS];
char s[CHUNK+1];
char *filename = NULL; // will point to filename command line argument, if any
char outcase = ’A’; // change to ’a’ for lowercase output
int minoutcount = 0; // minimum frequency suitable for output

void parsecmdln(int n, char *args[]) { /* add command line processing here */ }

int main(int argc, char *argv[]) {
int i;

parsecmdln(argc, argv);

while (fgets(s, sizeof(s), stdin) != NULL) {
char c, *p = s;

while ((c = *p++))
if (isalpha(c))
++counts[toupper(c) - ’A’];

}

for(i=0; i<LETTERS; ++i)
if (counts[i] >= minoutcount)
printf("%c\t%9u\n", i + outcase, counts[i]);

return 0;
}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

argc and argv

• Up to now, we disregarded main() parameters
• Which is legal
• And writing int main(void) is legal too

• In its full glory, main(int argc, char *argv[])
receives two arguments

• An integer count, argc
• And an array of argc pointers to string, argv
• Names are not mandatory, just a solid tradition

• On most systems
• argv[0] contains the name of program executable
• argv[1] through argv[argc-1] contain the command line

parameters specified at program invocation

• Form int main(int argc, char **argv) is fully
equivalent

• stdlib.h needed later to parse threshold

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

charfreq.c Refactored

// Frequencies of alphabetic characters in a text
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>

#define LETTERS 26
#define CHUNK 256
unsigned counts[LETTERS];
char s[CHUNK+1];
char *filename = NULL; // will point to filename command line argument, if any
char outcase = ’A’; // change to ’a’ for lowercase output
int minoutcount = 0; // minimum frequency suitable for output

void parsecmdln(int n, char *args[]) { /* add command line processing here */ }

int main(int argc, char *argv[]) {
int i;

parsecmdln(argc, argv);

while (fgets(s, sizeof(s), stdin) != NULL) {
char c, *p = s;

while ((c = *p++))
if (isalpha(c))
++counts[toupper(c) - ’A’];

}

for(i=0; i<LETTERS; ++i)
if (counts[i] >= minoutcount)
printf("%c\t%9u\n", i + outcase, counts[i]);

return 0;
}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Our Options

• -l will force lowercase output
• -t n will set a minimum threshold for output
• An optional filename will specify a file to read from
• Let’s add before parsecmdln() a function to call in

response to -h
• And an helper function to manage user mistakes

void printUsage(void) {
printf("charfreq [options] [filename]\n");
printf("filename input text (default: stdin)\n");
printf("Options:\n");
printf("-t n frequency threshold\n");
printf("-l lowercase output\n");
printf("-h this help\n");

}

void illegalopt(const char *o) {
fprintf(stderr, "illegal option: %s\n", o);
printUsage();
exit(EXIT_FAILURE);

}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Command Line Parsing

void parsecmdln(int n, char *args[]) {
int i = 0;

while (++i < n) {
char *p = NULL;
long th;

if (args[i][0] != ’-’) {
filename = args[i]; // must be filename
break; // ignore anything following

}

switch (args[i][1]) {
case ’l’:
outcase = ’a’;
break;

case ’t’:
th = strtol(args[++i], &p, 10); // numeric argument follows
if (p == args[i] || th < 0) {
fprintf(stderr, "invalid or negative threshold\n");
exit(EXIT_FAILURE);

}
minoutcount = th;
break;

case ’h’:
printUsage();
exit(0);
break;

default:
illegalopt(args[i]);

}
}

}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Use of argc and argv

void print_help_and_exit(){
printf("Usage: ./shapp [-l|-t|-h]\n");
exit(EXIT_FAILURE);

}
int main(int argc,char *argv[]){

if(argc < 2 || argv[1][0]!=’-’)
print_help_and_exit();

switch(argv[1][1])
{

case ’t’:
timestamp_ordering();
break;

case ’r’:
reverse_order();
break;

case ’h’:
print_help_and_exit();

default:
print_help_and_exit();

}

}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

More Alternatives with switch ()

• switch (integer-expression) {
case constant-expression:
statements

[case constant-expression:
statements]

[default:
statements]

}
1 Evaluates integer-expression
2 If value equals one constant-expression, execution jumps to

the statement following it
3 Otherwise, if default: exists, execution jumps to statement

following it
4 Otherwise execution leaves switch() and proceeds to the

following code

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

A switch () ’Feature’

• Beware: once 2 or 3 above happened, encounter of another
case or of default does not imply exit from switch!

• A break; statement is needed to this purpose

• This is way too easily forgotten
• Best practices:

• Always add a break; statement at end of each ’case’
• Even if it’s unreachable, you’ll appreciate on code changes
• Unless you really intend to execute two or more ’cases’ at

once

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

More break, and continue

• A break; statement forces execution to bail out from
innermost enclosing statement among:

• switch ()
• while ()
• do...while ()
• for (;;)

• A continue; statement terminates execution of current
iteration of innermost enclosing statement among:

• while ()
• do...while ()
• for (;;)

• Execution continues with next iteration

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

On to Testing

• Let’s try it right now!

• Does it work? Good!

• This approach is portable
• But on UNIXes you’d have a better life using getopt()

• Now we have to implement input from filename file

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Let’s add it to charfreq.c

void parsecmdln(int n, char *args[]) {
int i = 0;

while (++i < n) {
char *p = NULL;
long th;

if (args[i][0] != ’-’) {
filename = args[i]; // must be filename
break; // ignore anything following

}

switch (args[i][1]) {
case ’l’:
outcase = ’a’;
break;

case ’t’:
th = strtol(args[++i], &p, 10); // numeric argument follows
if (p == args[i] || th < 0) {
fprintf(stderr, "invalid or negative threshold\n");
exit(EXIT_FAILURE);

}
minoutcount = th;
break;

case ’h’:
printUsage();
exit(0);
break;

default:
illegalopt(args[i]);

}
}

}

Scientific and Technical Computing in C

Stefano Tagliaventi Luca Ferraro
CINECA Roma - SCAI Department

Rome, 3-5 February 2016

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Outline

1 Pointer Types

2 Characters and Strings

3 Input and Output
Files
Text I/O
Binary I/O

4 Managing Memory

5 Conclusions

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Files

• C thinks of files as streams of data you can read/write from/to
• C has no notion of file content or structure: user knows about

• You read what you know is there
• You write what you want to put there

• Files are managed by internal data structures of FILE type
• Whose details may be implementation defined

• All functions are declared in stdio.h

• Most functions return or accept pointers to FILE structures
• You simply declare variables of FILE * type and use these

functions
• And usually may disregard details

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Three Files for Free

• When main() is called, three files have already been
opened for you

• Accessible by three expressions of FILE * type
• stdin for standard input
• stdout for standard output
• stderr for error messages output

• Usually map to user’s terminal, unless they were redirected
at command launch

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Using More Files is not Free

• If myfile is a FILE * variable, open a file using:
myfile = fopen("mydata.dat", "r");

• Second string is a mode:
• "r" to read existing text file
• "w" to create a new text file or truncate existing one to zero

length
• "a" to create a new text file or append to existing one
• Use "rb", "wb", or "ab" for binary files
• "r+" and "r+b" to both read and write to existing file

• Biggest mistake: assuming fopen() succeeded
• fopen() returns NULL on failure
• Always check and use errno to know more

• fclose(FILE *f) orderly closes an open file, do it when
you are done with it

• A string FILENAME_MAX long is big enough for any
file name

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Simple String I/O

• char *fgets(char *s, int n, FILE *stream)
• Reads in at most one less than n characters from stream and

stores them into the buffer pointed to by s. Reading stops
after an EOF or a newline.

• Returns s on success, NULL on failure
• A robust I/O function. Use it in your code.

• Use int feof(FILE *stream) to check if NULL was
returned because end of file was reached

• char *fputs(const char *s, FILE *stream)
• Writes s string to file
• Returns EOF on error

• char *puts(const char *s)
• Like fputs() on stdout, but adds a ’\n’

• You’ll encounter gets() in codes: offers no control on
maximum input size, don’t use it

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Talking to Humans

• fprintf() converts internal formats of basic data types to
human readable formats

• fprintf(file, "control string", arguments)
• Characters in control string are emitted verbatim
• But conversion specifications beginning with % cause the

conversions and output of arguments
• Arguments (i.e. expressions) must match conversion

specifications in number, types, and positions
• Conversion specification %% emits a % character and

consumes no arguments

• printf() outputs to stdout
• snprintf() and sprintf()

• Write to string instead of file
• snprintf() is preferable as maximum string length can be

specified

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Common Mistakes

• Beware: if you want to remove item c from output in
printf("Parameters: %lf, %lf, %lf\n", a, b, c);

the following is not enough:
printf("Parameters: %lf, %lf, %lf\n", a, b);

you need to update the format string too:
printf("Parameters: %lf, %lf\n", a, b);

• And on adding an item you have to add a proper conversion
specifier

• Ditto for type mismatches: no argument checking is required
• In some cases, dire consequences could follow

• A clever compiler may be able to warn you, if you ask

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

printf(): Integer Types

• In %d and %u, d and u are conversions
• Internal to base 10 text representation

• l, ll, h, and hh, are size modifiers
• Look back at integer types table if you need a refresh

• Variations on a theme
• %10d: at least 10 characters, right justified, space padded
• %.4d: at least 4 digits, right justified
• %010d: at least 10 characters, right justified, leading 0s
• %-10d: at least 10 characters, left justified, space padded
• %+d: sign is always printed (not relevant for u)
• % d: same, but a space if positive (not relevant for u)

• printf("%-5d%+6.4d", 12, 12);
Prints?

12 +0012
(notice: 4 space characters)

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

printf(): Floating Types

• Conversions
• %f: float to base 10 decimal text
• %E: float to base 10 exponential text
• %G: most suitable of the above ones

• l and L are size modifiers
• Look back at floating types table if you need a refresh

• Variations on a theme
• %10f: at least 10 characters, right justified, space padded
• %.4f: 4 digits after decimal point (f and E only)
• %.7G: 7 significant digits
• %010f: at least 10 characters, right justified, leading 0s
• %-10f: at least 10 characters, left justified, space padded
• %+f: sign is always printed
• % f: same, but a space if positive

• printf("%+8.2lf %.4lE", 12.0, 12.0);
Prints?

+12.00 1.2000E+01

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

printf(): Characters and Strings

• %c: emits character with specified code
• No variations

• %s: emits a string
• Variations on a theme

• %10s: at least 10 characters, right justified, space padded
• %.7s: exactly(!) 7 characters from string
• %-10s: at least 10 characters, left justified, space padded

• printf("%-7s%4.3s", "Vigna", "Vigna");
Prints?

Vigna Vig
(notice: 3 space characters)

• And more conversions are defined, but we’ll not cover
them

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Listening to Humans

• fscanf() converts human writable formats of basic data
types to internal ones

• fscanf(file, "control string", arguments)
• Arguments must be pointers!
• Arguments must match conversion specifications in number,

types, and positions
• White-space in control string matches an arbitrary

sequence of zero or more spaces
• All other characters must match verbatim with characters in

input

• scanf() reads from stdin

• sscanf() reads from string instead of file

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

scanf() Conversions

• Conversions discussed for printf() work, the other way
around

• They skip white-space characters before reading and
converting, except for %c

• Number too big for the type? Result is implementation
defined

• Fewer variations on the theme (for most conversions)
• %10d: no more than 10 characters considered (not for %c)
• %*d: looks for text matching an int, but ignores it

• scanf("%4d%*6d%3d", &i1, &i2);
Input: 12 34567890 (notice: 3 space characters)
Reads?

12 in i1, 90 in i2

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Common Mistakes

• Any mismatch in input to a scanf() will stop input and
conversions

• scanf() always returns the number of conversions
performed, do not discard it:
itemsread = scanf("%lf ,%lf", &a, &b);

check the result, and take correcting actions (or fail
gracefully)

• Giving fewer arguments than conversion specifiers, as in:
itemsread = scanf("%lf ,%lf ,%lf", &a, &b);

is a very good recipe for disaster, and one difficult to debug
• So is giving the wrong pointer or a pointer to the wrong type

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

User Input

//...

printf("Enter t max: ");

scanf("%lf", &tmax);

• User mistypes U.0 for 7.0
• Program behaves in unintended ways
• Could check scanf() return value and fail gracefully, but

let’s give user a chance

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Wrong Solution

int itemsread;
//...
do {

printf("Enter t max: ");

itemsread = scanf("%lf", &tmax);

} while (itemsread == 0);

• Again, user mistypes U.0 for 7.0
• Program stops responding, burning CPU cycles
• scanf() is very finicky about input

• As soon as a character doesn’t match the format string,
puts it back in input buffer

• To find it again at each iteration

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Better Solution

int itemsread;
//...
do {

char s[257];

printf("Enter t max: ");
if (fgets(s, sizeof(s), stdin) == NULL)

exit(EXIT_FAILURE);

itemsread = sscanf(s, "%lf", &tmax);

} while (itemsread == 0);

• This form causes wrong input to be consumed and removed
• Use fscanf() for rigidly formatted files
• With imprecise formats (as user input is), use fgets(), then
sscanf()

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Ready for Release 2.0

// includes, defines, variable declarations, and function definitions unchanged

int main(int argc, char *argv[]) {
int i;
FILE *textfile = stdin;

parsecmdln(argc, argv);

if (filename != NULL) {
textfile = fopen(filename, "r");
if (!textfile) {
perror(filename);
exit(EXIT_FAILURE);

}
}

while (fgets(s, sizeof(s), textfile) != NULL) {
char c, *p = s;

while ((c=*p++))
if (isalpha(c))
++counts[toupper(c) - ’A’];

}

if (filename != NULL)
fclose(textfile);

for(i=0; i<LETTERS; ++i)
if (counts[i] >= minoutcount)
printf("%c\t%9u\n", i + outcase, counts[i]);

return 0;
}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

That’s It

• fgets() is passed textfile, initialized to stdin FILE
pointer

• If no filename was provided on command line, filename will
still be NULL

• Business as usual

• Otherwise, filename will point to filename command line
argument string

• Let’s open it
• Let’s fail orderly, if fopen() failed
• Let’s close file as soon as we are done with it

• Let’s try it right now!

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

charfreq.c Release 2.0

// includes, defines, variable declarations, and function definitions unchanged

int main(int argc, char *argv[]) {
int i;
FILE *textfile = stdin;

parsecmdln(argc, argv);

if (filename != NULL) {
textfile = fopen(filename, "r");
if (!textfile) {
perror(filename);
exit(EXIT_FAILURE);

}
}

while (fgets(s, sizeof(s), textfile) != NULL) {
char c, *p = s;

while ((c=*p++))
if (isalpha(c))
++counts[toupper(c) - ’A’];

}

if (filename != NULL)
fclose(textfile);

for(i=0; i<LETTERS; ++i)
if (counts[i] >= minoutcount)
printf("%c\t%9u\n", i + outcase, counts[i]);

return 0;
}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Dealing with Many Data

• Text I/O is human readable
• Text I/O is platform independent
• But text I/O is huge

• Because of issues in base 2 vs. base 10 representation
• To recover exact binary form of a floating type, you need:

• at least 9 decimal digits in text I/O for a float
• at least 19 decimal digits in text I/O for a double

• And text I/O is slow
• Because of size
• And because conversions take time

• Best practice:
• Use text I/O to talk to humans or as a last resort for some

programs
• Use binary I/O otherwise

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Binary Reads and Writes

size_t fread(void *data, size_t elsz,
size_t count, FILE *f);

size_t fwrite(const void *data, size_t elsz,
size_t count, FILE *f);

• Read/write count elements of size elsz from/to file f
to/from address data

• Both return the number of elements actually read/written
• Can be less than requested if error occurred, or (fread()

only) end of file was encountered
• Use feof() or ferror() to determine cause

• Best practice:
• do binary I/O in chunks as large as possible
• performance will sky-rocket

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Walking Around in a File

• Each I/O operation takes place from the position in the file
where the last one ended

• But position can be changed
• Not special to binary files, but mostly used with them
• fseek(f, 4096L, wherefrom) moves forward by 4096

bytes relative to:
• file beginning, if wherefrom is SEEK_SET
• current position, if wherefrom is SEEK_CUR
• file end, if wherefrom is SEEK_END
• and returns zero if successful, non zero otherwise

• ftell(f) returns the current position (long)
• on failure, returns -1L and sets errno

• This is a 64 bits world: files can be huge!
• In case, use fsetpos() and fgetpos()
• They use an fpos_t type large enough

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Dealing with Fortran Binary Files

• You may need to read Fortran binary files
• And Fortran adds two extra 32 or 64 bits integers, one at

beginning and one at end of each record (i.e. of each WRITE
for unformatted files)

• Option 1: skip them with fseek()

• Option 2: read them and forget the values

• Option 3: write the file from Fortran opening it in STREAM
mode

• Designed to match the C file concept
• Introduced in Fortran 2003
• But already available in most implementations

Scientific and Technical Computing in C

Stefano Tagliaventi Luca Ferraro
CINECA Roma - SCAI Department

Rome, 3-5 February 2016

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Outline

1 Pointer Types

2 Characters and Strings

3 Input and Output

4 Managing Memory
Dynamic Memory Allocation
Sketchy Ideas on Data Structures

5 Conclusions

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

A PDE Problem

• Let’s imagine we have to solve a PDE
• On a dense, Cartesian, uniform grid

• Mesh axes are parallel to coordinate ones
• Steps along each direction have the same size
• And we have some discretization schemes in time and space

to solve for variables at each point

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

A Rigid Solution

#define NX 200
#define NY 450
#define NZ 320

double deltax; // Grid steps
double deltay;
double deltaz;
//...
double u[NX][NY][NZ]; // x velocity component
double v[NX][NY][NZ]; // y velocity component
double w[NX][NY][NZ]; // z velocity component
double p[NX][NY][NZ]; // pressure

• We could write something like that at file scope
• But it has annoying consequences

• Recompile each time grid resolution changes
• A slow process, for big programs
• And error prone, as we may forget about

• Couldn’t we size data structures according to user input?

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Looking for Flexibility

int main(int argc, char *argv[]) {
double deltax, deltay, deltaz; // Grid steps
int nx, ny, nz

//...
double u[nx][ny][nz];
double v[nx][ny][nz];
double w[nx][ny][nz];
double p[nx][ny][nz];

• We could think of declaring variable length arrays inside
main() or other functions

• This is unwise
• Automatic arrays are usually allocated on the process stack
• Which is a precious resource
• And limited in most system configurations

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

A Better Approach

#define MAX_NX 400
#define MAX_NY 400
#define MAX_NZ 400

double u[MAX_NX*MAX_NY*MAX_NZ];
double v[MAX_NX*MAX_NY*MAX_NZ];
double w[MAX_NX*MAX_NY*MAX_NZ];
double p[MAX_NX*MAX_NY*MAX_NZ];

void my_pde_solver(int nx, int ny, int nz,
double u[nx][ny][nz],
double v[nx][ny][nz],
double w[nx][ny][nz],
double p[nx][ny][nz]);

• We could use VLA parameters
• But we should cast on calls, to avoid compiler warnings

• How would you cast u[MAX_NX*MAX_NY*MAX_NZ] into
double u[nx][ny][nz]?

• Maximum problem size is program limited: nx*ny*nz
must be less than MAX_NX*MAX_NY*MAX_NZ + 1

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Slightly More Comfortable, the Old
Way

void my_pde_solver(int nx, int ny, int nz,
double u[],
double v[],
double w[],
double p[]) {

// variable declarations and solver code...

u[(i*ny + j)*nz + k] = ...;
v[(i*ny + j)*nz + k] = ...;
w[(i*ny + j)*nz + k] = ...;
p[(i*ny + j)*nz + k] = ...;

// more solver code...

• We could write code as the above, no need for casting on
my_pde_solver() calls

• And you’ll encounter code like this, that was a C89 way
• But so old fashioned!! Don’t do that for new codes
• And remember, maximum problem size is limited

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

More Comfortable, Thanks to C99

void my_pde_solver(int nx, int ny, int nz,
double um[],
double vm[],
double wm[],
double pm[]) {

double (*u)[ny][nz] = (double (*)[ny][nz])um;
double (*v)[ny][nz] = (double (*)[ny][nz])vm;
double (*w)[ny][nz] = (double (*)[ny][nz])wm;
double (*p)[ny][nz] = (double (*)[ny][nz])pm;

// solver code using u, v, w, and p as humans do

• Let’s rewrite my_pde_solver() like this (and update
function declaration as well!)

• Definitely easier to use
• No casting on my_pde_solver() calls
• And writing my_pde_solver() is easier too

• Maximum problem size still program limited, however

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Removing Limitations

• Being program limited is annoying

• It’s much better to accommodate to any user specified
problem size

• Right, as long as there is enough memory
• But if memory is not enough, not our fault
• It’s computer or user’s fault

• And there are many complex kinds of computations
• Those in which memory need cannot be foreseen in advance
• Those in which arrays do not fit
• Those in which very complex data structures are needed

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Enter Dynamic Allocation (from
stdlib.h)

void *malloc(size_t size)
void *calloc(size_t el_count, size_t el_size)

• malloc() allocates a memory area suitable to host
a variable whose size is size

• Allocated memory is uninitialized.
• Use it like this:

a_ion_ptr = (ion *)malloc(sizeof(ion));

• calloc() allocates a memory area suitable to host
an array of count elements, each of size size

• Allocated memory is initialized to zero: can be slow, but useful
• Use it like this:

a_flt_ptr = (float *)calloc(nx*ny*nz, sizeof(float));

• Best practice: always cast return values, gives less
compiler warnings and helps readability

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

The Biggest Mistake

• Assuming malloc() or calloc() succeeded!
• Where all these ‘dynamic allocated memory’ comes from?

• From an internal area, often termed “memory heap”
• When that is exhausted, OS is asked to give the process more

memory
• And if OS is short of memory, or some configuration limit is

exhausted...
• On failure, malloc() and calloc() return null pointers

• Dereferencing it forces program termination (usually a
“segmentation fault”)

• We could say you deserve it
• But all time spent in previous computations would be lost

• Best practice: ALWAYS, ALWAYS, always check
if ((p = malloc(some_size)) == NULL) {

// save your precious data, if any
// and fail gracefully

}

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Resizing

void *realloc(void *ptr, size_t new_size)

• realloc() takes a previously allocated memory area, and
gives you a new area whose size is size

• Original area contents are copied in the new area, up to
min(oldsize,size)

• Use it like this:
new_ptr = (float *)realloc(a_flt_ptr,

nx*ny*2*nz*sizeof(float));

• Particularly handy to shrink or lengthen arrays
• On failure, returns null pointer and leaves old area

unchanged

• Biggest mistakes
• Assuming realloc() succeeded: always check
• Assuming only size changes and address remains

the same: it can happen, but only in particular cases

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Getting Rid of Memory Areas

void free(void *ptr)

• An allocated memory area persists until it is “freed”

• Of course, heap allocated memory is claimed back at
process termination

• But better give back a memory area to the dynamic memory
“pool” for reuse, as soon as you are over with it

• Just imagine you are processing one item at a time...
• Allocating new memory areas at each item without freeing

previously allocated ones...
• Your process size will grow until...
• In jargon, this is a memory leak

• Remember: programmers causing memory leaks have
particularly bad reputation

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

The First Big Mistake with free()

char s[BIG_STRING + 1];
char *p;

//....
if ((p = malloc(BIG_STRING + 1)) == NULL) {

// save your precious data, if any
// and fail gracefully

}
strncpy(p, s, BIG_STRING);

while (++p) {
// process characters

}
free(p); // p has been incremented!
free(s); // MADNESS: s not ‘malloced’!

• free() MUST be passed a pointer returned by malloc()
and friends

• Otherwise behavior is implementation defined
• In most practical cases, program execution is aborted

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

The Second Big Mistake with
free()

int *p, i;
long long *q;

if ((p = malloc(sizeof(int)*n)) == NULL) { /*take action*/ }
// process some data
free(p);

if (!(q = malloc(sizeof(long long)*m))) { /*take action*/ }
for(i=0; i<m; ++i)

p[i] = i - m; // a typo!
//...

• Memory still there, but could have been reused!
• Or could have not been reused as well...
• Could appear to work, very difficult to catch
• Good advice: always zero a pointer after freeing it

• Can be done “automagically” if you
#define free(ptr_var) (free(ptr_var), ptr_var = NULL)

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

The Third Big Mistake with free()

typedef struct mydata {
int n;
double *somedata;
int *moredata;

} mydata;

mydata *p = calloc(1, sizeof(mydata));
if (!p) { /* take action */ }

p->n = datasize;
p->somedata = calloc(datasize, sizeof(double));
p->moredata = calloc(datasize, sizeof(int));
if (!p->somedata || !p->moredata) { /* take action */ }

//input and process data

free(p); // forgot something?

• Freeing p, p->somedata and p->moredata are gone,
so we can’t free their pointees, memory leak!

• Free p->somedata and p->moredata first, then p

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Memory Friends from string.h

Function Does
void *memmove(void *d,

copies a len bytes sized memory area from s to d, returns dconst void *s,
size_t len)

void *memset(void *p, writes len copies of (unsigned char)val
int val, starting from address p,
size_t len) returns p

• You’ll happen to encounter memcpy() too
• Copies almost as memmove() does
• If memory areas happen to overlap, memmove() is safe and

does the right thing
• While memcpy() could be faster, but is unsafe
• Be prudent, and prefer memmove()
• Surprisingly, memmove() is also faster in quite a few

implementations!

• Way too common mistake: forgetting about and writing code
doing the same

• Don’t reinvent the wheel, use library functions!

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Comfortable, and User Friendly

void my_pde_solver(int nx, int ny, int nz,
// physical parameters
) {

//...
double (*u)[ny][nz] = (double (*)[ny][nz])calloc(nx*ny*nz, sizeof(double));
double (*v)[ny][nz] = (double (*)[ny][nz])calloc(nx*ny*nz, sizeof(double));
double (*w)[ny][nz] = (double (*)[ny][nz])calloc(nx*ny*nz, sizeof(double));
double (*p)[ny][nz] = (double (*)[ny][nz])calloc(nx*ny*nz, sizeof(double));

if (u == NULL || v == NULL || w == NULL || p == NULL) {
fprintf(stderr, "Not enough memory!\n");
exit(exit_failure);

}

// solver code using u, v, w, and p in as humans do

• Now available memory is the limit
• And still easy to use

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Nonuniform Grids

• Let’s imagine we have to solve a PDE
• On a dense, Cartesian, non uniform grid

• Mesh axes are parallel to coordinate ones
• Steps along each direction differ in size from point to point

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Keeping Information Together

typedef struct nonuniform_grid {
int nx, ny, nz;

double *deltax; // Grid steps
double *deltay;
double *deltaz;

} nonuniform_grid;
//...
nonuniform_grid my_grid;

//...

mygrid.deltax = calloc(nx - 1, sizeof(double));
mygrid.deltay = calloc(ny - 1, sizeof(double));
mygrid.deltaz = calloc(nz - 1, sizeof(double));
// Check immediately for NULL pointers!

• Related information is best kept together
• Grid size and grid steps are related information

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Structured Grids in General Form

• Let’s imagine we have to solve a PDE
• On a dense structured mesh

• Could be continuously morphed to a Cartesian grid
• Need to know coordinates of each mesh point

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Sketching a Mesh Description

typedef vect3D meshpoint;
typedef vect3D normal;

typedef struct mesh {
int nx, ny, nz;

meshpoint *coords;

normal *xnormals;
normal *ynormals;
normal *znormals;

double *volumes;
} mesh;
//...
nonuniform_grid my_grid;

mygrid.coords = calloc(nx*ny*nz, sizeof(meshpoint));
mygrid.xnormals = calloc(nx*ny*nz, sizeof(normal));
mygrid.ynormals = calloc(nx*ny*nz, sizeof(normal));
mygrid.znormals = calloc(nx*ny*nz, sizeof(normal));
mygrid.volumes = calloc((nx-1)*(ny-1)*(nz-1), sizeof(double));
// Check immediately for NULL pointers!

• No VLAs allowed in structures
• Cast to VLA array pointer in functions using it

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Multiblock Meshes and More

• A multiblock mesh is an assembly of connected structured
meshes

• You could dynamically allocate a mesh array
• Or build a block type including a mesh and connectivity

information

• Adaptive Mesh Refinement
• You want your blocks resolution to adapt to dynamical

behavior of PDE solution
• Which means splitting blocks to substitute part of them with

more resolved meshes

• Eventually, you’ll need more advanced data structures
• Like lists (and recursion comes handy)
• Like binary trees, oct-trees, n-ary trees (and recursion

becomes essential)

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

If You Read Code Like This...

struct block_item;

typedef struct block_item {
block *this_block;

struct block_item *next;
} block_item;

//...
while (p) {

advance_block_in_time(p->this_block);
p = p->next;

}

• It is processing a singly-linked list of mesh blocks
• You need to learn more on abstract data structures
• Don’t be afraid, it’s not that difficult

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

And If You Read Code Like This...

struct block_tree_node;

typedef struct block_tree_node {
block *this_block;

int children_no;
struct block_tree_node **childrens;

} block_tree_node;

//...
void tree_advance_in_time(block_tree_node *p) {

int i;

for(i=0; i<p->children_no; ++i)
tree_advance_in_time(p->childrens[i]);

advance_block_in_time(p->this_block);
}

• It is processing a tree of mesh blocks (AMR, probably)
• You need to learn more on abstract data structures
• Don’t be afraid, it’s not that difficult

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Outline

1 Pointer Types

2 Characters and Strings

3 Input and Output

4 Managing Memory

5 Conclusions

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

What We Left Out (1 of 2)

• More preprocessor magic, like:
• lots of predefined macros to automatically adapt your code to

platforms and compilers
• macros to write function with variable number of arguments

• More types, like:
• extended integer types
• wide and Unicode characters and related facilities
• unions and bit fields, mostly used for OS programming

• More facilities to:
• control the floating point environment
• interact with the process environment
• localize your program

• More facilities for robustness:
• static and dynamic assertions
• bounds checking functions for I/O and string management

(C11 Annex K)
• precise control of process termination

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

What We Left Out (2 of 2)

• More facilities for performance:
• inline functions
• control of data alignment in memory

• C11 threads support
• More functions

• More C practice
• That’s your job

• More about programming
• Code development management tools
• Debugging tools
• Look among Cineca HPC courses

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Looking for More

ANSI WG14
C Standard and Technical Corrigenda
http://www.open-std.org/jtc1/sc22/wg14/www/standards
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

S. Summit
comp.lang.c Frequently Asked Questions
http://www.c-faq.com/

D. Dyer
The Top 10 Ways to get screwed by the "C" programming language
http://www.andromeda.com/people/ddyer/topten.html

S. Harbison, G. Steele
C A Reference Manual
Prentice Hall, 5th ed., 2002

A. Kelley, I. Pohl
C by Dissection: The Essentials of C Programming
Addison Wesley, 4th ed., 2000

A. Koenig
C Traps and Pitfalls
Addison Wesley, 1989

Pointers
Basics
And Arrays
void

Strings
Chars
Strings
Manipulations
Command Line

I/O
Files
Text
Binary

Memory
Allocation
Data Structures

Finale

Rights & Credits

These slides are c©CINECA 2016 and are released under
the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit, written
permission from the copyright owner. For more information
see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Slides and examples were authored by:
• Michela Botti
• Federico Massaioli
• Luca Ferraro
• Stefano Tagliaventi

	Pointer Types
	Pointers Basics
	Pointers and Arrays
	Generic Pointers

	Characters and Strings
	Characters
	Strings
	String Manipulation Functions
	Parsing the Command Line

	Input and Output
	Files
	Text I/O
	Binary I/O

	Managing Memory
	Dynamic Memory Allocation
	Sketchy Ideas on Data Structures

	Conclusions

