
0

 Introduction to
Scientific Programming
for GPGPU with CUDA

Rights & Credits

1

These slides are CINECA 2014 and are released under
the Attribution-NonCommercial-NoDerivs (CC BY-NC-
ND) Creative Commons license, version 3.0.

Uses not allowed by the above license need explicit,
written permission from the copyright owner. For
more information see:

http://creativecommons.org/licenses/by-nc-nd/3.0/

Slides and examples were authored by:

Isabella Baccarelli, Luca Ferraro, Sergio Orlandini

http://creativecommons.org/licenses/by-nc-nd/3.0/

A General-Purpose Parallel Computing Architecture

2

Compute Unified Device Architecture (NVIDIA 2007)

 a general purpose parallel computing platform and programming model
that easy GPU programming, which provides:

• a new hierarchical multi-threaded programming paradigm
• a new architecture instruction set called PTX (Parallel Thread eXecution)

• a small set of extensions to higher level programming language to express
thread parallelism into the new PTX instruction set

• a developer toolkit to compile, debug, profile programs and run them easily
in a heterogeneous systems

CUDA Parallel Computing Architecture

GPU Computing Applications

CUDA C OpenCL
CUDA

Fortran
DirectCompute

NVIDIA GPU + Driver

A simple CUDA port

3

int main(int argc, char *argv[]) {

int i;

const int N = 1000;

double u[N], v[N], z[N];

initVector (u, N, 1.0);

initVector (v, N, 2.0);

initVector (z, N, 0.0);

printVector (u, N);

printVector (v, N);

// z = u + v

for (i=0; i<N; i++)

z[i] = u[i] + v[i];

printVector (z, N);

return 0;

}

__global__

void gpuVectAdd(const double *u,

const double *v, double *z)

{ // use GPU thread id as index

i = threadIdx.x;

z[i] = u[i] + v[i];

}

int main(int argc, char *argv[]) {

...

// z = u + v

{

// run on GPU using

// 1 block of N threads in 1D

gpuVectAdd <<<1,N>>> (u, v, z);

}

...

}

CUDA Kernels

4

 A CUDA kernel function is defined using the __global__ declaration

 when a CUDA kernel is call, it will be exectued N times in parallel by
N different CUDA threads on the device

 the number of CUDA threads that execute that kernel is specified
using a new syntax, called execution configuration

cudaKernelFunction <<<...>>> (function arguments)

 each thread has a unique thread ID

• the thread ID is accessible within the CUDA kernel scope
through the built-in threadIdx variable

• the built-in variables threadIdx are a 3-component vector

 use .x, .y, .z to access its components

CUDA Threads, Blocks, Grid

5

 threads are organized into block of threads

• blocks can be 1D, 2D, 3D sized in threads

 blocks are organized into a grid of blocks

• each block of thread will be executed independently
 no assumtion is made on which block is executed first

 each block has a unique block ID

• the block ID is accessible within the CUDA kernel through the
built-in blockIdx variable

 The built-in variable blockIdx is a 3-component vector

• use .x, .y, .z to access its components

Grid

Block
(0,1)

Block
(1,1)

Block
(2,1)

Block
(0,0)

Block
(1,0)

Block
(2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(4,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

Thread
(0,3)

Thread
(1,3)

Thread
(2,3)

Thread
(3,3)

Thread
(4,3)

threadIdx:

thread coordinates inside a block

blockIdx:

block coordinates inside the grid

blockDim:

block dimensions in thread units

gridDim:

grid dimensions in block units

Simple 1D CUDA vector add

6

__global__

void gpuVectAdd(int N, const double *u, const double *v, double *z)

{

// use GPU thread id as index

index = blockIdx.x * blockDim.x + threadIdx.x;

// check out of border access

if (index < N) {

z[index] = u[index] + v[index];

}

}

int main(int argc, char *argv[]) {

...

// use 1D block threads

dim3 blockSize = 512;

// use 1D grid blocks

dim3 gridSize = (N + blockSize-1) / blockSize.x;

gpuVectAdd <<< gridSize, blockSize >>> (N, u, v, z);

...

}

Simple 2D CUDA matrix add

7

 As an example of a 2D data processing mapping onto CUDA
grid of threads, the following code adds two matrices A and
B of size NxN and stores the result into matrix C

__global__ void matrixAdd(int N, const float *A, const float *B, float *C) {

int i = blockIdx * blockDim.x + threadIdx.x;

int j = blockIdx * blockDim.y + threadIdx.y;

// matrix elements are organized in row major order in memory

int index = i * N + j;

C[index] = A[index] + B[index];

}

int main(int argc, char *argv[]) {

...

dim3 threadsPerBlock(16, 16);

dim3 numBlocks(N/threadsPerBlock.x, N/threadsPerBlock.y);

matrixAdd <<< numBlocks, theadsPerBlock >>> (N, A, B, C);

...

}

Composing 2D CUDA Thread Indexing

i = blockIdx.x * blockDim.x + threadIdx.x;

j = blockIdx.y * blockDim.y + threadIdx.y;

index = j * (gridDim.x * blockDim.x) + i;

threadIdx:

thread coordinates inside a block

blockIdx:

block coordinates inside the grid

blockDim:

block dimensions in thread units

gridDim:

grid dimensions in block units

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(0,3) (1,3) (2,3)

gridDim.x * blockDim.x

(0,0) (1,0) (2,0) (3,0) (4,0)

(0,1) (1,1) (2,1) (3,1) (4,1)

(0,2) (1,2) (2,2) (3,2) (4,2)

(0,3) (1,3) (2,3) (3,3) (4,3)
*(index)

i

j

Data movement

9

 data must be moved from HOST to DEVICE memory in order
to be processed by a CUDA kernel

 when data is processed, and no more needed on the GPU,
it is transferred back to HOST

HOST RAM

CUDA

KERNEL

. . .

GPU RAM

Memory allocation on GPU device

 CUDA API provides functions to manage data
allocation on the device global memory:

 cudaMalloc(void** bufferPtr, size_t n)

• It allocates a buffer into the device global memory

• The first parameter is the address of a generic pointer
variable that must point to the allocated buffer

 it should be cast to (void**)!

• The second parameter is the size in bytes of the buffer
to be allocated

 cudaFree(void* bufferPtr)

• It frees the storage space of the object

Memory Initialization on GPU device

 cudaMemset(void* devPtr, int value, size_t count)

Fills the first count bytes of the memory area
pointed to by devPtr with the constant byte of the
int value converted to unsigned char.

• it’s like the standard library C memset() function

• devPtr - Pointer to device memory

• value - Value to set for each byte of specified memory

• count - Size in bytes to set

Memory copy between CPU and GPU

12

 cudaMemcpy(void *dst, void *src, size_t size, direction)

• dst: destination buffer pointer

• src: source buffer pointer

• size: number of bytes to copy

• direction: macro name which defines the direction of data copy
 from CPU to GPU: cudaMemcpyHostToDevice (H2D)

 from GPU to CPU: cudaMemcpyDeviceToHost (D2H)

 on the same GPU: cudaMemcpyDeviceToDevice

• the copy begins only after all previous kernel have finished

• the copy is blocking: it prevents CPU control to proceed further
in the program until last byte has been transfered

• returns only after copy is complete

CUDA 4.x - Unified Virtual Addressing

 CUDA 4.0 introduces a unique virtual address space for memory
(Unified Virtual Address) shared between GPU and HOST:

• the actual memory type a data resides is automatically understood at runtime
• greatly simplify programming model
• allow simple addressing and transfer of data among GPU devices

Pre-UVA UVA

una definizione per ogni permitazione
di sorgente/destinazione

una sola definizione direzionale

cudaMemcpyHostToHost

cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice

cudaMemcpyDefault

13

CUDA 6.x - Unified Memory

 CUDA 6.0 introduces a mechanism to fully control which memory segment
should be accessed by a kernel and how long data should persist in

 Unified Memory creates a pool of managed memory that is shared
between the CPU and GPU

 Managed memory is accessible to both the CPU and GPU using a single
pointer

 the system automatically migrates data allocated in Unified Memory
between host and device

• no need to explicitly declare device memory regions
• no need to explicitly copy back and forth data between CPU and GPU devices
• greatly simplifies programming and speeds up CUDA ports

 yet, it can result in degraded performances with respect direct and explicit
control of data movements

14

void sortfile(FILE *fp, int N) {

char *data;

cudaMallocManaged(&data, N);

fread(data, 1, N, compare);

qsort<<< ... >>> (data, N, 1, compare);

cudaDeviceSynchronize();

use_data(data);

cudaFree(data);

}

Sample code using CUDA Unified Memory

15

void sortfile (FILE *fp, int N) {

char *data;

data = (char *) malloc (N);

fread(data, 1, N, fp);

qsort(data, N, 1, compare);

use_data(data);

free(data)

}

CPU

code

GPU code

Three steps for a CUDA port

16

1. identify data-parallel computational intensive parts
1. isolate them into functions (CUDA kernels candidates)
2. identify involved data to be moved between CPU and GPU

2. translate identified CUDA kernel candidates into real CUDA
kernels
1. choose the appropriate thread index map to access data
2. change code so that each thead acts on its own data

3. modify code in order to manage memory and kernel calls
1. allocate memory on the device
2. transfer needed data from host to device memory
3. insert calls to CUDA kernel with execution configuration syntax
4. transfer resulting data from device to host memory

Vector Sum

17

int main(int argc, char *argv[]) {

int i;

const int N = 1000;

double u[N], v[N], z[N];

initVector (u, N, 1.0);

initVector (v, N, 2.0);

initVector (z, N, 0.0);

printVector (u, N);

printVector (v, N);

// z = u + v

for (i=0; i<N; i++)

z[i] = u[i] + v[i];

printVector (z, N);

return 0;

}

program vectoradd

integer :: i

integer, parameter :: N=1000

real(kind(0.0d0)), dimension(N):: u, v, z

call initVector (u, N, 1.0)

call initVector (v, N, 2.0)

call initVector (z, N, 0.0)

call printVector (u, N)

call printVector (v, N)

! z = u + v

do i = 1,N

z(i) = u(i) + v(i)

end do

call printVector (z, N)

end program

1. identify data-parallel computational intensive parts

 each thread executes the same kernel, but acts on different data:
• turn the loop into a CUDA kernel function
• map each CUDA thread onto a unique index to access data
• let each thread retrieve, compute and store its own data using the unique address
• prevent out of border access to data if data is not a multiple of thread block size

Vector Sum

18

const int N = 1000;

double u[N], v[N], z[N];

// z = u + v

for (i=0; i<N; i++)

z[i] = u[i] + v[i];

__global__ void gpuVectAdd (int N, const double *u, const double *v, double *z)

{

// index is a unique identifier for each GPU thread

int index = blockIdx * blockDim.x + threadIdx.x ;

if (index < N)

z[index] = u[index] + v[index];

}

2. translate identified parallel parts into CUDA kernels

Vector Sum

__global__ void gpuVectAdd (int N, const double *u, const double *v, double *z)

{

// index is a unique identifier of each GPU thread

int index = blockIdx.x * blockDim.x + threadIdx.x ;

if (index < N)

z[index] = u[index] + v[index];

}

(0) (1) (2)

^(index)

(3)(0) (1) (2) (3) (4)

__global__
qualifier which declare a CUDA kernel

CUDA kernels are special functions:
• can be called from host only
• must be called using the execution configuration syntax
• the return type must be void
• they are asynchronous: control is returned immediatelly to the

host code
• an explicit synchronization should be used to check if a CUDA

kernel has completed

2. translate identified parallel parts into CUDA kernels

Vector Sum

20

module vector_algebra_cuda

use cudafor

contains

attributes(global) subroutine gpuVectAdd (N, u, v, z)

implicit none

integer, intent(in), value :: N

real, intent(in) :: u(N), v(N)

real, intent(inout) :: z(N)

integer :: i

i = (blockIdx%x - 1) * blockDim%x + threadIdx%x

if (i .gt. N) return

z(i) = u(i) + v(i)

end subroutine

end module vector_algebra_cuda

2. translate identified parallel parts into CUDA kernels

Vector Sum

21

attributes(global) subroutine gpuVectAdd (N, u, v, z)

...

end subroutine

program vectorAdd

use cudafor

implicit none

interface

attributes(global) subroutine gpuVectAdd (N, u, v, z)

integer, intent(in), value :: N

real, intent(in) :: u(N), v(N)

real, intent(inout) :: z(N)

integer :: i

end subroutine

end interface

...

end program vectorAdd

if kernel are not defined inside

modules, you must provide an

interface for each kernel

2. translate identified parallel parts into CUDA kernels

Vector Sum

22

double *u_dev, *v_dev, *z_dev;

cudaMalloc((void **)&u_dev, N * sizeof(double));

cudaMalloc((void **)&v_dev, N * sizeof(double));

cudaMalloc((void **)&z_dev, N * sizeof(double));

real(kind(0.0d0)), device, allocatable, dimension(:,:) :: u_dev, v_dev, z_dev

allocate(u_dev(N), v_dev(N), z_dev(N))

 API CUDA C: cudaMalloc(void **p, size_t size)

• allocate size bytes of GPU global memory

• return an address of the device memory space

 CUDA Fortran programmers can allocate arrays on GPU global memory declaring them with
the DEVICE attribute

 DEVICE arrays can be allocated with a standard ALLOCATE

3. manage memory transfers and kernel calls

Vector Sum

23

double *u_dev;

cudaMalloc(, N*sizeof(double));

 &u_dev
• u_dev it’s a variable defined on the host memory
• u_dev contains an address of the device memory
• C pass arguments to function by copy

 we need to pass the address of u_dev to let its value be modified after
the function call

 this has nothing to do with CUDA, it’s a C common idiom
 if you don’t understand this, probably you are not ready for this course

 (void **) is a cast to force cudaMalloc to handle pointer to
memory of any kind

 again, if you don’t understand this

(void **) &u_dev

3. manage memory transfers and kernel calls

Vector Sum

24

cudaMemcpy(u_dev, u, sizeof(u), cudaMemcpyHostToDevice);

cudaMemcpy(v_dev, v, sizeof(v), cudaMemcpyHostToDevice);

u_dev = u ; v_dev = v

 API CUDA C:
cudaMemcpy(void *dst, void *src, size_t size, direction)

• copy size bytes starting from dst pointer to src pointer memory

 CUDA Fortran programmers can transfer data from a HOST array to a
DEVICE array, and vice versa, simply using the assignment operator

3. manage memory transfers and kernel calls

Vector Sum

25
25

Insert calls to CUDA kernels using the execution configuration syntax:

kernelCUDA<<<numBlocks,numThreads>>>(...)

specifing the thread/block hierarchy you want to apply:

• numBlocks: specify grid size in terms of thread blocks along each
dimension

• numThreads: specify the block size in terms of threads along each
dimension

dim3 numThreads(32);

dim3 numBlocks((N + numThreads – 1) / numThreads.x);

gpuVectAdd<<<numBlocks, numThreads>>>(N, u_dev, v_dev, z_dev);

type(dim3) :: numBlocks, numThreads

numThreads = dim3(32, 1, 1)

numBlocks = dim3((N + numThreads%x - 1) / numThreads%x, 1, 1)

call gpuVectAdd<<<numBlocks,numThreads>>>(N, u_dev, v_dev, z_dev)

3. manage memory transfers and kernel calls

Vector Sum: the complete CUDA code

26

double *u_dev, *v_dev, *z_dev;

cudaMalloc((void **)&u_dev, N * sizeof(double));

cudaMalloc((void **)&v_dev, N * sizeof(double));

cudaMalloc((void **)&z_dev, N * sizeof(double));

cudaMemcpy(u_dev, u, sizeof(u), cudaMemcpyHostToDevice);

cudaMemcpy(v_dev, v, sizeof(v), cudaMemcpyHostToDevice);

dim3 numThreads(256); // 128-512 are good choices

dim3 numBlocks((N + numThreads.x - 1) / numThreads.x);

gpuVectAdd<<<numBlocks, numThreads>>>(N, u_dev, v_dev, z_dev);

cudaMemcpy(z, z_dev, N * sizeof(double), cudaMemcpyDeviceToHost);

real(kind(0.0d0)), device, allocatable, dimension(:,:) :: u_dev, v_dev, z_dev

type(dim3) :: numBlocks, numThreads

allocate(u_dev(N), v_dev(N), z_dev(N))

u_dev = u; v_dev = v

numThreads = dim3(256, 1, 1) ! 128-512 are good choices

numBlocks = dim3((N + numThreads%x – 1) / numThreads%x, 1, 1)

call gpuVectAdd<<<numBlocks,numThreads>>>(N, u_dev, v_dev, z_dev)

z = z_dev

