Introduction to Scientific Programming using GPGPU and CUDA

Day 2

Sergio Orlandini

s.orlandini@cineca.it

Luca Ferraro

l.ferraro@cineca.it

Rights & Credits

These slides are CINECA 2014 and are released under the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit, written permission from the copyright owner. For more information see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Slides and examples were authored by:

Isabella Baccarelli, Luca Ferraro, Sergio Orlandini

Memory Hierarchy on CUDA

- Global Memory
 - caches

type of global memory accesses

- Shared Memory
 - Matrix-Matrix Product using Shared Memory
- Constant Memory
- Texture Memory
- Registers and Local Memory

Memory Hierarchy

All CUDA threads in a block have access to:

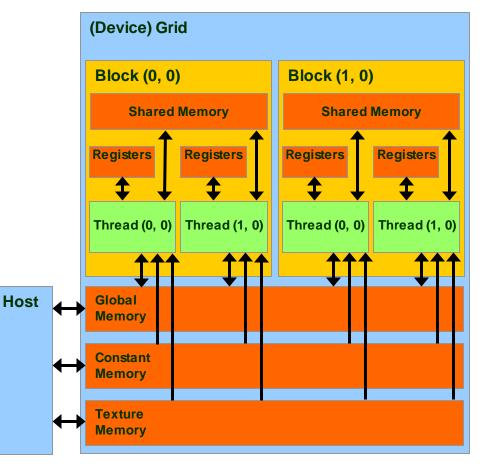
- resources of the SM assigned to its block:
 - registers
 - shared memory

NB: thread belonging to different blocks cannot share these resources

- all memory type available on GPU:
 - Global memory
 - Costant Memory (read only)
 - Texture Memory (read only)

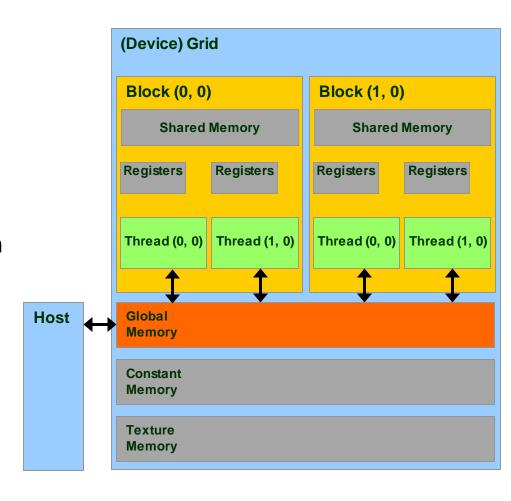
NB: CPU can access and initialize both constant and texture memory

NB: global, constant and texture memory have persistent storage duration



Global Memory

- the Global Memory is the larger memory available on a device
 - it's much like the RAM for a CPU
 - mantains its status among different kernel launch
 - can be access both read/write from all thread of the kernel grid
 - this is the only available memory that can be use in read/write access from the CPU
 - Very high bandwidth
 Throughput 240-760 GB/s
 - Very high latency about 400-800 clock cycles



Declare Variable in Global Memory

```
__device__ type variable_name; // statica

or through dynamic allocation

type *pointer_to_variable; // dinamica
cudaMalloc((void **) &pointer_to_variable, size);
cudaFree(pointer_to_variable);
```

```
type, device :: variable_name

or through dynamic allocation

type, device, allocatable :: variable_name
allocate(variable_name, size)
deallocate(variable_name)
```


Cache Hierarchy for Global Memory Accesses

- Starting with the Fermi architecture, a cache hierarchy has been introduced in order to easy the need for space and time data locality
- 2 Levels of cache:
 - L2 : shared among all SM
 - [Fermi: 768 KB, Kepler 1MB, Pascal 4MB]
 - 25% less the latency of Global Memory

NB: all accesses to the global memory pass through the L2 cache, also for H2D and D2H memory transfers

- L1 : private to each SM
 - □ [16/48 KB] configurable
 - □ L1 + Shared Memory = 64 KB
 - Kepler : configurable also as 32 KB



Cache Hierarchy for Global Memory Accesses

Just one type of **store** operation:

 when data should be updated in global memory, its L1 copy is invalidated and updated the L2 cache value

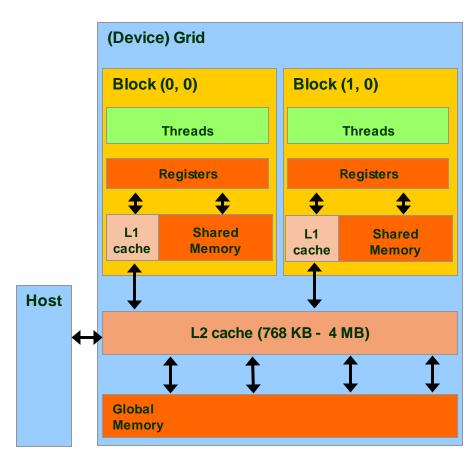
Two different type of *load* operations:

Caching (default mode)

- when data is requested by some thread, data is first searched in L1 cache, then in L2 cache, last in global memory
- cache line lenght is 128-byte

Non-caching (compile time selected)

- the L1 cache is disabled
- when data is requested by some thread, data is first searched in L2 cache, then in global memory
- cache line lenght is 32-bytes
- this mode is activated at compile time using the compiler option:

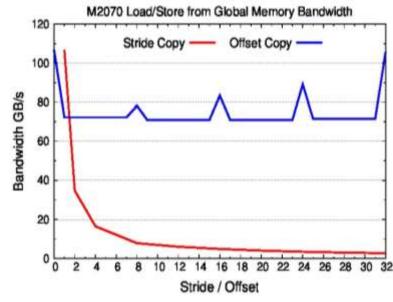


Global Memory Load/Store

```
// strided data copy
__global__ void strideCopy (float *odata, float* idata, int stride) {
   int xid = (blockIdx.x*blockDim.x + threadIdx.x) * stride;
   odata[xid] = idata[xid];
}
```

```
// offset data copy
__global__ void offsetCopy(float *odata, float* idata, int offset) {
   int xid = blockIdx.x * blockDim.x + threadIdx.x + offset;
   odata[xid] = idata[xid];
}
```

Stid	ed based copy	Off	set based copy
Stride	Bandwidth GB/s	Offset	Bandwidth GB/s
1	106.6	0	106.6
2	34.8	1	72.2
8	7.9	8	78.2
16	4.9	16	83.4
32	2.7	32	105.7



Load Operations from Global Memory

- All load/store requests in global memory are issued per warp (as all other instructions)
 - 1. each thread in a warp compute the address to access
 - 2. load/store units select segments where data resides
 - 3. load/store start transfer of needed segments

Warp requires 32 consecutive 4-byte word aligned to segment (total 128 bytes)			
Caching Load	Non-caching Load		
all addresses belong to 1 line cache segment	all addresses belong to 4 line cache segments		
128 bytes are moved over the bus	128 bytes are moved over the bus		
bus utilization: 100%	bus utilization: 100%		

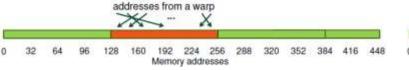
addresses from a warp

Memory addresses

Load Operations from Global Memory

Warp requests 32 permuted 4-byte words alined to segment (total 128 bytes)

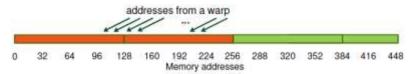
Caching Load	Non-caching Load
addresses belong to 1 line cache segments	addresses belong to 4 line cache segments
128 bytes are moved over the bus	128 bytes are moved over the bus
bus utilization: 100%	bus utilization: 100%

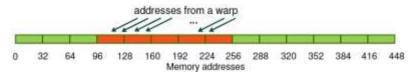




Warp requires 32 consecutive 4-bytes words not alined to segment (total 128 bytes)

Caching Load	Non-caching Load
addresses belong to 2 line cache segments	addresses belong to 5 line cache segments
256 bytes are moved over the bug	160 are moved over the bus
bus utilization: 50%	bus utilization: 80%

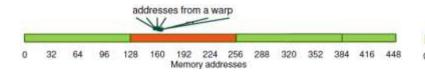




Load Operations from Global Memory

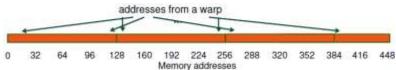
All threads in a warp request the same 4-byte word (total 4 bytes)

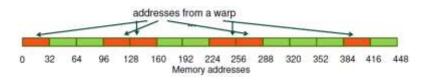
Caching Load	Non-caching Load
address belongs to only one cache line segment	address belongs to only one cache line segment
128 bytes are moved over the bus	32 bytes are moved over the bus
bus utilization: 3.125%	bus utilization: 12.5%



Warp request 32 not contiguous 4-bytes words (total 128 bytes)

Caching Load	Non-caching Load
addresses belong to N different line cache	addresses belong to N different line cache
N*128 bytes are moved over the bus	N*32 bytes are moved over the bus
bus utilization: 128 / (N*128)	bus utilization: 128 / (N*32)





Grant alignment of data in memory

- It is very important to align data in memory so to have aligned accesses (coalesced) during load/store operation in global memory, reducing the number of segments moved across the bus
 - cudaMalloc() grants the alignment of first element in global memory, useful for vectors, arrays and one dimensional problems
 - cudaMallocPitch() must be used to align buffers of 2D kind
 - elements are padded so each row is aligned for coalescing accesses
 - returns an integer (pitch) which can be used as a stride to access row elements

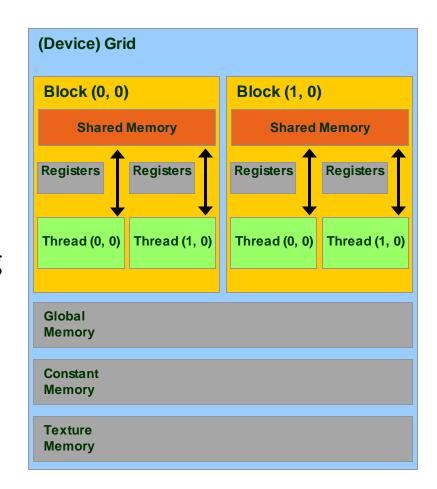
```
// host code
int width = 64, heigth = 64; int pitch; float *devPtr;
cudaMallocPitch(&devPtr, &pitch, width * sizeof(float), height);

// device code
__global__ myKernel(float *devPtr, int pitch, int width, int height)
{
  for (int r = 0; r < height; r++) {
    float *row = devPtr + r * pitch;
    for (int c = 0; c < width; c++)
        float element = row[c];
    }
    ...
}</pre>
```


Shared Memory

- The Shared Memory is a small, but quite fast memory mounted on each SM
 - read/write access for threads of a block residing on the SM
 - a cache memory under the direct control of the programmer
 - does not mantain its status among different kernel calls
- Specifications:
 - Very low latency: 2 clock cycles
 - Throughput: 32 bit every 2 cycles
 - Dimension : **48 KB [default]** (Configurable : 16/48 KB)

Kepler: also 32 KB



Shared Memory Allocation

```
// statically inside the kernel
 global myKernelOnGPU (...) {
   shared type shmem[MEMSZ];
or using dynamic allocation
// dynamically sized
extern shared type *dynshmem;
 global myKernelOnGPU (...) {
 dynshmem[i] = ...;
void myHostFunction() {
 myKernelOnGPU<<<qs, bs, MEMSZ>>>();
```

```
! statically inside the kernel
attribute (global)
  subroutine myKernel(...)
  type, shared:: variable name
end subroutine
oppure
! dynamically sized
type, shared:: dynshmem(*)
attribute(global)
  subroutine myKernel(...)
  dynshmem(i) = ...
end subroutine
```

- variables allocated in shared memory has storage duration of the kernel launch (not persistent!)
- only accessible by threads of the same block

Thread Block Synchronization

Threads in the same block can be synchronized using the

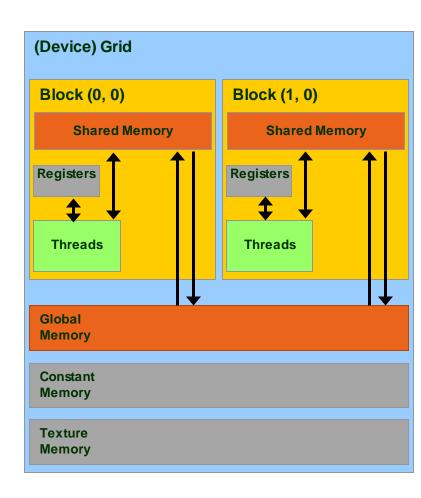
__syncthreads()

which blocks execution until all other threads reach the same call location

- can be used in conditional too, but only if all thread in the block reach the same synchronization call
- "... otherwise the code execution is likely to hang or produce unintended side effects"

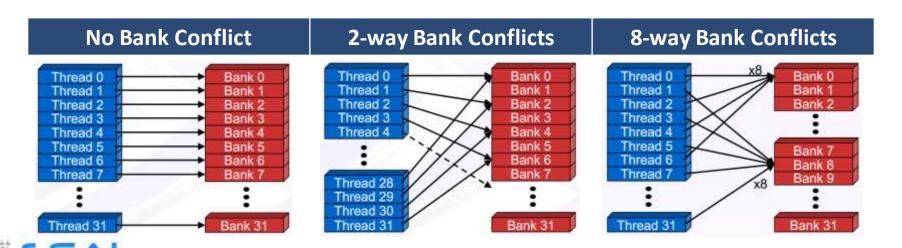
Using Shared Memory for Thread Cooperation

- Threads belonging to the same block can cooperate togheter using the shared memory to share data
 - if a thread is in need of some data which has been already retrived by another thread in the same block, this data can be shared using the shared memory
- typical Shared Memory usage pattern:
 - declare a buffer residing on shared memory (this buffer is per block)
 - load data into shared memory buffer
 - synchronize threads so to make sure all needed data is present in the buffer
 - performe operation on data
 - synchronize threads so all operations have been performed
 - write back results to global memory



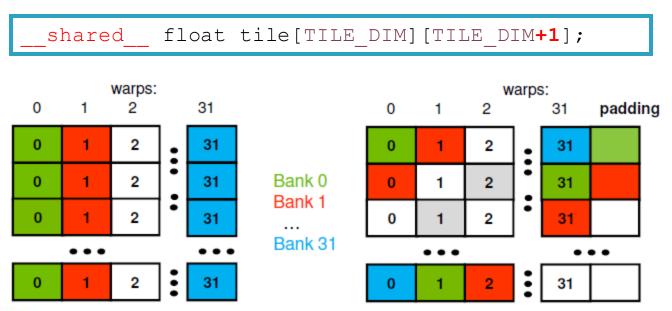
Shared Memory and Bank Accesses

- Shared memory has 32 banks organized such that successive 32-bit words map to successive banks
 - data are distributed every 4-bytes cycling over successive banks
 - Shared memory accesses are per warp
 - Multicast: if N threads of the same warp request the same element, access is executed with only one transaction
 - Broadcast: if ALL threads of the same warp request the same element, accesso is executed with only one transaction
 - Bank Conflict: if two or more threads requests different data belonging to the same bank, each access is served separatelly (serialized)



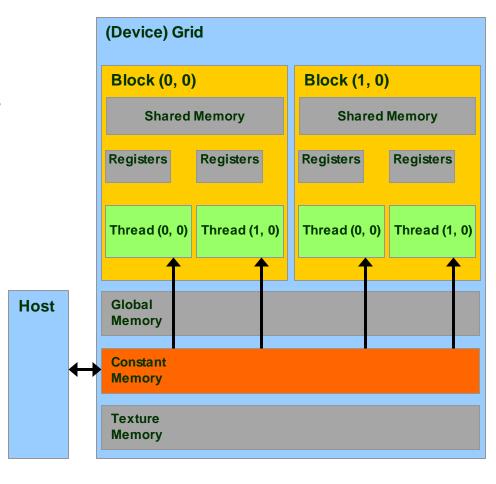
Avoid Bank Conflict

- A naive implementation of CUDA kernels using shared memory would use a tile of size 32x32 floats
 - each element resides on a single bank (4-byte)
 - data are on the same back every 32 floats
 - so read/write by columns will turn into the worst type of bank conflict
- Use a common trick: let's size the tile using 33 elements
 - now all elements belonging to the same column reside on different banks



Constant Memory

- Constant Memory is the ideal place to store constant data in read-only access from all threads
 - constant memory data actually reside in the global memory, but fetched data is moved into a dedicated constant-cache
 - very effective when all thread of a warp request the same memory address
 - it's values are initialized from host code using a special CUDA API
- Specifications:
 - Dimension: 64 KB
 - Throughput: 32 bits per warp every 2 clock cycles



Constant Memory Allocation

```
__constant__ type variable_name; // statica

cudaMemcpyToSymbol(const_mem, &host_src, sizeof(type), cudaMemcpyHostToDevice);

// warning
// cannot be dynamically allocated
```

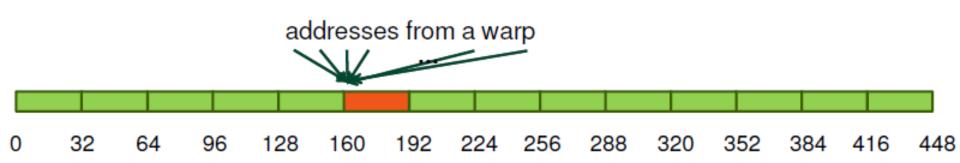
```
type, constant :: variable_name
! warning
! cannot be dynamically allocated
```

- data will reside in the constant memory address space
- has static storage duration (persists until the application ends)
- readable from all threads of a running kernel

Accessing Constant Memory

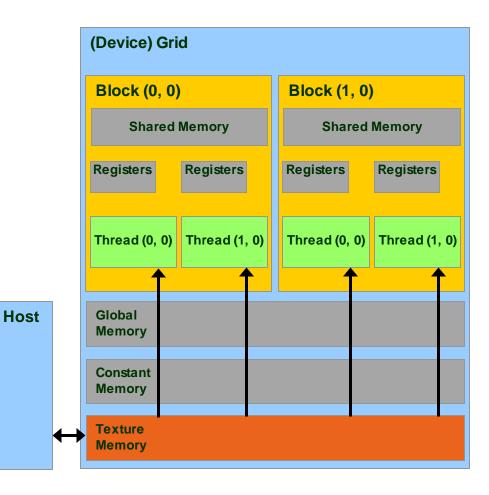
Suppose a kernel is launched using 320 warps per SM and all threads requests the same data

- if data is on global memory:
 - all warp will request the same segment from global memory
 - the first time segment is copied into L2 cache
 - if other data pass through L2, there are good chances it will be lost
 - there are good chances that data should be requested 320 times
- if data is in constant memory:
 - during first warp request, data is copied in constant-cache
 - since there is less traffic in *constant-cache*, there are good chances all other warp will find the data already in cache, so no more traffic on the BUS



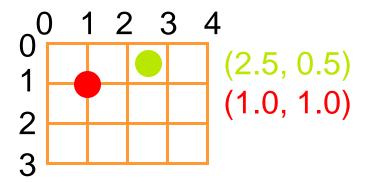
Texture Memory

- Texture Memory is afterall a remain of basic graphic rendering functionality needs
- as for constant memory, data actually reside in the global memory, but fetched data is moved into a dedicated texture-cache
- data is accessed in read-only using special CUDA API function, called texture fetch
- Specifications:
 - address resolution is more efficient since it is performed on dedicated hardware
- specialized hardware for:
 - out-of-bound address resolution
 - floating-point interpolation
 - type conversion or bit operations

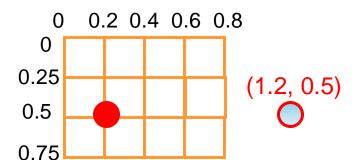


Texture Memory Addressing Features

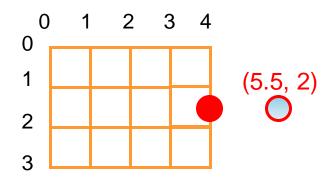
- integer 1D: [0,N-1]
- normalized 1D: [0,1-1/N]
- available interpolation:
 - floor, linear, bilinear
 - weights are 9 bit



Wrap: out-of-border coordinates are replaced in the box using modulus (available only for normalized indexing)



Clamp: out-of-border coordinates are clamped to nearest box bound



Steps for Accessing Texture Memory

Allocate global memory on the device (standard, pitched or as cudaArray)

```
cudaMalloc(&d_a, memsize);
```

Create a "texture reference" object at file scope:

```
texture<datatype, dim> d_a_texRef;
datatype cannot be a double; dim can be 1, 2 or 3
```

Create a "channel descriptor" object to describe the return type of texture memory load:

```
cudaChannelFormatDesc d a desc = cudaCreateChannelDesc<datatype>();
```

Bind the texture reference to memory

```
cudaBindTexture(0, d_a_texRef, d_a, d_a_desc);
```

when finished: unbind the texture reference (there is a maximum number of usable textures):

```
cudaUnbindTexture(d a texRef);
```


- access data from CUDA kernels through "texture reference":
 - tex1Dfetch(d_a_texRef, indirizzo) for linear memory
 - tex1d(), tex2D(), tex3D() for pitched linear texture and cudaArray:

Texture Usage Example

```
global void shiftCopy(int N, int shift, float *odata, float *idata)
 int xid = blockIdx.x * blockDim.x + threadIdx.x;
 odata[xid] = idata[xid+shift];
texture<float, 1> texRef; // CREO OGGETTO TEXTURE
 global void textureShiftCopy(int N, int shift, float *odata)
 int xid = blockIdx.x * blockDim.x + threadIdx.x;
 odata[xid] = tex1Dfetch(texRef, xid+shift);
                                                   // TEXTURE FETCHING
ShiftCopy<<<nBlocks, NUM THREADS>>>(N, shift, d out, d inp);
cudaChannelFormatDesc d a desc = cudaCreateChannelDesc<float>(); // CREO DESC
cudaBindTexture(0, texRef, d a, d a desc); // BIND TEXTURE MEMORY
textureShiftCopy<<<nBlocks, NUM THREADS>>>(N, shift, d out);
```


Texture Memory in Kepler: aka *Read-only Cache*

- The Kepler architecture (cc 3.5) enables global memory read through the texture cache:
 - without using a explicit texture binding
 - without limits on the maximum allowed number of texture

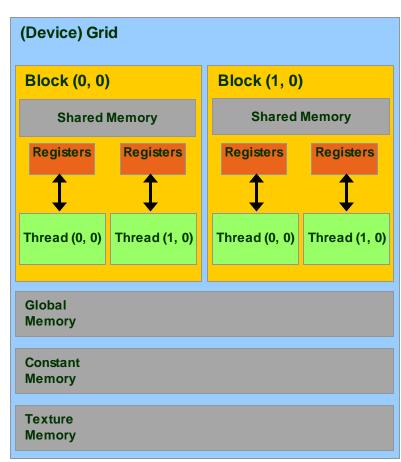
```
__global__ void kernel_copy (float *odata, float *idata) {
   int index = blockIdx.x * blockDim.x + threadIdx.x;
   odata[index] = __ldg(idata[index]);
}
```

```
__global__ void kernel_copy (float *odata, const __restrict__
float *idata) {
  int index = blockIdx.x * blockDim.x + threadIdx.x;
  odata[index] = idata[index];
}
```


Registers

- registers are used to store scalar or small array variables with frequent access by each thread
- Fermi: 63 registers per thread / 32 KB
- Kepler: 255 registers per thread / 64 KB
- WARNING:
 - the less registers a kernel needs, the more blocks can be assigned to a SM
 - the number of register per kernel can be limited during *compile time*:
 - --maxregcount max_registers
 - the number of active block per kernel can be forced using the CUDA special qualifier

```
_launch_bounds__
```



Local Memory

- Local Memory does not correspond to a real physical memory place
- Automatic variables are often place in local memory by the compiler:
 - large structures or arrays that would consume too much register space
- If a kernel uses more registers than available (register spilling), can move variables into local memory
- Local memory is often mapped to global memory
 - using the same Caching hierarchies (L1 for read-only variables)
 - facing the same latency and bandwidth limitation of global memory
- In order to obtain information on how much local, constant, shared memory and registers are required for each kernel, you can provide the following compiler options

```
$ nvcc -arch=sm_20 -ptxas-options=-v my_kernel.cu
...
ptxas info : Used 34 registers, 60+56 bytes lmem, 44+40 bytes
smem, 20 bytes cmem[1], 12 bytes cmem[14]
...
```

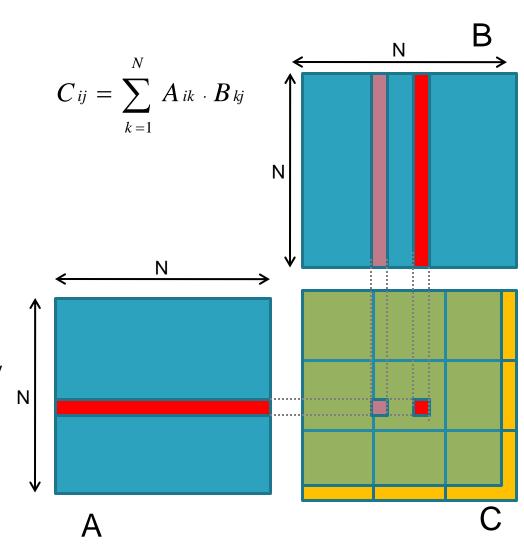

Matrix-Matrix Product

limits of the global memory implementation

- using shared memory
- implementation guidelines

Matrix-matrix Product using Global Memory

- Each thread compute one element of C, using 2N elements (N from A, N from B) and performing 2N floating-point operations (N add, N mul)
- Yet every element of C sharing the same row or colum retrive N times the same elements from A or B
- This implementation results in 2N³ loads !!!
- We can avoid requesting the same elements many times, sharing them through the shared memory
 - each thread can retrive just one data element data in parallel and store it into shared memory
 - when all thread have loaded needed data, they can access all the elements by the threads belonging to the same block, for example sharing a full row or column
- Unfortunatly shared memory size is small
 - 16/48 KB depending on the compute capability



Matrix-matrix using Shared Memory

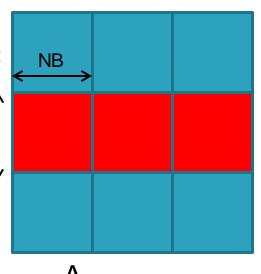
- Let's solve the problem by blocking of (NB,NB) dimension
 - each CUDA thread block compute the elements of a single matrix block of size (NB·NB) of matrix C
 - each resulting matrix block of matrix C is obteined as the product of all sub-matrices of A and B

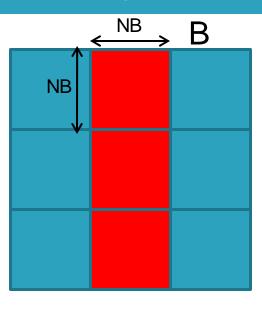
NB

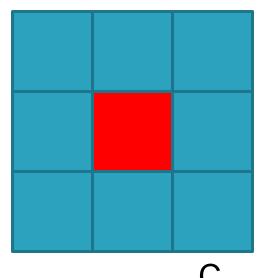
$$C_{ij} = \sum_{S=1}^{N/NB} \sum_{k=1}^{NB} As_{ik} \cdot Bs_{kj}$$

The kernel is divided in two phases:

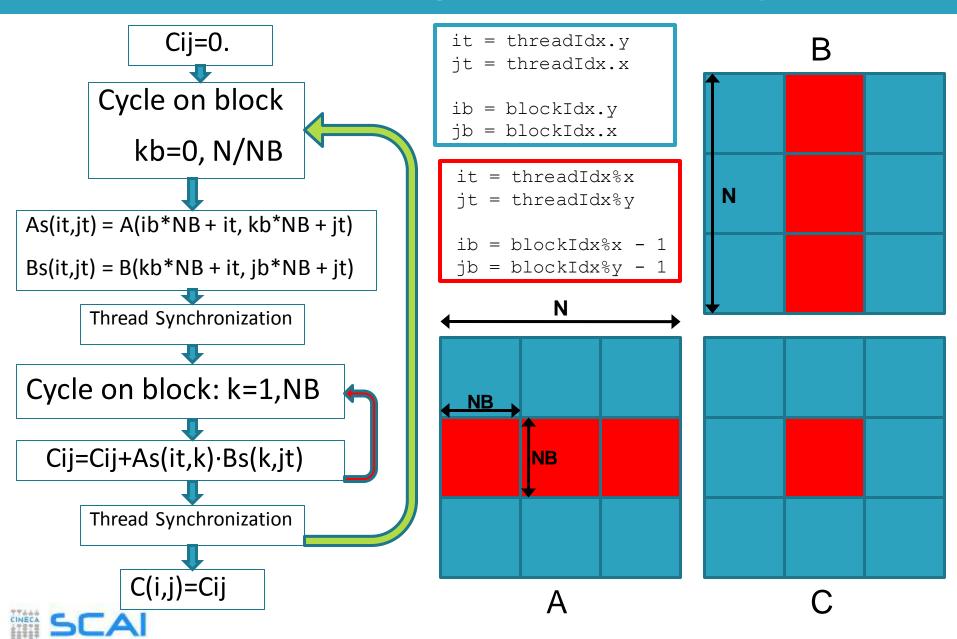
- 1. thread load a block of A and B from global memory to shared memory
- 2. thread compute the element of subblock C reading from shared memory
- Elements of each subblock C are accumulated using local variables in registers, then stored in global memory
- Two thread synchronization are required
 - after the load of subblock of matrix A and B, so to grant all data is available for subblock matrix product
 - after the partial subblock matrix product, so to grant that next load of other subblock will not overwrite elements not yet used in current block evaluation







Matrix-matrix using Shared Memory: Flow



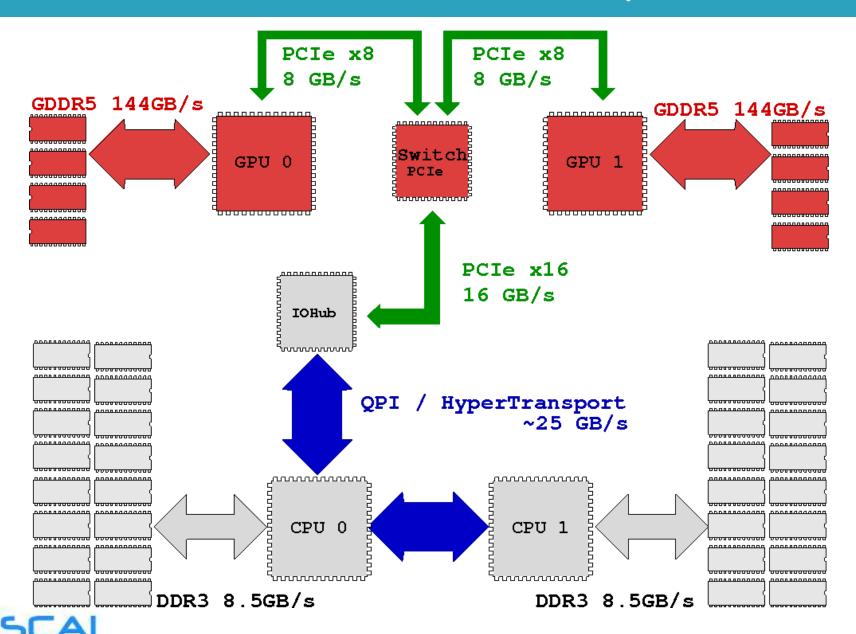
Matrix-matrix using Shared Memory: Kernel

```
// Matrix multiplication kernel called by MatMul_gpu()
  _global__ void MatMul_kernel (float *A, float *B, float *C, int N)
 // Shared memory used to store Asub and Bsub respectively
  __shared__ float Asub[NB][NB];
  __shared__ float Bsub[NB][NB];
 // Block row and column
 int ib = blockIdx.y;
 int jb = blockIdx.x;
 // Thread row and column within Csub
 int it = threadIdx.y;
 int it = threadIdx.x;
 int a offset, b offset, c offset;
 // Each thread computes one element of Csub
 // by accumulating results into Cvalue
 float Cvalue = 0;
 // Loop over all the sub-matrices of A and B that are
 // required to compute Csub
 // Multiply each pair of sub-matrices together
 // and accumulate the results
```

```
for (int kb = 0; kb < (A.width / NB); ++kb) {
  // Get the starting address of Asub and Bsub
  a offset = get offset (ib, kb, N);
  b offset = get offset (kb, jb, N);
  // Load Asub and Bsub from device memory to shared memory
  // Each thread loads one element of each sub-matrix
  Asub[it][jt] = A[a\_offset + it*N + jt];
  Bsub[it][it] = B[b offset + it*N + it];
  // Synchronize to make sure the sub-matrices are loaded
  // before starting the computation
   __syncthreads();
  // Multiply Asub and Bsub together
  for (int k = 0; k < NB; ++k) {
    Cvalue += Asub[it][k] * Bsub[k][it];
  // Synchronize to make sure that the preceding
  // computation is done
  __syncthreads();
// Get the starting address (c_offset) of Csub
c_offset = get_offset (ib, jb, N);
// Each thread block computes one sub-matrix Csub of C
C[c\_offset + it*N + it] = Cvalue;
```


- Synchronous and Asynchronous
- Concurrent Execution
- CPU and GPU interaction
 - concurrent execution on CPU and GPU
 - overlapping transfers and kernels
- Managing multi-device
- GPU/GPU interactions

Connection Scheme of host/device



35

Blocking and Non-blocking Functions

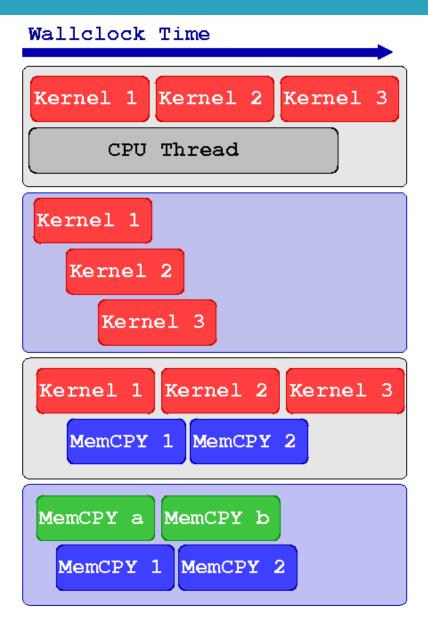
- every CUDA action is submitted to an execution queue on the device
- CUDA runtime function can be divided in two categories:
- blocking (synchronous):
 return control to host thread after execution is completed on device
 - all memory transfer > 64KB
 - all memory allocation on device
 - allocation of page locked memory on host

- Non-blocking (asynchronous): return control to host immediatelly, while its execution proceed on device
 - all kernel launch are asynchronous
 - all memory transfers < 64KB
 - memory initialization on device (cudaMemset)
 - memory copies from device to device
 - explicit asynchronous memory transfers
- CUDA API provides asynchronous versions of their counterpart basic functions
- Asynchronous function allows to set up concurrent execution of many operations on host and device

Concurrent and Asynchronous Execution

Asynchronous functions let you arrange concurrent execution of code:

- 1. computing on *host* while computing on *device*
- 2. execution of more than on kernel on the same *device*
- 3. data transfers between host and device while executing a kernel
- 4. data transfers from *host* to *device*, while transfering data from *device* to *host*



Example of Concurrent Execution

```
cudaSetDevice(0)
kernel <<<threads, Blocks>>> (a, b, c)

// execute some work on CPU while GPU keeps on computing
CPU_Function()

// blocks CPU until GPU has finished its work
cudaDeviceSynchronize()

// CPU can use data resulting from the GPU computation
CPU_uses_the_GPU_kernel_results()
```

Since CUDA kernel invocation is an asynchronous operation, CPU can proceed and evaluate the CPU_Function() while the GPU is involved in kernel execution (concurrent execution).

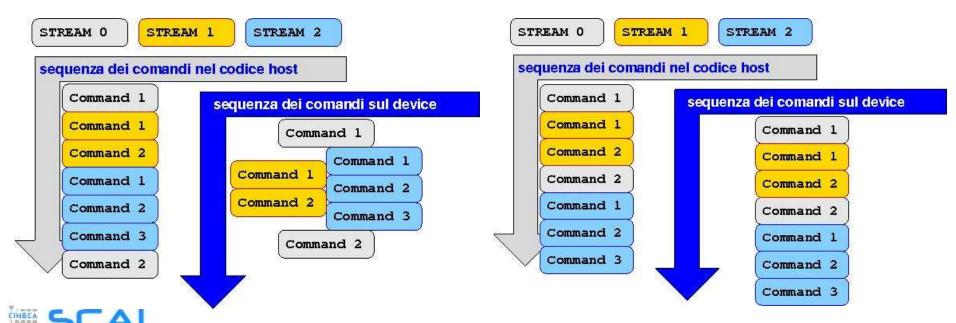
Before using the results from you CUDA kernel, some form of synchronization among *host* and *device* is required.

CUDA Streams

- GPU operations are implementated in CUDA using execution queues, called streams
- any operation pushed in a stream will be executed only after all other operations in the same stream are completed (FIFO queue behaviour)
- operations assigned to different streams can be executed in any order with respect to each other
- The CUDA runtime provides a default stream (stream 0) which will be the default queue of all operation if not explicitly declared otherwise

CUDA Streams

- All operations assigned to the default stream will be executed only after all preceeding operations already assigned to other streams are completed
- Any further operation assigned to other stream different from the default will begin only after all operations on the default stream are completed
- operations assigned to the default stream act as implicit synchronization barriers among other streams



Synchronization

Explicit Synchronizations :

- cudaDeviceSynchronize()
 - Blocks host code until all operations on the device are completed
- cudaStreamSynchronize(stream)
 - Blocks host code until all operations on a stream are completed
- cudaStreamWaitEvent(stream, event)
 - Blocks all operations assigned to a stream until event is reached

Implicit Synchronizations :

- All operations assigned to the default stream
- All page-locked memory allocations
- All memory allocations on device
- All settings operation on device

• ...

Managing CUDA Streams

Stream management:

• Constructor: cudaStreamCreate()

• Synchronization: cudaStreamSynchronize()

• **Destructor:** cudaStreamDestroy()

- Depending on the compute capability, streams allows for different concurrent execution modes:
 - concurrent execution of more than one kernel per GPU
 - concurrent asynchronous data transfers in both H2D and D2H directions
 - combinations of the previous twos

Kernel Concurrent Execution

```
cudaSetDevice(0)
cudaStreamCreate(stream1)
cudaStreamCreate(stream2)
// lancio concorrente dello stesso kernel
Kernel 1<<<blooks, threads, SharedMem, stream1>>>(inp 1, out 1)
Kernel 1<<<blooks, threads, SharedMem, stream2>>>(inp 2, out 2)
// lancio concorrente di kernel diversi
Kernel 1<<<ble>blocks, threads, SharedMem, stream1>>>(inp, out 1)
Kernel 2<<<blooks, threads, SharedMem, stream2>>>(inp, out 2)
cudaStreamDestroy(stream1)
cudaStreamDestroy(stream2)
```


Asynchronous Data Transfers

- host memory must be of page-locked type (a.k.a pinned) in order to performe asynchronous data transfers between host and device
- CUDA runtime provides the following functions to handle page-locked memory:
 - cudaMallocHost() allocate page-locked memory on host
 - cudaFreeHost () free page-locked allocated memory
 - cudaHostRegister() turn host allocated memory into page-locked
 - cudaHostUnregister() turn page-locked memory into ordinary memory
- the cudaMemcpyAsync () function explicitly performes asynchronous data transfers between host and device memory
- data transfer operations should be queued into a stream different from the default one in order to be asynchronous
- Using page-locked memory allows data transfers between host and device memory with higher bandwidth performances

Asynchronous Data Transfers

```
cudaStreamCreate(stream a)
cudaStreamCreate(stream b)
cudaMallocHost(h buffer a, buffer a size)
cudaMallocHost(h buffer b, buffer b size)
cudaMalloc(d buffer a, buffer a size)
cudaMalloc(d buffer b, buffer b size)
// trasferimento asincrono e concorrente H2D e D2H
cudaMemcpyAsync(d buffer a, h buffer a, buffer a size,
 cudaMemcpyHostToDevice, stream a)
cudaMemcpyAsync(h buffer b, d buffer b, buffer b size,
 cudaMemcpyDeviceToHost, stream b)
cudaStreamDestroy(stream a)
cudaStreamDestroy(stream b)
cudaFreeHost(h buffer a)
cudaFreeHost(h buffer b)
```


Asynchronous Data Transfers

```
cudaStream t stream[4];
for (int i=0; i<4; ++i) cudaStreamCreate(&stream[i]);</pre>
float* hPtr; cudaMallocHost((void**)&hPtr, 4 * size);
for (int i=0; i<4; ++i) {
  cudaMemcpyAsync(d inp + i*size, hPtr + i*size,
                  size, cudaMemcpyHostToDevice, stream[i]);
 MyKernel << 100, 512, 0, stream[i]>>> (d out+i*size, d inp+i*size, size);
 cudaMemcpyAsync(hPtr + i*size, d out + i*size,
                  size, cudaMemcpyDeviceToHost, stream[i]);
cudaDeviceSynchronize();
for (int i=0; i<4; ++i) cudaStreamDestroy(&stream[i]);</pre>
```

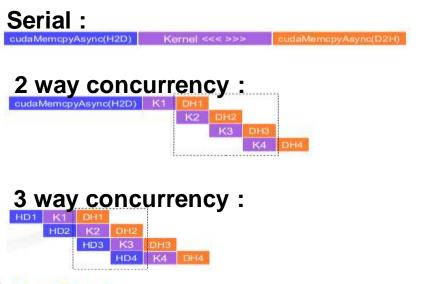
Sequential Version

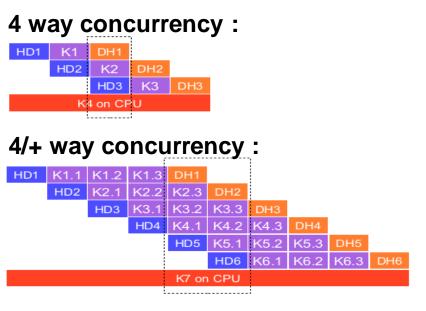
Asynchronous Versions

H2D Engine	a 1	2	3	4		
Kernel Engine	1e	- 1	2	3	4	
D2H Engine	,	-	- 1	2	3	4

Concurrency

- Concurrency: when two or more CUDA operations proceed at the same time
 - Fermi: up to 16 kernel CUDA / Kepler: up to 32 kernel CUDA
 - 2 data transfers host/device (bidirectional)
 - concurrency with host operations
- Requirements for concurrency to take place:
 - operations must be assigned to streams different from the default stream to run concurrently
 - host/device data transfers should be asynchronous and host memory must be page-locked
 - concurrency can take place only if there are enough hw resources left to use
 - kernel concurrency won't take plase if all SM on the device are in use
 - data transfers won't take place if other transfers are still going on





Device Management

CUDA runtime is able to control more than one GPU device available on a computing node (multi-GPU programming):

- CUDA 3.2 and previuos versions
 - a multi-thread or multi-process parallel paradigm was required to access and use more than one device
- CUDA 4.0 and later versions
 - new runtime API let a select and control all available devices from a traditional serial program
 - you can still use a parallel programming approach (multithread or multi-process):
 - each process or thread will be always able to access all devices
 - you can select which devices a thread/process can control

Device Management

```
cudaDeviceCount(number_gpu)
cudaGetDeviceProperties(gpu_property, gpu_ID)

cudaSetDevice(0)
kernel_0 <<<threads, Blocks>>> (a, b, c)

cudaSetDevice(1)
kernel_1 <<<threads, Blocks>>> (d, e, f)

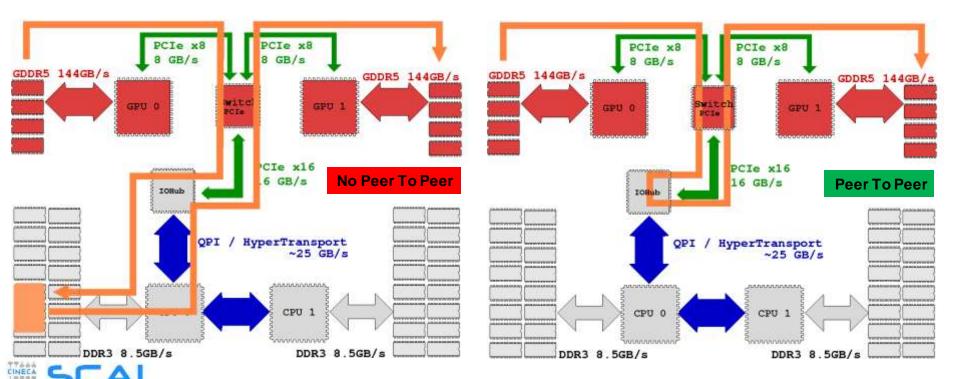
For each device:
   cudaSetDevice(device)
   cudaDeviceSynchronize()
```

CUDA runtime has API to:

- get information on available CUDA enabled devices
- get specifics of each CUDA enable device (cc, memory sizes, clock, etc)
- select a device and queue CUDA operations on that device
- manage synchronization among available devices

Peer to Peer Transfers

- A device can directly transfer or access data to/from another device
- This kind of direct transfer is called Peer to Peer (P2P)
- P2P transfers are more efficient and do not require a host buffer
 - direct access avoid host memory copy



Peer to Peer Transfer Pseudocode

```
qpuA=0, qpuB=1
cudaSetDevice(gpuA)
cudaMalloc(buffer A, buffer size)
cudaSetDevice(gpuB)
cudaMalloc(buffer B, buffer size)
cudaSetDevice(gpuA)
cudaDeviceCanAccessPeer(answer, gpuA, gpuB)
If answer is true:
cudaDeviceEnablePeerAccess(qpuB, 0)
 // la gpuA esegue la copia da gpuA a gpuB
cudaMemcpyPeer(buffer B, gpuB, buffer A, gpuA, buffer size)
 // la gpuA esegue la copia da gpuB a gpuA
cudaMemcpyPeer(buffer A, gpuA, buffer B, gpuB, buffer size)
```


Peer to Peer Direct Access Pseudocode

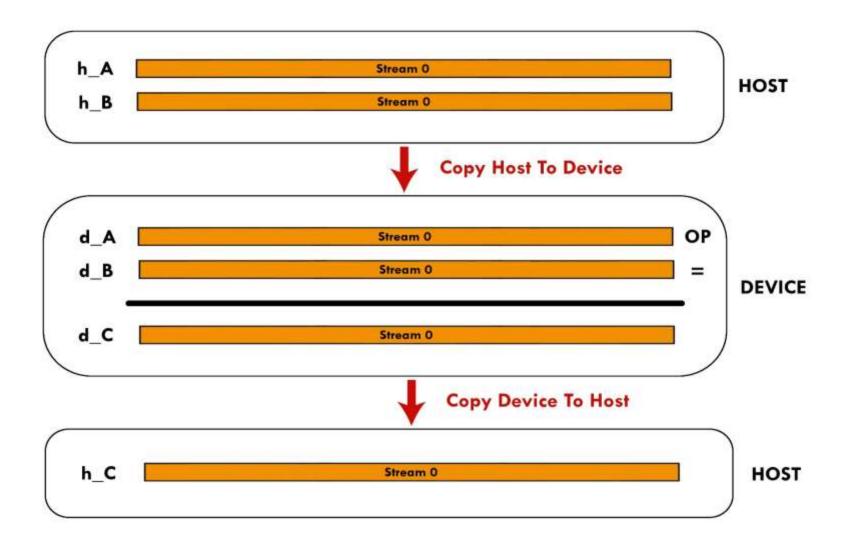
```
qpuA=0, qpuB=1
cudaSetDevice(gpuA)
cudaMalloc(buffer A, buffer size)
cudaSetDevice (gpuB)
cudaMalloc (buffer B, buffer size)
cudaSetDevice(gpuA)
cudaDeviceCanAccessPeer(answer, qpuA, qpuB)
If answer is true:
cudaDeviceEnablePeerAccess(gpuB, 0)
 // la gpuA esegue il kernel che accede sia alla sua memoria
 // che direttamente alla memoria di gpuB
kernel<<<threads, blocks>>>(buffer A, buffer B)
```


Hands-on Streams: naive version

Write a C or F90 program which performs the following operations:

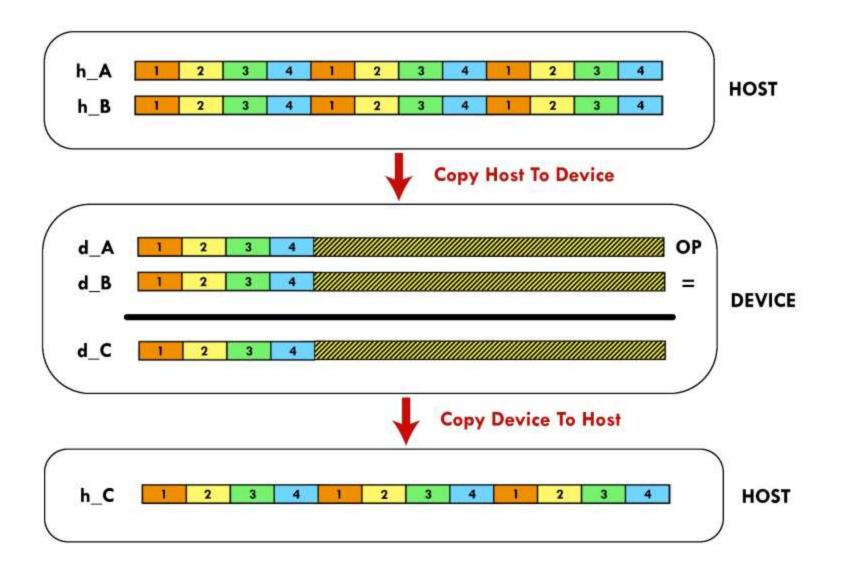
- Allocate h_A, h_B, h_C single precision arrays of nSize elements on host
- Initializare h_A and h_B arrays using the initArrayData() function in C or the RANDOM NUMBER() subroutine in F90
- Allocate d A, d B, d C single precision arrays on the device
- Transfer data from h_A and h_B arrays on the d_A and d_B arrays
- Launch the arrayFunc() kernel which combine data from d_A and d_B eand write results onto array d_C
- Copy back d_C array from *device* in h_C array on *host*
- Measure the total elapsed time to perform both kernel and memory transfers using cudaEvents
- Execute the funcArrayCPU() function which replicates the same CUDA kernel on host for result comparison
- Measure the elapsed time of the funcArrayCPU() function
- Compute the Speed Up of GPU implementation as CPU time / GPU time

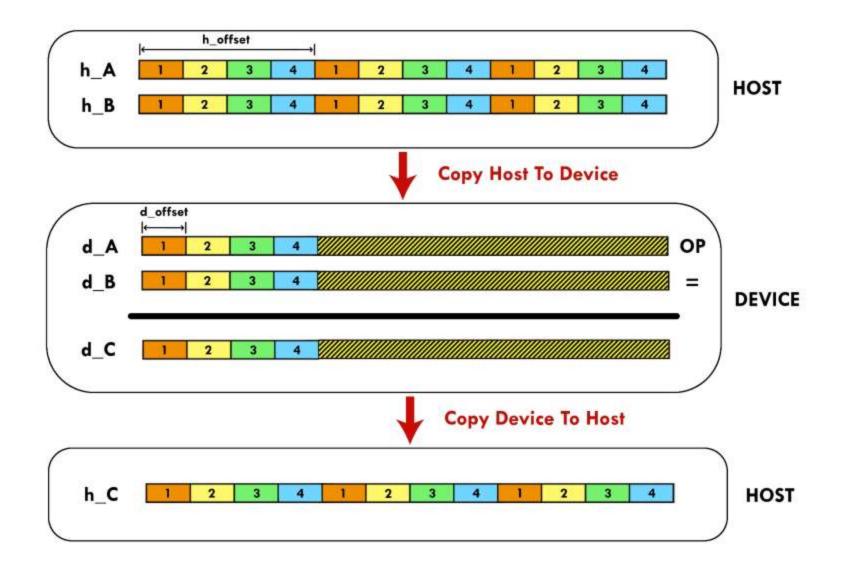
Hands-on Streams: naive version



Write a C or F90 program which performs the following operations:

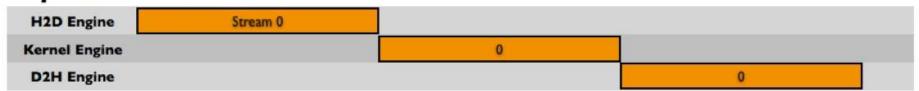
- Allocate h A, h B, h C single precision arrays of nSize elements on host
- Initializare h_A and h_B arrays using the initArrayData() function in C or the RANDOM NUMBER() subroutine in F90
- Split the elaboration of h_A, h_B arrays into chunks of chunk_size size elements
- Create streams number of cudaStream
- Allocated_A, d_B, d_C of chunk_size * streams_number size on the device
- Assign to each cudaStream the elaboration of each chunk. Each stream will:
 - copy a chunk of data from h_A and h_B on d_A and d_B buffers
 - Launch the kernel arrayFunc
 - Copy back to host the results from d_C into h_C
- Measure execution time and compare the speedup with respect naïve implementation
 - Try to change the number of active streams, the chunk size, etc...





Execution Time Lines

Sequential Version



Asynchronous Versions

CUDA Runtime functions to implement the code (C for CUDA):

- cudaError t cudaStreamCreate(cudaStream t *stream)
- cudaError t cudaStreamDestroy(cudaStream t stream)
- cudaError t cudaDeviceSynchronize(void)
- cudaErrot_t cudaMemcpyAsync(void* dst, void* src, size_t nbyte, enum cudaMemcpyKind kind,cudaStream_t stream)

CUDA Runtime functions to implement the code (CUDA FORTRAN):

- integer function cudaStreamCreate(stream)
 - integer :: stream
- integer function cudaStreamDestroy(stream)
 - integer :: stream
- integer function cudaDeviceSynchronize()
- integer function cudaMemcpyAsync(dst, src, nelements, kind, stream)

Hands-on Streams: cudaStreams and Multi-GPU

Write a C or F90 program which performs the following operations:

- Allocate h_A, h_B, h_C single precision arrays of nSize elements on host
- Initializare h_A and h_B arrays using the initArrayData() function in C or the RANDOM NUMBER() subroutine in F90
- Split the elaboration of h A, h B arrays into chunks of chunk size size elements
- Assign to each available GPU device a balanced number of chunks to process
- Create streams number of cudaStream
- Allocated_A, d_B, d_C of chunk_size * streams_number size on the device
- Assign to each cudaStream the elaboration of each chunk. Each stream will:
 - copy a chunk of data from h_A and h_B on d_A and d_B buffers
 - Launch the kernel arrayFunc
 - Copy back to host the results from d_C into h_C
- Measure execution time and compare the speedup with respect single GPU implementation

