
Debugging and Optimization of Scientific
Applications

G. Amati P. Lanucara
V. Ruggiero

CINECA Rome - SCAI Department

Rome, 19-21 April 2016

AGENDA

19th April 2015

9.00-9.30 Registration
9.30-10.30 Architectures
10.30-13.00 Cache and Memory System + Exercises
14.00-15.00 Pipelines + Exercises
15.00-17.00 Profilers + Exercises

20th april 2016

9.30-13.00 Compilers+Exercises
14.00-15.30 Scientific Libraries + Exercises
15.00-17.00 Floating-point + Exercises

21st april 2016

9.30-11.00 Makefile + Exercises
11.00-13.00 Debugging+Exercises
14.00-17.00 Debugging+Exercises

Outline

Introduction

Architectures

Cache and memory system

Pipeline

Profilers

What is the best performance which can be achieved?

Matrix multiplication (time in seconds)
Precision single double
Incorrect Loop 7500 7300
Without optimization 206 246
With optimization (-fast) 84 181
Optimized code 23 44
Using ACML Library (serial) 6.7 13.2
Using ACML Library (2 threads) 3.3 6.7
Using ACML Library (4 threads) 1.7 3.5
Using ACML Library (8 threads) 0.9 1.8
Using Pgi accelerator 3 5
Using CUBLAS 1.6 3.2

Let’s start!

I Write the main loop of the code and verify the obtained
performances.

I Use the Fortran and/or the C code.
I What performances have been obtained?
I There are differences between Fortran and C codes?
I How change the perfomances using different compilers?
I And using different compilers’ options?
I Do you have a different performances changing the order of the

loops?
I Can I rewrite the loop in a more efficient mode?

Matrix multiplication

I Fortran and C code
I Columns rows product Ci,j = Ai,kBk ,j
I Time:

I Fortran: date_and_time (> 0.001”)
I C: clock (>0.05”)

I Square matrices of size n
I Required memory (double precision) ≈ (3 ∗ n ∗ n) ∗ 8
I Number of total operations ≈ 2 ∗ n ∗ n ∗ n

I We must access n elements of the two original matrices for each
element of the destination matrix.

I n products and n sums for each element of the destination matrix.
I Total Flops = 2 ∗ n3/Time

I Always verify the results :-)

Measure of performances

I Estimate the number of computational operations at execution
NFlop

I 1 FLOP= 1 Floating point OPeration (addition or multiplication).
I Division, square root, trigonometric functions require much

more work and hence take more time.
I Estimate execution time Tes

I The number of floating operation per second is the most widely
unit used to estimate the computer performances:
Perf = NFlop

Tes
I The minimum count is 1 Floating-pointing Operation per second

(FLOPS)
I We usually use the multiples:

I 1 MFLOPS= 106 FLOPS
I 1 GFLOPS= 109 FLOPS
I 1 TFLOPS= 1012 FLOPS

Exercises

https://hpc-forge.cineca.it/files/CoursesDev/public/2016/
Debugging_and_Optimization_of_Scientific_Applications/Rome/Intro_exercises.tar

tar xvf Intro_exercises.tar

I Directory tree
I src/eser_?/fortran
I src/eser_?/c

Matrix multiplication

I Go to src/eser_1
I Write the main loop (columns rows product) to Fortran(mm.f90)

or/and C(mm.c) code.
I Run the matrix multiplication code
I N=1024

Language time Mflops
Fortran

C

Makefile

I To compile
I make

I To clean
I make clean

I To change the compiler options
I make "FC=ifort"
I make "CC=icc"
I make "OPT=fast"

I To compile using single precision arithmetic
I make "FC=ifort -DSINGLEPRECISION"

I To compile using double precision arithmetic
I make "FC=ifort"

Hands-on: cluster GALILEO

I Access to login node of GALILEO cluster
ssh -X <user_name>@login.galileo.cineca.it

I Login nodes are reserved solely for the purpose of managing
your files and submitting jobs to the batch system

I CPU time and memory usage are severely limited on the login
nodes

Model: IBM NeXtScale
Architecture: Linux Infiniband Cluster
Processors Type: 2 8-cores Intel Haswell 2.40 GHz per node
Cores: 16 cores/node, 8256 cores in total
Accelerators: 2 Intel Phi 7120p per node on 384 nodes (768 in total);

2 NVIDIA K80 per node on 40 nodes (80 in total)
RAM: 128 GB/node, 8 GB/core
OS: RedHat CentOS release 7.0

Hands-on: GALILEO and batch system

I The batch system allows users to submit jobs requesting the
resources (nodes, processors, memory,etc ..) that they need.

I The jobs are queued and then run as resources become
available

I To access to compute node run the command

qsub -I -l select=1:ncpus=1:mem=2Gb,walltime=2:00:00 -A
train_cdoB2016 -q R1186936 -W group_list=train_cdoB2016

Hands-on: GALILEO and modules

I A basic default environment is already set up by the system
login configuration files, but it does not include the application
environment.

I The applications need to be initialized for the current shell
session by means of the module command

I To show the available modules on the machine: module av
I To show the modules currently loaded on the shell session:
module li

I To load a module, e.g: module load gnu/4.9.2
I To unload a module, e.g: module unload gnu/4.9.2
I To unload all the loaded modules, e.g: module purge

cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 37
model name : Intel(R) Core(TM) i3 CPU M 330 @ 2.13GHz
stepping : 2
cpu MHz : 933.000
cache size : 3072 KB
physical id : 0
siblings : 4
core id : 0
cpu cores : 2
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 11
wp : yes
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8
bogomips : 4256.27
clflush size : 64
cache_alignment : 64
address sizes : 36 bits physical, 48 bits virtual
...

lscpu

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Thread(s) per core: 2
Core(s) per socket: 2
CPU socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 37
Stepping: 2
CPU MHz: 933.000
BogoMIPS: 4255.78
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 3072K
NUMA node0 CPU(s): 0-3

Matrix multiplication

What do you think about the obtained results?

Software development

Solution Method

I A problem can typically be solved in many different ways
I we have to choose a correct and efficient solution method

I A solution may include many different stages of computation
using different algorithms

I Example : first solve a linear equation system, then do a matrix
multiplication and after that a FFT

I Each stage in the solution may operate on the same data
I the data representation should be well suited for all the stages

of the computation
I different stages in the solution may have conflicting

requirements on how data is represented

Algorithms

I A specific problem can typically be solved using
a number of different algorithms

I The algorithm has to
I be correct
I give the required numerical accuracy
I be efficient, both with respect to execution time and use of

memory
I The choice of the numerical algorithm significantly affects the

performances.
I efficient algorithm→ good performances
I inefficient algorithm→ bad performances

I Good performances are related to the choice of the algorithm.
I Golden rule

I Before writing code choose an efficient algorithm:
otherwise, the code must be rewritten!!!!

Programming
I We program in high level languages

I C,C++,Fortran,Java Python
I To achieve best performances, languages which are compiled

to executable machine code are preferred (C,C++,Fortran,..)
I the differences in efficiency between these depend mainly on

how well developed the compiler is, not so much on the
languages themselves

I Interpreted languages, and languages based on byte code are
in general less efficient (Python, Java, JavaScript, PHP, ...)

I the program code is not directly executed by the processor, but
goes instead through a second step of interpretation

I High-level code is translated into machine code by a compiler
I the compiler transforms the program into an equivalent but

more efficient program
I the compiler must ensure that the optimized program

implements exactly the same computation as the original
program

Compiler optimization
I The compiler analyzes the code and tries to apply

a number of optimization techniques to improve the
performance

I it tries to recognize code which can be replaced with equivalent,
but more efficient code

I Modern compilers are very good at low-level optimization
I register allocation, instruction reordering, dead code removal,

common subexpression elimination, function inlining , loop
unrolling, vectorization, ...

I To enable the compiler to analyze and optimize the code the
programmer should:

I avoid using programming language constructs which are known
to be inefficient

I avoid programming constructs that are difficult for the compiler
to optimize (optimization blockers)

I avoid unnecessarily complicated constructs or tricky code,
which makes the compiler analysis difficult

I write simple and well-structured code, which is easy for the
compiler to analyze and optimize

Execution

I Modern processors are very complex systems
I superscalar, superpipelined architecture
I out of order instruction execution
I multi-level cache with pre-fetching and write-combining
I branch prediction and speculative instruction execution
I vector operations

I It is very difficult to understand exactly how instruction are
executed by the processor

I Difficult to understand how different alternative program
solutions will affect performance

I programmers often have a weak understanding of what
happens when a program is executed

What to optimize

I Find out where the program spends most of its time
I it is unnecessary to optimize code that is seldom executed

I The 90/10 rule
I a program spends 90% of its time in 10% of the code
I look for optimizations in this 10% of the code

I Use tools to find out where a program spends its time
I profilers
I hardware counters

Outline

Introduction

Architectures

Cache and memory system

Pipeline

Profilers

Von Neuman achitecture

I Central processing unit
(CPU)

I Arithmetic Logic Unit
(perfoms all arithmetic
computations)

I Control Unit
I Registers (fast

memory)
I Interconnession (Bus)
I Random Access

Memory (RAM)
I Adress to access the

memory locations
I Data contents

(istrunctions, data)

Von Neumann Architecture

I Data are transferred from memory to CPU (fetch or read
instrunction)

I Data are transferred from CPU to memory (written to memory
o stored)

I Von Neumann Architectures carry out instrunctions one after
another, in a single linear sequence, and they spend a lot of
time moving data to and from memory. This slows the
computer

I The difficulty of overcoming the disparity between processor
speeds and data access speeds is called Von Neumann
bottleneck.

I The modern CPU are able to perform the instructions at least
one hundred times faster than the time required to recover data
from the RAM (fetch instruction).

The evolution of computing systems

The solution for the von Neumann bottleneck are:
I Caching

Very fast memories that are physically located on the chip of
the processor.
There are multi levels of cache (first, second and third).

I Virtual memory
The RAM works as a cache to store large amounts of data.

I Instruction level parallelism
A family of processor and compiler design techniques that
speed up execution by causing individual machine operations
to execute in parallel (pipelining ,multiple issue).

Flynn’s classification

I A classification of computer architectures based on instructions
and data streams.

I SISD:single instruction, single data. Traditional Von Neumann
architecture, scalar uniprocessor system.

I SIMD:single instruction, multiple data. Vector architectures,
Vector processors, GPU.

I MISD:multiple instruction, single data. Does not exist.
I MIMD:multiple instruction, multiple data. Different

processors/cores may be executing different instructions on
different pieces of data or run multiple independent programs at
the same time.

I The modern architectures are a mixed of these classes.

SISD

I Computers with only one executive unit and one memory. At
one time, one instruction operates on one data.

I Good performances can be achieved increasing the bus data
and the levels of memory or by pipelining and multiple issues.

SIMD

I The same instruction is executed synchronously on different
sets of data.

I Model for synchronous computation.
I Vector processors.

I Many ALUs
I vector registers
I vector Load/Store Units
I vector instructions
I interleaved memory
I OpenMP, MPI

I Graphical Processing Unit
I GPU fully programmable
I many ALUs
I many Load/Store units
I many SFUs
I many thousands of parallel threads
I CUDA

MIMD

I Multiple autonomous processors simultaneously executing
different instructions on different data

I Model for asynchronous computation
I Cluster

I a large number of compute nodes (hundreds, thousands)
I Many nodes with many multicore processors.
I Shared memory on a node
I Distributed memory between nodes
I Multi-level memory hierarchies
I OpenMP, MPI, MPI+OpenMP

MIMD:Fermi Blue Gene/Q

IBM-BlueGene /Q
Architecture: 10 BGQ Frame with 2 MidPlanes each
Front-end Nodes OS: Red-Hat EL 6.2
Compute Node Kernel: lightweight Linux-like kernel
Processor Type: IBM PowerA2, 16 cores, 1.6 GHz
Computing Nodes: 10.240
Computing Cores: 163.840
RAM: 16GB / node
Internal Network: Network interface
with 11 links ->5D Torus
Disk Space: more than 2PB of scratch space
Peak Performance: 2.1 PFlop/s

Cluster CPU GPU

I Hybrid solution CPU multi-core + GPU many-core:
I Nodes with multicore processors and dedicated graphis cards

for GPU computing.
I High theoretical peak performance on single node
I Additional memory provided from the GPU.
I OpenMP, MPI, CUDA and hybrid solution MPI+OpenMP,

MPI+CUDA, OpenMP+CUDA, OpenMP+MPI+CUDA

CPU vs GPU

I The CPU is a general purpose processor that is able to
execute all the algorithms.

I 1 thread per computational node
I The GPU is a processor dedicated to intense data-parallel

computations
I Many light parallel threads.

Multicore vs Manycore
I The increasing number of transistors on a chip can be used

to place more than one processor core on a chip
I The new era for the architecture of the microprocessors:

I Increasing the computing power by increasing the number of
units more than their power.

I The computing power and bandwidth of the GPU have
overtaken that of CPU by a factor 10.

INTEL MIC

I Coprocessore Intel Xeon Phi
I Based on Intel Many Integrated Core (MIC) architecture
I 60 core/1,053 GHz/240 thread
I 8 GB memory and 320 GB/s bandwidth.
I 1 TFLOPS peak double precision.
I SIMD instructions to 512 bit
I MPI, OpenMP

Bandwidth

I It is the rate at which data can be read from or stored into the
memory by a processor.

I It is expressed in units of bytes/second (Mb/s, Gb/s, etc..)
I A = B * C

I Read B data from the memory
I Read C data from the memory
I Calculate B * C product
I Save the result in memory (A variable)

I 1 floating-point operation→ 3 memory accesses

Stream

I It is a simple, synthetic benchmark designed to measure
sustainable memory bandwidth (in MB/s) and a corresponding
computation rate for four simple vector kernels

I Copy a→ c (copy)
I Copy a*b→ c (scale)
I Sum a+b→ c (add)
I Sum a+b*c→ d (triad)

I http://www.cs.virginia.edu/stream/ref.html

Shared and distibuted memory

I The MIMD architectures and hybrid CPU GPU architectures
can be divided in two classes.

I Shared memory systems where where every single core access
the full memory

I Distributed memory systems where different CPU units have
their own memory systems and are able to communicate with
each other by exchanging explicit messages

I Modern multicore systems have shared memory on node and
distributed memory between nodes.

Shared memory

The shared memory architectures with multicore processors
has two kinds of access to the main memory.

I Uniform Memory Access all the processors in the UMA model
share the physical memory uniformly

I Non Uniform Memory Access a processor can access its own
local memory faster than non-local memory (memory local to
another processor or memory shared between processors)

UMA NUMA

UMA NUMA

I Main disadvantages:
I UMA machines: Thread synchronization and accessing shared

resources can cause the code to execute serially, and possibly
produce bottlenecks. For example, when multiple processors
use the same bus to access the memory, the bus can become
satured.

I NUMA machines: the increased cost of accessing remote
memory over local memory can affect performances.

I Solutions:
I Software can maximize performance by increasing usage of

local memory
I binding to keep processes , or threads on a particular processor.
I memory affinity
I on AIX architecture, set MEMORY_AFFINITY environment

variable.
I where is supported use numactl command.

NETWORKS

I All high performance computer systems are clusters of nodes
with shared memory on node and distributed memory between
nodes

I A cluster must have multiple network connections between
nodes, forming cluster interconnect.

I The more commonly used network communications protocols:
I Gigabit Ethernet : the more common, cheap, low performances.
I Infiniband : very common, high perfomances, very expansive.

I Others:
I Myrinet
I Quadrics
I Cray

Outline

Introduction

Architectures

Cache and memory system

Pipeline

Profilers

Memory system

I CPU power computing doubles every 18 months
I Access rate to RAM doubles every 120 months
I Reducing the cost of the operations is useless if the loading

data is slow

I Solution: intermediate fast memory layers
I A Hierarchical Memory System
I The hierarchy is transparent to the application but the

performances are strongly enhanced

Memory system

I CPU power computing doubles every 18 months
I Access rate to RAM doubles every 120 months
I Reducing the cost of the operations is useless if the loading

data is slow

I Solution: intermediate fast memory layers
I A Hierarchical Memory System
I The hierarchy is transparent to the application but the

performances are strongly enhanced

The Memory Hierarchy

Clock cycle

I The speed of a computer processor, or CPU, is determined by
the clock cycle, which is the amount of time between two
pulses of an oscillator.

I Generally speaking, the higher number of pulses per second,
the faster the computer processor will be able to process
information

I The clock speed is measured in Hz, typically either megahertz
(MHz) or gigahertz (GHz). For example, a 4GHz processor
performs 4,000,000,000 clock cycles per second.

I Computer processors can execute one or more instructions per
clock cycle, depending on the type of processor.

I Early computer processors and slower CPUs can only execute
one instruction per clock cycle, but modern processors can
execute multiple instructions per clock cycle.

The Memory Hierarchy

I From small, fast and expensive to large, slow and cheap
I Access times increase as we go down in the memory hierarchy
I Typical access times (Intel Nehalem)

I register immediately (0 clock cycles)
I L1 3 clock cycles
I L2 13 clock cycles
I L3 30 clock cycles
I memory 100 clock cycles
I disk 100000 - 1000000 clock cycles

The Cache

Why this hierarchy?

It is not necessary that all data are available at the same time.
What is the solution?

I The cache is divided in one (or more) levels of intermediate
memory, rather fast but small sized (kB ÷ MB)

I Basic principle: we always work with a subset of data.
I data needed→ fast memory access
I data not needed (for now)→ slower memory levels

I Limitations
I Random access without reusing
I Never large enough . . .
I faster, hotter and . . . expensive→ intermediate levels hierarchy.

The Cache

Why this hierarchy?
It is not necessary that all data are available at the same time.
What is the solution?

I The cache is divided in one (or more) levels of intermediate
memory, rather fast but small sized (kB ÷ MB)

I Basic principle: we always work with a subset of data.
I data needed→ fast memory access
I data not needed (for now)→ slower memory levels

I Limitations
I Random access without reusing
I Never large enough . . .
I faster, hotter and . . . expensive→ intermediate levels hierarchy.

The Cache

Why this hierarchy?
It is not necessary that all data are available at the same time.
What is the solution?

I The cache is divided in one (or more) levels of intermediate
memory, rather fast but small sized (kB ÷ MB)

I Basic principle: we always work with a subset of data.
I data needed→ fast memory access
I data not needed (for now)→ slower memory levels

I Limitations
I Random access without reusing
I Never large enough . . .
I faster, hotter and . . . expensive→ intermediate levels hierarchy.

The cache

I CPU accesses higher level cache:
I The cache controller finds if the required element is present in

cache:
I Yes: data in cache is used
I No: new data is loaded in cache; if cache is full, a replacement

policy is used to replace (a subset of) the current data with the
new data

I The data replacement between main memory and cache is
performed in data chunks, called cache lines or cache blocks.

I block = The smallest unit of information that can be transferred
between two memory levels (between two cache levels or
between RAM and cache)

I consists of a number of consecutive memory locations
I typical cache block size is 64 bytes

Replacement: locality principles

I Spatial locality
I High probability to access memory cell with contiguous address

within a short space of time (sequential instructions; data
arranged in matrix and vectors sequentially accessed, etc.)

I Possible advantage: we read more data than we need
(complete block) in hopes of next request

I Temporal locality
I High probability to access memory cell that was recently

accessed within a short space of time (instructions within body
of cycle frequently and sequentially accessed, etc.)

I We take advantage replacing the least recently used blocks

Data required from CPU are stored in the cache with
contiguous memory cells as long as possible

Replacement: locality principles

I Spatial locality
I High probability to access memory cell with contiguous address

within a short space of time (sequential instructions; data
arranged in matrix and vectors sequentially accessed, etc.)

I Possible advantage: we read more data than we need
(complete block) in hopes of next request

I Temporal locality
I High probability to access memory cell that was recently

accessed within a short space of time (instructions within body
of cycle frequently and sequentially accessed, etc.)

I We take advantage replacing the least recently used blocks

Data required from CPU are stored in the cache with
contiguous memory cells as long as possible

Replacement: locality principles

I Spatial locality
I High probability to access memory cell with contiguous address

within a short space of time (sequential instructions; data
arranged in matrix and vectors sequentially accessed, etc.)

I Possible advantage: we read more data than we need
(complete block) in hopes of next request

I Temporal locality
I High probability to access memory cell that was recently

accessed within a short space of time (instructions within body
of cycle frequently and sequentially accessed, etc.)

I We take advantage replacing the least recently used blocks

Data required from CPU are stored in the cache with
contiguous memory cells as long as possible

Replacement: locality principles

I Spatial locality
I High probability to access memory cell with contiguous address

within a short space of time (sequential instructions; data
arranged in matrix and vectors sequentially accessed, etc.)

I Possible advantage: we read more data than we need
(complete block) in hopes of next request

I Temporal locality
I High probability to access memory cell that was recently

accessed within a short space of time (instructions within body
of cycle frequently and sequentially accessed, etc.)

I We take advantage replacing the least recently used blocks

Data required from CPU are stored in the cache with
contiguous memory cells as long as possible

Replacement: locality principles

I Spatial locality
I High probability to access memory cell with contiguous address

within a short space of time (sequential instructions; data
arranged in matrix and vectors sequentially accessed, etc.)

I Possible advantage: we read more data than we need
(complete block) in hopes of next request

I Temporal locality
I High probability to access memory cell that was recently

accessed within a short space of time (instructions within body
of cycle frequently and sequentially accessed, etc.)

I We take advantage replacing the least recently used blocks

Data required from CPU are stored in the cache with
contiguous memory cells as long as possible

Cache:Some definition

I Hit: The requested data from CPU is stored in cache
I Miss: The requested data from CPU is not stored in cache
I Hit rate: The percentage of all accesses that are satisfied by

the data in the cache.
I Miss rate:The number of misses stated as a fraction of

attempted accesses (miss rate = 1-hit rate).
I Hit time: Memory access time for cache hit (including time to

determine if hit or miss)
I Miss penalty: Time to replace a block from lower level,

including time to replace in CPU (mean value is used)
I Miss time: = miss penalty + hit time, time needed to retrieve

the data from a lower level if cache miss is occurred.

Cache: access cost

Level access cost
L1 1 clock cycle
L2 7 clock cycles

RAM 36 clock cycles

I 100 accesses with 100% cache hit: → t=100
I 100 accesses with 5% cache miss in L1: → t=130
I 100 accesses with 10% cache miss in L1→ t=160
I 100 accesses with 10% cache miss in L2→ t=450
I 100 accesses with 100% cache miss in L2→ t=3600

Cache miss in all levels

1. search two data, A and B
2. search A in the first level cache (L1) O(1) cycles
3. search A in the second level cache (L2) O(10) cycles
4. copy A from RAM to L2 to L1 to registers O(10) cycles
5. search B in the first level cache (L1) O(1) cycles
6. search B in the second level cache (L2) O(10) cycles
7. copy B from RAM to L2 to L1 to registers O(10) cycles
8. run command

O(100)overhead cycles !!!

Cache hit in all levels

I search two data, A and B
I search A in the first level cache(L1) O(1) cycles

I search B in the first level cache(L1) O(1) cycles

I run command

O(1) overhead cycles

SRAM vs. DRAM

I Dynamic RAM (DRAM) main memory
I one transistor cell
I cheap
I it needs to be periodically refreshed

I data are not available during refreshing

I Static RAM (SRAM) cache memory
I cell requires 6-7 transistor
I expensive
I it does not need to be refreshed

I data are always available.
I DRAM has better price/performance than SRAM

I also higher densities, need less power and dissipate less heat
I SRAM provides higher speed

I used for high-performance memories (registers, cache memory)

Performance estimate: an example

f l o a t sum = 0.0f;
for (i = 0; i < n; i++)
sum = sum + x[i]*y[i];

I At each iteration, one sum and one multiplication floating-point
are performed

I The number of the operations performed is 2×n

Execution time Tes

I Tes = Nflop ∗ tflop

I Nflop→Algorithm

I tflop→ Hardware
I consider only execution time
I What are we neglecting?
I tmem The required time to access data in memory.

Execution time Tes

I Tes = Nflop ∗ tflop

I Nflop→Algorithm
I tflop→ Hardware

I consider only execution time
I What are we neglecting?
I tmem The required time to access data in memory.

Execution time Tes

I Tes = Nflop ∗ tflop

I Nflop→Algorithm
I tflop→ Hardware
I consider only execution time
I What are we neglecting?

I tmem The required time to access data in memory.

Execution time Tes

I Tes = Nflop ∗ tflop

I Nflop→Algorithm
I tflop→ Hardware
I consider only execution time
I What are we neglecting?
I tmem The required time to access data in memory.

Therefore . . .

I Tes = Nflop ∗ tflop + Nmem ∗ tmem

I tmem→ Hardware
I How Nmem affects the performances?

Nmem Effect

I Perf = NFlop
Tes

I for Nmem = 0→ Perf ∗ = 1
tflop

I for Nmem > 0→ Perf = Perf∗

1+Nmem∗tmem
Nflop∗tflop

I Performance decay factor
I Nmem

Nflop
∗ tmem

tflop

I how to achieve the peak performance?

I Minimize the memory accesses.

Nmem Effect

I Perf = NFlop
Tes

I for Nmem = 0→ Perf ∗ = 1
tflop

I for Nmem > 0→ Perf = Perf∗

1+Nmem∗tmem
Nflop∗tflop

I Performance decay factor
I Nmem

Nflop
∗ tmem

tflop

I how to achieve the peak performance?
I Minimize the memory accesses.

Spatial locality: access order

I Matrix multiplication in double precision 512X512
I Measured MFlops on Jazz (Intel(R) Xeon(R) CPU X5660

2.80GHz)
I gfortran compiler with -O0 optimization

index order Fortran C
i,j,k 109 128
i,k,j 90 177
j,k,i 173 96
j,i,k 110 127
k,j,i 172 96
k,i,j 90 177

The efficiency of the access order depends more on the data
location in memory, rather than on the language.

Array in memory

I Memory→ elementary locations sequentially aligned
I A matrix, aij element : i row index, j column index
I Matrix representation is by arrays

I How are the array elements stored in memory?

I C: sequentially access starting from the last index, then
the previous index . . .
a[1][1] a[1][2] a[1][3] a[1][4] . . .
a[1][n] a[2][n] . . . a[n][n]

I Fortran: sequentially access starting from the first index, then
the second index . . .
a(1,1) a(2,1) a(3,1) a(4,1) . . .
a(n,1) a(n,2) . . . a(n,n)

The stride

I The distance between successively accessed data
I stride=1→ I take advantage of the spatial locality
I stride » 1→ I don’t take advantage of the spatial locality

I Golden rule
I Always access arrays, if possible, with unit stride.

Fortran memory ordering

C memory ordering

Best access order

I Calculate multiplication matrix-vector:
I Fortran: d(i) = a(i) + b(i,j)*c(j)
I C: d[i] = a[i] + b [i][j]*c[j];

I Fortran
I do j=1,n

do i=1,n
d(i) = a(i) + b(i,j)*c(j)

end do
end do

I C
I for(i=0;i<n,i++1)

for(j=0;i<n,j++1)
d[i] = a[i] + b [i][j]*c[j];

Spatial locality:linear system

Solving triangular system
I Lx = b
I Where:

I L n×n lower triangular matrix
I x n unknowns vector
I b n right hand side vector

I we can solve this system by:
I forward substitution
I partitioning matrix

What is faster?
Why?

Spatial locality:linear system

Solving triangular system
I Lx = b
I Where:

I L n×n lower triangular matrix
I x n unknowns vector
I b n right hand side vector

I we can solve this system by:
I forward substitution
I partitioning matrix

What is faster?
Why?

Forward substitution

Solution:
. . .
do i = 1, n

do j = 1, i-1
b(i) = b(i) - L(i,j) b(j)

enddo
b(i) = b(i)/L(i,i)

enddo
. . .

[vruggie1@fen07 TRI]$./a.out

time for solution 8.0586

Forward substitution

Solution:
. . .
do i = 1, n

do j = 1, i-1
b(i) = b(i) - L(i,j) b(j)

enddo
b(i) = b(i)/L(i,i)

enddo
. . .
[vruggie1@fen07 TRI]$./a.out

time for solution 8.0586

Matrix partitioning

Solution:
. . .
do j = 1, n

b(j) = b(j)/L(j,j)
do i = j+1,n

b(i) = b(i) - L(i,j)*b(j)
enddo

enddo
. . .

[vruggie1@fen07 TRI]$./a.out

time for solution 2.5586

Matrix partitioning

Solution:
. . .
do j = 1, n

b(j) = b(j)/L(j,j)
do i = j+1,n

b(i) = b(i) - L(i,j)*b(j)
enddo

enddo
. . .
[vruggie1@fen07 TRI]$./a.out

time for solution 2.5586

What is the difference?
I Forward substitution

do i = 1, n
do j = 1, i-1

b(i) = b(i) - L(i,j) b(j)
enddo
b(i) = b(i)/L(i,i)

enddo
I Matrix partitioning

do j = 1, n
b(j) = b(j)/L(j,j)
do i = j+1,n

b(i) = b(i) - L(i,j)*b(j)
enddo

enddo

I Same number of operations, but very different elapsed times
the difference is a factor of 3

I Why?

What is the difference?
I Forward substitution

do i = 1, n
do j = 1, i-1

b(i) = b(i) - L(i,j) b(j)
enddo
b(i) = b(i)/L(i,i)

enddo
I Matrix partitioning

do j = 1, n
b(j) = b(j)/L(j,j)
do i = j+1,n

b(i) = b(i) - L(i,j)*b(j)
enddo

enddo
I Same number of operations, but very different elapsed times

the difference is a factor of 3
I Why?

Let us clarify. . .
This matrix is stored:

In C:

In Fortran:

Spatial locality: cache lines
I The cache is structured as a sequence of blocks (lines)
I The memory is divided in blocks with the same size of the

cache line
I When data are required the system loads from memory the

entire cache line that contains the data.

Dimension and data reuse

I Multiplication matrix-matrix in double precision
I Versions with different calls to BLAS library
I Performance in MFlops on Intel(R) Xeon(R) CPU X5660

2.80GHz

Dimension 1 DGEMM N DGEMV N2 DDOT
500 5820 3400 217

1000 8420 5330 227
2000 12150 2960 136
3000 12160 2930 186

Same number of operations but the use of cache memory is
changed!!!

Cache reuse

...
d=0.0
do I=1,n
j=index(I)
d = d + sqrt(x(j)*x(j) + y(j)*y(j) + z(j)*z(j))
...

Can I change the code to obtain best performances?

...
d=0.0
do I=1,n
j=index(I)
d = d + sqrt(r(1,j)*r(1,j) + r(2,j)*r(2,j) + r(3,j)*r(3,j))
...

Cache reuse

...
d=0.0
do I=1,n
j=index(I)
d = d + sqrt(x(j)*x(j) + y(j)*y(j) + z(j)*z(j))
...

Can I change the code to obtain best performances?

...
d=0.0
do I=1,n
j=index(I)
d = d + sqrt(r(1,j)*r(1,j) + r(2,j)*r(2,j) + r(3,j)*r(3,j))
...

Cache reuse

...
d=0.0
do I=1,n
j=index(I)
d = d + sqrt(x(j)*x(j) + y(j)*y(j) + z(j)*z(j))
...

Can I change the code to obtain best performances?

...
d=0.0
do I=1,n
j=index(I)
d = d + sqrt(r(1,j)*r(1,j) + r(2,j)*r(2,j) + r(3,j)*r(3,j))
...

Registers

I Registers are memory locations inside CPUs
I small amount of them (typically, less than 128), but with zero

latency
I All the operations performed by computing units

I take the operands from registers
I return results into registers

I transfers memory↔ registers are different operations
I Compiler uses registers

I to store intermediate values when computing expressions
I too complex expressions or too large loop bodies force the so

called “register spilling”
I to keep close to CPU values to be reused
I but only for scalar variables, not for array elements

Array elements. . .

do 3000 z=1,nz
k3=beta(z)
do 3000 y=1,ny

k2=eta(y)
do 3000 x=1,nx/2

hr(x,y,z,1)=hr(x,y,z,1)*norm
hi(x,y,z,1)=hi(x,y,z,1)*norm
hr(x,y,z,2)=hr(x,y,z,2)*norm
hi(x,y,z,2)=hi(x,y,z,2)*norm
hr(x,y,z,3)=hr(x,y,z,3)*norm
hi(x,y,z,3)=hi(x,y,z,3)*norm

.....................

k1=alfa(x,1)
k_quad=k1*k1+k2*k2+k3*k3+k_quad_cfr
k_quad=1./k_quad
sr=k1*hr(x,y,z,1)+k2*hr(x,y,z,2)+k3*hr(x,y,z,3)
si=k1*hi(x,y,z,1)+k2*hi(x,y,z,2)+k3*hi(x,y,z,3)
hr(x,y,z,1)=hr(x,y,z,1)-sr*k1*k_quad
hr(x,y,z,2)=hr(x,y,z,2)-sr*k2*k_quad
hr(x,y,z,3)=hr(x,y,z,3)-sr*k3*k_quad
hi(x,y,z,1)=hi(x,y,z,1)-si*k1*k_quad
hi(x,y,z,2)=hi(x,y,z,2)-si*k2*k_quad
hi(x,y,z,3)=hi(x,y,z,3)-si*k3*k_quad
k_quad_cfr=0.

3000 continue

Temporary scalars

(time -25%)

do 3000 z=1,nz
k3=beta(z)
do 3000 y=1,ny

k2=eta(y)
do 3000 x=1,nx/2

br1=hr(x,y,z,1)*norm
bi1=hi(x,y,z,1)*norm
br2=hr(x,y,z,2)*norm
bi2=hi(x,y,z,2)*norm
br3=hr(x,y,z,3)*norm
bi3=hi(x,y,z,3)*norm

.................
k1=alfa(x,1)

k_quad=k1*k1+k2*k2+k3*k3+k_quad_cfr
k_quad=1./k_quad
sr=k1*br1+k2*br2+k3*br3
si=k1*bi1+k2*bi2+k3*bi3
hr(x,y,z,1)=br1-sr*k1*k_quad
hr(x,y,z,2)=br2-sr*k2*k_quad
hr(x,y,z,3)=br3-sr*k3*k_quad
hi(x,y,z,1)=bi1-si*k1*k_quad
hi(x,y,z,2)=bi2-si*k2*k_quad
hi(x,y,z,3)=bi3-si*k3*k_quad
k_quad_cfr=0.

3000 Continue

Temporary scalars(time -25%)

do 3000 z=1,nz
k3=beta(z)
do 3000 y=1,ny

k2=eta(y)
do 3000 x=1,nx/2

br1=hr(x,y,z,1)*norm
bi1=hi(x,y,z,1)*norm
br2=hr(x,y,z,2)*norm
bi2=hi(x,y,z,2)*norm
br3=hr(x,y,z,3)*norm
bi3=hi(x,y,z,3)*norm

.................
k1=alfa(x,1)

k_quad=k1*k1+k2*k2+k3*k3+k_quad_cfr
k_quad=1./k_quad
sr=k1*br1+k2*br2+k3*br3
si=k1*bi1+k2*bi2+k3*bi3
hr(x,y,z,1)=br1-sr*k1*k_quad
hr(x,y,z,2)=br2-sr*k2*k_quad
hr(x,y,z,3)=br3-sr*k3*k_quad
hi(x,y,z,1)=bi1-si*k1*k_quad
hi(x,y,z,2)=bi2-si*k2*k_quad
hi(x,y,z,3)=bi3-si*k3*k_quad
k_quad_cfr=0.

3000 Continue

Spatial and temporal locality

I Matrix transpose
do j = 1, n

do i = 1, n
a(i,j) = b(j,i)

end do
end do

I Which is the best loop ordering to minimize the stride?
I For data residing in cache there is no dependency on the stride

I idea: split computations in blocks fitting into the cache
I task: balancing between spatial and temporal locality

Cache blocking

I Data are processed in chunks fitting into the cache memory
I Cache data are reused when working for the single block
I Compiler can do it for simple loops, but only at high

optimization levels
I Example: matrix transpose

do jj = 1, n , step
do ii = 1, n, step

do j= jj,jj+step-1,1
do i=ii,ii+step-1,1

a(i,j)=b(j,i)
end do

end do
end do

end do

Cache: capacity miss and trashing

Cache may be affected by
I capacity miss

I only a few lines are really used (reduced effective cache size)
I processing rate is reduced

I trashing:
I a cache line is thrown away even when data need to be reused

because new data are loaded
I slower than not having cache at all!
I It may occur when different instruction/data flows refer to the

same cache lines
I It depends on how the memory is mapped to the cache

Cache mapping

I A cache mapping defines where memory locations will be
placed in cache

I in which cache line a memory addresses will be placed
I we can think of the memory as being divided into blocks of the

size of a cache line
I the cache mapping is a simple hash function from addresses to

cache sets
I Cache is much smaller than main memory

I more than one of the memory blocks can be mapped to the
same cache line

I Each cache line is identified by a tag
I determines which memory addresses the cache line holds
I based on the tag and the valid bit, we can find out if a particular

address is in the cache (hit) or not (miss)

Fully associative cache

I A cache where data from any address can be stored in any
cache location.

Fully associative cache

I Pros:
I full cache exploitation
I independent of the patterns of memory access

I Cons:
I complex circuits to get a fast identify of hits
I substitution algorithm: demanding, Least Recently Used (LRU)

or not very efficient First In First Out (FIFO)
I expensive and small sized

Direct mapped cache

I Each main memory block can be mapped to only one slot.
(linear congruence)

Direct mapped cache

I Pros:
I easy check of hit (a few bit of address identify the checked line)
I substitution algorithm is straightforward
I arbitrarily sized cache

I Cons:
I strongly dependent on memory access patterns
I affected by capacity miss
I affected by cache trashing

N-way set associative cache

I Each memory block may be mapped to any
line among the possible cache lines

N-way set associative cache

I Pros:
I is an intermediate choice

I N=1 → direct mapped
I N= number of cache lines → fully associative

I allows for compromising between circuital complexity and
performances (cost and programmability)

I allows for achieving cache with reasonable sizes
I Cons:

I strongly conditioned by the memory pattern access
I partially affected by capacity miss
I partially affected by cache trashing

Cache: typical situation

I Cache L1: 4÷8 way set associative
I Cache L2÷3: 2÷4 way set associative o direct mapped
I Capacity miss and trashing must be considered

I strategies are the same
I optimization of placement of data in memory
I optimization of pattern of memory accesses

I L1 cache works with virtual addresses
I programmer has the full control

I L2÷3 caches work with physical addresses
I performances depend on physical allocated memory
I performances may vary when repeating the execution
I control at operating system level

Cache Trashing

I Problems when accessing data in memory
I A cache line is replaced even if its content is needed after a

short time
I It occurs when two or more data flows need a same small

subset of cache lines
I The number of load and store is unchanged
I Transaction on memory bus gets increased
I A typical case is given by flows requiring data with relative

strides of 2 power

No trashing: C(i)= A(i)+B(i)

I Iteration i=1
1. Search for A(1) in L1 cache→ cache miss
2. Get A(1) from RAM memory
3. Copy from A(1) to A(8) into L1
4. Copy A(1) into a register un registro
5. Search for B(1) in L1 cache→ cache miss
6. Get B(1) from RAM memory
7. Copy from B(1) to B(8) in L1
8. Copy B(1) into a register
9. Execute summation

I Iteration i=2
1. Search for A(2) into L1 cache→ cache hit
2. Copy A(2) into a register
3. Search for B(2) in L1 cache→ cache hit
4. Copy B(2) into a register
5. Execute summation

I Iteration i=3

Trashing: C(i)= A(i)+B(i)

I Iteration i=1
1. Search for A(1) in the L1 cache→ cache miss
2. Get A(1) from RAM memory
3. Copy from A(1) to A(8) into L1
4. Copy A(1) into a register
5. Search for B(1) in L1 cache→ cache miss
6. Get B(1) from RAM memory
7. Throw away cache line A(1)-A(8)
8. Copy from B(1) to B(8) into L1
9. Copy B(1) into a register

10. Execute summation

Trashing: C(i)= A(i)+B(i)

I Iteration i=2
1. Search for A(2) in the L1 cache→ cache miss
2. Get A(2) from RAM memory
3. Throw away cache line B(1)-B(8)
4. Copy from A(1) to A(8) into L1 cache
5. Copy A(2) into a register
6. Search for B(2) in L1 cache→ cache miss
7. Get B(2) from RAM memory
8. Throw away cache line A(1)-A(8)
9. Copy from B(1) to B(8) into L1

10. Copy B(2) into a register
11. Execute summation

I Iteration i=3

How to identify it?
I Effects depending on the size of data set

...
integer ,parameter :: offset=..
integer ,parameter :: N1=6400
integer ,parameter :: N=N1+offset
....
rea l(8) :: x(N,N),y(N,N),z(N,N)
...
do j=1,N1

do i=1,N1
z(i,j)=x(i,j)+y(i,j)

end do
end do
...

offset time
0 0.361
3 0.250

400 0.252
403 0.253

Solution is padding

Cache padding

real , dimension=1024 :: a,b
common/my_comm /a,b
do i=1, 1024
a(i)=b(i) + 1.0
enddo

I If cache size = 4 ∗ 1024, direct mapped, a,b contiguous data
(for example): we have cache thrashing (load and unload a
cache block repeatedly)

I size of array = multiple of cache size→ cache thrashing
I Set Associative cache reduces the problem

Cache padding

a(1) b(1)
1 1025
↑

1 mod 1024=1 1025 mod 1024= 1

In the cache:
a(1) 1024

trashing
b(1) 1024

Cache padding

integer offset=
(cache line size)/SIZE(REAL)
real , dimension=
(1024+offset) :: a,b
common/my_comm /a,b
do i=1, 1024
a(i)=b(i) + 1.0
enddo

offset→ staggered matrixes
cache→ no more problems

1 2560
↓ ↙

↗ ↖
1280 1281

1 mod 1024 =1
1281 mod 1024 = 257

Don’t use matrix dimension that are powers of two:

Misaligned accesses

I Bus transactions get doubled
I On some architectures:

I may cause run-time errors
I emulated in software

I A problem when dealing with
I structured types (TYPE and struct)
I local variables
I “common”

I Solutions
I order variables with decreasing order
I compiler options (if available. . .)
I different common
I insert dummy variables into common

Misaligned Accesses

parameter (nd=1000000)
rea l*8 a(1:nd), b(1:nd)
integer c
common /data1/ a,c,b

....
do j = 1, 300

do i = 1, nd
somma1 = somma1 + (a(i)-b(i))

enddo
enddo

Different performances for:
common /data1/ a,c,b
common /data1/ b,c,a
common /data1/ a,b,c

It depends on the architecure and on the compiler which
usually warns and tries to fix the problem (align common)

Memory alignment

In order to optmize cache using memory alignment is
important. When we read memory data in word 4 bytes chunk
at time (32 bit systems) The memory addresses must be
powers of 4 to be aligned in memory.
struct MixedData{
char Data1;
short Data2;
i n t Data3
char Data4

}

1 2 3 4 5 6 7 8
↑ ↖ ↑ ↑
Data1 Data2 Data3 Data4

To have Data3 value two reading from memory need.

Memory alignment

With alignment:

struct MixedData{
char Data1;
char Padding1[1];
short Data2;
i n t Data3
char Data4
char Padding2[3];

}

Data1 Data2 Data3 Data4
↓ ↓ ↓ ↓
1 2 3 4 5 6 7 8 9 10 11 12

↑ ↑
Padding1 Padding2

Memory alignment

Old struct costs 8 bytes, new struct (with padding) costs 12
bytes.
We can align data exchanging their order.

struct MixedData{
char Data1;
char Data4
short Data2;
i n t Data3

}

Data4 Data3
↓ ↓

1 2 3 4 5 6 7 8
↑ ↑
Data1 Data2

How to detect the problem?

I Processors have hardware counters
I Devised for high clock CPUs

I necessary to debug processors
I useful to measure performances
I crucial to ascertain unexpected behaviors

I Each architecture measures different events
I Of course, vendor dependent

I IBM: HPCT
I INTEL: Vtune

I Multi-platform measuring tools exist
I Valgrind, Oprofile
I PAPI
I Likwid
I . . .

Cache is a memory

I Its state is persistent until a cache-miss requires a change
I Its state is hidden for the programmer:

I does not affect code semantics (i.e., the results)
I affects the performances

I The same routine called under different code sections may
show completely different performances because of the cache
state at the moment

I Code modularity tends to make the programmer forget it
I It may be important to study the issue in a context larger than

the single routine

Valgrind

I Software Open Source useful for Debugging/Profiling of
programs running under Linux OS, sources not required
(black-box analysis), and different tools available:

I Memcheck (detect memory leaks, . . .)
I Cachegrind (cache profiler)
I Callgrind (callgraph)
I Massif (heap profiler)
I Etc.

I http://valgrind.org

Cachegrind

valgrind --tool=cachegrind <nome_eseguibile>

I Simulation of program-cache hierarchy interaction
I two independent first level cache (L1)

I instruction (I1)
I data cache (D1)

I a last level cache, L2 or L3(LL)
I Provides statistics

I I cache reads (Ir executed instructions), I1 cache read misses
(I1mr), LL cache instruction read misses (ILmr)

I D cache reads, Dr,D1mr,DLlmr
I D cache writes, Dw,D1mw,DLlmw

I Optionally provides branches and mispredicted branches

Cachegrind:example I

==14924== I refs: 7,562,066,817
==14924== I1 misses: 2,288
==14924== LLi misses: 1,913
==14924== I1 miss rate: 0.00%
==14924== LLi miss rate: 0.00%
==14924==
==14924== D refs: 2,027,086,734 (1,752,826,448 rd + 274,260,286 wr)
==14924== D1 misses: 16,946,127 (16,846,652 rd + 99,475 wr)
==14924== LLd misses: 101,362 (2,116 rd + 99,246 wr)
==14924== D1 miss rate: 0.8% (0.9% + 0.0%)
==14924== LLd miss rate: 0.0% (0.0% + 0.0%)
==14924==
==14924== LL refs: 16,948,415 (16,848,940 rd + 99,475 wr)
==14924== LL misses: 103,275 (4,029 rd + 99,246 wr)
==14924== LL miss rate: 0.0% (0.0% + 0.0%)

Cachegrind:example II

==15572== I refs: 7,562,066,871
==15572== I1 misses: 2,288
==15572== LLi misses: 1,913
==15572== I1 miss rate: 0.00%
==15572== LLi miss rate: 0.00%
==15572==
==15572== D refs: 2,027,086,744 (1,752,826,453 rd + 274,260,291 wr)
==15572== D1 misses: 151,360,463 (151,260,988 rd + 99,475 wr)
==15572== LLd misses: 101,362 (2,116 rd + 99,246 wr)
==15572== D1 miss rate: 7.4% (8.6% + 0.0%)
==15572== LLd miss rate: 0.0% (0.0% + 0.0%)
==15572==
==15572== LL refs: 151,362,751 (151,263,276 rd + 99,475 wr)
==15572== LL misses: 103,275 (4,029 rd + 99,246 wr)
==15572== LL miss rate: 0.0% (0.0% + 0.0%)

Cachegrind:cg_annotate

I Cachegrind automatically produces the file
cachegrind.out.<pid>

I In addition to the previous information, more detailed statistics
for each function is made available

cg_annotate cachegrind.out.<pid>

Cachegrind:options

I —I1=<size>,<associativity>,<line size>
I —D1=<size>,<associativity>,<line size>
I —LL=<size>,<associativity>,<line size>
I —cache-sim=no|yes [yes]
I —branch-sim=no|yes [no]
I —cachegrind-out-file=<file>

Exercises: summary

I Matrix multiplication: loop order
I Matrix multiplication: blocking
I Matrix multiplication:blocking and padding
I Measuring cache performances

Order of the loops

I eser_2 (fortran/mm.f90 or c/mm.c)
I Set N=512, measure the performances changing the order of

the loops
I Use fortran and/or c codes
I Use the different compilers without optmizations (-O0)

Indici Tempi C
i,j,k
i,k,j
j,k,i
j,i,k
k,i,j
k,j,i

src/eser_3/fortran/mm.f90

1 ...
2 integer , parameter :: n=1024 ! size of the matrix
3 integer , parameter :: step=4
4 integer , parameter :: npad=0
5 ...
6 rea l(my_kind) a(1:n+npad,1:n) ! matrix
7 rea l(my_kind) b(1:n+npad,1:n) ! matrix
8 rea l(my_kind) c(1:n+npad,1:n) ! matrix (destination)
9

10 do jj = 1, n, step
11 do kk = 1, n, step
12 do ii = 1, n, step
13 do j = jj, jj+step-1
14 do k = kk, kk+step-1
15 do i = ii, ii+step-1
16 c(i,j) = c(i,j) + a(i,k)*b(k,j)
17 enddo
18 ...

src/eser_3/c/mm.c

1 #define nn (1024)
2 #define step (4)
3 #define npad (0)
4

5 double a[nn+npad][nn+npad]; /** matrici**/
6 double b[nn+npad][nn+npad];
7 double c[nn+npad][nn+npad];
8 ...
9 for (ii = 0; ii < nn; ii= ii+step)

10 for (kk = 0; kk < nn; kk = kk+step)
11 for (jj = 0; jj < nn; jj = jj+step)
12 for (i = ii; i < ii+step; i++)
13 for (k = kk; k < kk+step; k++)
14 for (j = jj; j < jj+step; j++)
15 c[i][j] = c[i][j] + a[i][k]*b[k][j];
16 ...

Blocking

I eser_3 (fortran/mm.f90 or c/mm.c)
I Set N=1024 and measure the performances changing the

value of the step variable.
I Use Fortran and/or c codes
I Use the different compilers with optimization -O3

Step Fortran C
4
8

16
32
64
128
256

Blocking and Padding
I eser_3 (fortran/mm.f90 or c/mm.c)
I Set N=1024 and npad=9 and measure the performances

changing the value of step variable.
I Use Fortran and/or c codes
I Use the different compilers with optimization -O3

Step Fortran C
4
8

16
32
64
128
256

The performances of the cache
I valgrind

I Use the cachegrind tool of valgrind to evaluate the performances
of the cache memory changing the order of the loops.

Outline

Introduction

Architectures

Cache and memory system

Pipeline

Profilers

CPU: internal parallelism?

I CPU are entirely parallel
I pipelining
I superscalar execution
I units SIMD MMX, SSE, SSE2, SSE3, SSE4, AVX

I To achieve performances comparable to the peak
performance:

I give a large amount of instructions
I give the operands of the instructions

The pipeline

I Pipeline, channel or tube for carrying oil
I An operation is split in independent stages and different stages

are executed simultaneously
I fetch (get, catch) gets the instruction from memory and the

pointer of Program Counter is increased to point to the next
instruction

I decode instruction gets interpreted
I execute send messages which represent commands for

execution
I Parallelism with different operation stages
I Processors significantly exploit pipelining to increase the

computing rate

CPU cycle

I The time to move an instruction one step through the pipeline
is called a machine cycle

I CPI (clock Cycles Per Instruction)
I the number of clock cycles needed to execute an instruction
I varies for different instructions
I its inverse is IPC (Instructions Per Cycle)

NON pipelined computing units

I Each instruction is completed after three cycles

Pipelined units
I After 3 clock cycles, the pipeline is full
I A result per cycle when the pipeline is completely filled
I To fill it 3 independent instructions are needed (including the

operands)

Superpipelined computing units
I After 6 clock cycles, the pipeline is full
I A result per cycle when the pipeline is completely filled
I To fill it 6 independent instructions are needed (including the

operands)
I It is possible to halve the clock rate, i.e. doubling the frequency

Out of order execution

I Dynamically reorder the instructions
I move up instructions having operands which are available
I postpone instructions having operands still not available
I reorder reads/write from/into memory
I always considering the free functional units

I Exploit significantly:
I register renaming (physical vs architectural registers)
I branch prediction
I combination of multiple read and write from/to memory

I Crucial to get high performance on present CPUs
I The code should not hide the reordering possibilities

Out of order execution

Superscalar execution

I CPUs have different independent units
I functional differentiation
I functional replication

I Independent operations are executed at the same time
I integer operations
I floating point operations
I skipping memory
I memory accesses

I Instruction Parallelism
I Hiding latencies
I Processors exploit superscalarity to increase the computing

power for a fixed clock rate

How to exploit internal parallelism?

I Main issues:
I minimize dependency among instructions
I handle conditional statements (if and loop)?
I provide all the required data

I Who has to modify the code?
I CPU?→ yes, if possible, OOO and branch prediction
I compiler? → yes, is possible, understanding the semantics
I user? → yes, for the most complex cases

I Strategies
I loop unrolling→ unroll the loop
I loop merging→ merge loops into a single loop
I loop splitting→ decompose complex loops
I function inlining→ avoid breaking instruction flow

Loop unrolling

I Repeat the body of a loop k times and go through
the loop with a step length k

I k is called the unrolling factor

do j = 1, nj -> do j = 1, nj
do i = 1, ni -> do i = 1, ni, 2
a(i,j)=a(i,j)+c*b(i,j) -> a(i ,j)=a(i ,j)+c*b(i ,j)

-> a(i+1,j)=a(i+1,j)+c*b(i+1,j)

I The unrolled version of the loop has increased code size, but in
turn, will execute fewer overhead instructions.

I The same number of operations, but the loop index is
incremented half of the times

I The performance of this loop depends upon both the trace
cache and L1 cache state.

I In general the unrolled version runs faster because fewer
overhead instrunctions are executed.

I It is not valid when data dependences exist.

Reduction & Unroll

do j = i, nj ! normal case 1)
do i = i, ni

somma = somma + a(i,j)
end do

end do
......

do j = i, nj !reduction to 4 elements.. 2)
do i = i, ni, 4

somma_1 = somma_1 + a(i+0,j)
somma_2 = somma_2 + a(i+1,j)
somma_3 = somma_3 + a(i+2,j)
somma_4 = somma_4 + a(i+3,j)

end do
end do
somma = somma_1 + somma_2 + somma_3 + somma_4

f77 -native -O2 (-O4)
time 1) ---> 4.49785 (2.94240)
time 2) ---> 3.54803 (2.75964)

What inhibits loop unrolling?

I Conditional jumps (if ...)
I Calls to intrinsic functions and library (sin,exp,)
I I/0 operations in the loop

Compiler options

I Can I know how compiler works?

I See reference documentation for the compiler.
I Use, for example, the intel compiler with flag -qopt-report.

Compiler options

I Can I know how compiler works?
I See reference documentation for the compiler.

I Use, for example, the intel compiler with flag -qopt-report.

Compiler options

I Can I know how compiler works?
I See reference documentation for the compiler.
I Use, for example, the intel compiler with flag -qopt-report.

Esercises:summary

I Matrix multiplication:unrolling
I Matrix multiplicatin:unrolling and padding

src/eser_4/fortran/mm.f90

1 ...
2 integer , parameter :: n=1024 ! size of the matrix
3 integer , parameter :: step=4
4 integer , parameter :: npad=0
5 ...
6 rea l(my_kind) a(1:n+npad,1:n) ! matrix
7 rea l(my_kind) b(1:n+npad,1:n) ! matrix
8 rea l(my_kind) c(1:n+npad,1:n) ! matrix (destination)
9

10 do j = 1, n, 2
11 do k = 1, n
12 do i = 1, n
13 c(i,j+0) = c(i,j+0) + a(i,k)*b(k,j+0)
14 c(i,j+1) = c(i,j+1) + a(i,k)*b(k,j+1)
15 enddo
16 enddo
17 enddo
18 ...

src/eser_4/c/mm.c

1 #define nn (1024)
2 #define step (4)
3 #define npad (0)
4

5 double a[nn+npad][nn+npad]; /** matrici**/
6 double b[nn+npad][nn+npad];
7 double c[nn+npad][nn+npad];
8 ...
9 for (i = 0; i < nn; i+=2)

10 for (k = 0; k < nn; k++)
11 for (j = 0; j < nn; j++) {
12 c[i+0][j] = c[i+0][j] + a[i+0][k]*b[k][j];
13 c[i+1][j] = c[i+1][j] + a[i+1][k]*b[k][j];
14 }
15 ...

Unrolling the external loop

I eser_4 (fortran/mm.f90 or c/mm.c)
I Set N=1024 and measure the performances changing the size

of the unrolling of the external loop.
I Use Fortran and/or c codes
I Use the different compilers with optimization -O3

Unrolling Fortran C
2
4
8

16

Unrolling and padding of the external loop

I eser_4 (fortran/mm.f90 or c/mm.c)
I Set N=1024 and npad=9 and measure the performances

exchanging the size of the unrolling of the external loop.
I Use Fortran and/or c codes
I Use gnu complier with optimization -O3

Unrolling Fortran C
2
4
8

16

Last effort ...

I What is the best performance achieved using:
I blocking
I unrolling of the external loop
I padding
I . . . other optimizations..

I with N=2048?

Outline

Introduction

Architectures

Cache and memory system

Pipeline

Profilers
Motivations
time
top
gprof
Scalasca
Papi
Final considerations

Outline

Introduction

Architectures

Cache and memory system

Pipeline

Profilers
Motivations
time
top
gprof
Scalasca
Papi
Final considerations

Architectural trend (Top500 list)

clusters dominates High Performance Computing marketplace

Architectural trend (Top500 list)

clusters dominates High Performance Computing marketplace

microprocessors trend

organizing the logic: "multicore" per "socket" chips

microprocessors trend

organizing the logic: "multicore" per "socket" chips

Why performance monitoring is important?

I Increasing number of parallel and "hybrid" architectures with:

I reduced memory "bandwidth"
I reduced amount of memory per "core"
I more complex memory hierarchies

I Programming is hard and requires special skills
I Huge performance improvement is hard"
I Performance analysis tools are became extremely important

for understanding program behavior. Computer architects need
such tools to evaluate how well programs will perform on new
architectures and drive a further optimization, parallelization,
re-design....

Why performance monitoring is important?

I Increasing number of parallel and "hybrid" architectures with:
I reduced memory "bandwidth"

I reduced amount of memory per "core"
I more complex memory hierarchies

I Programming is hard and requires special skills
I Huge performance improvement is hard"
I Performance analysis tools are became extremely important

for understanding program behavior. Computer architects need
such tools to evaluate how well programs will perform on new
architectures and drive a further optimization, parallelization,
re-design....

Why performance monitoring is important?

I Increasing number of parallel and "hybrid" architectures with:
I reduced memory "bandwidth"
I reduced amount of memory per "core"

I more complex memory hierarchies
I Programming is hard and requires special skills
I Huge performance improvement is hard"
I Performance analysis tools are became extremely important

for understanding program behavior. Computer architects need
such tools to evaluate how well programs will perform on new
architectures and drive a further optimization, parallelization,
re-design....

Why performance monitoring is important?

I Increasing number of parallel and "hybrid" architectures with:
I reduced memory "bandwidth"
I reduced amount of memory per "core"
I more complex memory hierarchies

I Programming is hard and requires special skills
I Huge performance improvement is hard"
I Performance analysis tools are became extremely important

for understanding program behavior. Computer architects need
such tools to evaluate how well programs will perform on new
architectures and drive a further optimization, parallelization,
re-design....

Why performance monitoring is important?

I Increasing number of parallel and "hybrid" architectures with:
I reduced memory "bandwidth"
I reduced amount of memory per "core"
I more complex memory hierarchies

I Programming is hard and requires special skills

I Huge performance improvement is hard"
I Performance analysis tools are became extremely important

for understanding program behavior. Computer architects need
such tools to evaluate how well programs will perform on new
architectures and drive a further optimization, parallelization,
re-design....

Why performance monitoring is important?

I Increasing number of parallel and "hybrid" architectures with:
I reduced memory "bandwidth"
I reduced amount of memory per "core"
I more complex memory hierarchies

I Programming is hard and requires special skills
I Huge performance improvement is hard"

I Performance analysis tools are became extremely important
for understanding program behavior. Computer architects need
such tools to evaluate how well programs will perform on new
architectures and drive a further optimization, parallelization,
re-design....

Why performance monitoring is important?

I Increasing number of parallel and "hybrid" architectures with:
I reduced memory "bandwidth"
I reduced amount of memory per "core"
I more complex memory hierarchies

I Programming is hard and requires special skills
I Huge performance improvement is hard"
I Performance analysis tools are became extremely important

for understanding program behavior. Computer architects need
such tools to evaluate how well programs will perform on new
architectures and drive a further optimization, parallelization,
re-design....

Performance Lyfe Cycle

Profiling

I A standard serial or parallel application is composed of a lot of
functions, routines,....

I Code optimization and parallelization is hard. If you want to
tune performances is crucial:

I to see how much time is actually spent in a specific part of the
entire application

I to find the "call-" and "dependency-" graph for the application
I to find out application "bottlenecks" and "critical paths"

I Depending on software complexity and dimensionality (e.g.
number of lines of code) is not so easy to have a clear idea
about aforementioned statements.

I The main idea is to start froma simple "Profiling" of our
application. What does "Profiling" mean? essentially, it refers
to obtaining dynamic information from a controlled program
execution.

Profiling

I A standard serial or parallel application is composed of a lot of
functions, routines,....

I Code optimization and parallelization is hard. If you want to
tune performances is crucial:

I to see how much time is actually spent in a specific part of the
entire application

I to find the "call-" and "dependency-" graph for the application
I to find out application "bottlenecks" and "critical paths"

I Depending on software complexity and dimensionality (e.g.
number of lines of code) is not so easy to have a clear idea
about aforementioned statements.

I The main idea is to start froma simple "Profiling" of our
application. What does "Profiling" mean? essentially, it refers
to obtaining dynamic information from a controlled program
execution.

Profiling

I A standard serial or parallel application is composed of a lot of
functions, routines,....

I Code optimization and parallelization is hard. If you want to
tune performances is crucial:

I to see how much time is actually spent in a specific part of the
entire application

I to find the "call-" and "dependency-" graph for the application

I to find out application "bottlenecks" and "critical paths"
I Depending on software complexity and dimensionality (e.g.

number of lines of code) is not so easy to have a clear idea
about aforementioned statements.

I The main idea is to start froma simple "Profiling" of our
application. What does "Profiling" mean? essentially, it refers
to obtaining dynamic information from a controlled program
execution.

Profiling

I A standard serial or parallel application is composed of a lot of
functions, routines,....

I Code optimization and parallelization is hard. If you want to
tune performances is crucial:

I to see how much time is actually spent in a specific part of the
entire application

I to find the "call-" and "dependency-" graph for the application
I to find out application "bottlenecks" and "critical paths"

I Depending on software complexity and dimensionality (e.g.
number of lines of code) is not so easy to have a clear idea
about aforementioned statements.

I The main idea is to start froma simple "Profiling" of our
application. What does "Profiling" mean? essentially, it refers
to obtaining dynamic information from a controlled program
execution.

Profiling

I A standard serial or parallel application is composed of a lot of
functions, routines,....

I Code optimization and parallelization is hard. If you want to
tune performances is crucial:

I to see how much time is actually spent in a specific part of the
entire application

I to find the "call-" and "dependency-" graph for the application
I to find out application "bottlenecks" and "critical paths"

I Depending on software complexity and dimensionality (e.g.
number of lines of code) is not so easy to have a clear idea
about aforementioned statements.

I The main idea is to start froma simple "Profiling" of our
application. What does "Profiling" mean? essentially, it refers
to obtaining dynamic information from a controlled program
execution.

Profiling

I A standard serial or parallel application is composed of a lot of
functions, routines,....

I Code optimization and parallelization is hard. If you want to
tune performances is crucial:

I to see how much time is actually spent in a specific part of the
entire application

I to find the "call-" and "dependency-" graph for the application
I to find out application "bottlenecks" and "critical paths"

I Depending on software complexity and dimensionality (e.g.
number of lines of code) is not so easy to have a clear idea
about aforementioned statements.

I The main idea is to start froma simple "Profiling" of our
application. What does "Profiling" mean? essentially, it refers
to obtaining dynamic information from a controlled program
execution.

Profiling

I There are a wide variety of Profiling tools. They can broadly be
divided in different groups, depending on:

I ease of use or not
I proprietary vs public domain
I intrusive or not intrusive
I

I let‘s start the tour: from simplest to the most complex tool. The
main idea will be to collect all the informations that can be used
to increase the performances of our application.

Profiling

I There are a wide variety of Profiling tools. They can broadly be
divided in different groups, depending on:

I ease of use or not

I proprietary vs public domain
I intrusive or not intrusive
I

I let‘s start the tour: from simplest to the most complex tool. The
main idea will be to collect all the informations that can be used
to increase the performances of our application.

Profiling

I There are a wide variety of Profiling tools. They can broadly be
divided in different groups, depending on:

I ease of use or not
I proprietary vs public domain

I intrusive or not intrusive
I

I let‘s start the tour: from simplest to the most complex tool. The
main idea will be to collect all the informations that can be used
to increase the performances of our application.

Profiling

I There are a wide variety of Profiling tools. They can broadly be
divided in different groups, depending on:

I ease of use or not
I proprietary vs public domain
I intrusive or not intrusive

I
I let‘s start the tour: from simplest to the most complex tool. The

main idea will be to collect all the informations that can be used
to increase the performances of our application.

Profiling

I There are a wide variety of Profiling tools. They can broadly be
divided in different groups, depending on:

I ease of use or not
I proprietary vs public domain
I intrusive or not intrusive
I

I let‘s start the tour: from simplest to the most complex tool. The
main idea will be to collect all the informations that can be used
to increase the performances of our application.

Profiling

I There are a wide variety of Profiling tools. They can broadly be
divided in different groups, depending on:

I ease of use or not
I proprietary vs public domain
I intrusive or not intrusive
I

I let‘s start the tour: from simplest to the most complex tool. The
main idea will be to collect all the informations that can be used
to increase the performances of our application.

Outline

Introduction

Architectures

Cache and memory system

Pipeline

Profilers
Motivations
time
top
gprof
Scalasca
Papi
Final considerations

time: main characteristics

I You can call him from anywhere Unix /Linux machine.

I It returns the program total time of execution and other useful
informations.

I There is no need to change anything. No compilation
overhead, no source code modification. (non intrusive).

I time <name_executable>
Here′s a typical output from this command:
[planucar@node165 TIMERS]$ /usr/bin/time ./a.out <realloc.in
real maxsize (Kbytes)= 750000.00000000000

12.69user 4.76system 0:17.45elapsed 100%CPU (0avgtext+0avgdata 751088maxresident)k
0inputs+0outputs (0major+161115minor)pagefaults 0swaps

time: main characteristics

I You can call him from anywhere Unix /Linux machine.
I It returns the program total time of execution and other useful

informations.

I There is no need to change anything. No compilation
overhead, no source code modification. (non intrusive).

I time <name_executable>
Here′s a typical output from this command:
[planucar@node165 TIMERS]$ /usr/bin/time ./a.out <realloc.in
real maxsize (Kbytes)= 750000.00000000000

12.69user 4.76system 0:17.45elapsed 100%CPU (0avgtext+0avgdata 751088maxresident)k
0inputs+0outputs (0major+161115minor)pagefaults 0swaps

time: main characteristics

I You can call him from anywhere Unix /Linux machine.
I It returns the program total time of execution and other useful

informations.
I There is no need to change anything. No compilation

overhead, no source code modification. (non intrusive).

I time <name_executable>
Here′s a typical output from this command:
[planucar@node165 TIMERS]$ /usr/bin/time ./a.out <realloc.in
real maxsize (Kbytes)= 750000.00000000000

12.69user 4.76system 0:17.45elapsed 100%CPU (0avgtext+0avgdata 751088maxresident)k
0inputs+0outputs (0major+161115minor)pagefaults 0swaps

time: main characteristics

I You can call him from anywhere Unix /Linux machine.
I It returns the program total time of execution and other useful

informations.
I There is no need to change anything. No compilation

overhead, no source code modification. (non intrusive).
I time <name_executable>

Here′s a typical output from this command:
[planucar@node165 TIMERS]$ /usr/bin/time ./a.out <realloc.in
real maxsize (Kbytes)= 750000.00000000000

12.69user 4.76system 0:17.45elapsed 100%CPU (0avgtext+0avgdata 751088maxresident)k
0inputs+0outputs (0major+161115minor)pagefaults 0swaps

time: main characteristics

I You can call him from anywhere Unix /Linux machine.
I It returns the program total time of execution and other useful

informations.
I There is no need to change anything. No compilation

overhead, no source code modification. (non intrusive).
I time <name_executable>

Here′s a typical output from this command:
[planucar@node165 TIMERS]$ /usr/bin/time ./a.out <realloc.in
real maxsize (Kbytes)= 750000.00000000000

12.69user 4.76system 0:17.45elapsed 100%CPU (0avgtext+0avgdata 751088maxresident)k
0inputs+0outputs (0major+161115minor)pagefaults 0swaps

time: output

12.6u

4.76s 0:17.45 100% 0avgtext+0avgdata
751088maxresident)k 0inputs+0outputs 0major+161115minor

1. (User time) CPU time (in seconds) that the program spent to
run.

2. (System time) CPU time (in seconds) that the program/process
spent in doing system calls during its execution.

3. (Elapsed time) The time (h:m:s) that elapses while the program
runs ("elapsed time").

4. The percentage of total CPU used in the process/program.
5. Parameters related to the set size of the process (in Kbytes).
6. Input/output parameters (integer value).
7. "Page-faults" usage (integer value).

time: output

12.6u 4.76s

0:17.45 100% 0avgtext+0avgdata
751088maxresident)k 0inputs+0outputs 0major+161115minor

1. (User time) CPU time (in seconds) that the program spent to
run.

2. (System time) CPU time (in seconds) that the program/process
spent in doing system calls during its execution.

3. (Elapsed time) The time (h:m:s) that elapses while the program
runs ("elapsed time").

4. The percentage of total CPU used in the process/program.
5. Parameters related to the set size of the process (in Kbytes).
6. Input/output parameters (integer value).
7. "Page-faults" usage (integer value).

time: output

12.6u 4.76s 0:17.45

100% 0avgtext+0avgdata
751088maxresident)k 0inputs+0outputs 0major+161115minor

1. (User time) CPU time (in seconds) that the program spent to
run.

2. (System time) CPU time (in seconds) that the program/process
spent in doing system calls during its execution.

3. (Elapsed time) The time (h:m:s) that elapses while the program
runs ("elapsed time").

4. The percentage of total CPU used in the process/program.
5. Parameters related to the set size of the process (in Kbytes).
6. Input/output parameters (integer value).
7. "Page-faults" usage (integer value).

time: output

12.6u 4.76s 0:17.45 100%

0avgtext+0avgdata
751088maxresident)k 0inputs+0outputs 0major+161115minor

1. (User time) CPU time (in seconds) that the program spent to
run.

2. (System time) CPU time (in seconds) that the program/process
spent in doing system calls during its execution.

3. (Elapsed time) The time (h:m:s) that elapses while the program
runs ("elapsed time").

4. The percentage of total CPU used in the process/program.

5. Parameters related to the set size of the process (in Kbytes).
6. Input/output parameters (integer value).
7. "Page-faults" usage (integer value).

time: output

12.6u 4.76s 0:17.45 100% 0avgtext+0avgdata
751088maxresident)k

0inputs+0outputs 0major+161115minor

1. (User time) CPU time (in seconds) that the program spent to
run.

2. (System time) CPU time (in seconds) that the program/process
spent in doing system calls during its execution.

3. (Elapsed time) The time (h:m:s) that elapses while the program
runs ("elapsed time").

4. The percentage of total CPU used in the process/program.
5. Parameters related to the set size of the process (in Kbytes).

6. Input/output parameters (integer value).
7. "Page-faults" usage (integer value).

time: output

12.6u 4.76s 0:17.45 100% 0avgtext+0avgdata
751088maxresident)k 0inputs+0outputs

0major+161115minor

1. (User time) CPU time (in seconds) that the program spent to
run.

2. (System time) CPU time (in seconds) that the program/process
spent in doing system calls during its execution.

3. (Elapsed time) The time (h:m:s) that elapses while the program
runs ("elapsed time").

4. The percentage of total CPU used in the process/program.
5. Parameters related to the set size of the process (in Kbytes).
6. Input/output parameters (integer value).

7. "Page-faults" usage (integer value).

time: output

12.6u 4.76s 0:17.45 100% 0avgtext+0avgdata
751088maxresident)k 0inputs+0outputs 0major+161115minor

1. (User time) CPU time (in seconds) that the program spent to
run.

2. (System time) CPU time (in seconds) that the program/process
spent in doing system calls during its execution.

3. (Elapsed time) The time (h:m:s) that elapses while the program
runs ("elapsed time").

4. The percentage of total CPU used in the process/program.
5. Parameters related to the set size of the process (in Kbytes).
6. Input/output parameters (integer value).
7. "Page-faults" usage (integer value).

time-output

I The output of time command contains potentially useful
informations:

I (The "user" time is comparable with "sys" time)
I (The percentage of CPU usage is 100%)
I (There is no I/O)
I (There are (almost) no "page-faults")
I (The Maximum resident set size of the program.)
I Be careful, on some machine can be consistently given as too

large by a factor four!

time-output

I The output of time command contains potentially useful
informations:

I (The "user" time is comparable with "sys" time)

I (The percentage of CPU usage is 100%)
I (There is no I/O)
I (There are (almost) no "page-faults")
I (The Maximum resident set size of the program.)
I Be careful, on some machine can be consistently given as too

large by a factor four!

time-output

I The output of time command contains potentially useful
informations:

I (The "user" time is comparable with "sys" time)
I (The percentage of CPU usage is 100%)

I (There is no I/O)
I (There are (almost) no "page-faults")
I (The Maximum resident set size of the program.)
I Be careful, on some machine can be consistently given as too

large by a factor four!

time-output

I The output of time command contains potentially useful
informations:

I (The "user" time is comparable with "sys" time)
I (The percentage of CPU usage is 100%)
I (There is no I/O)

I (There are (almost) no "page-faults")
I (The Maximum resident set size of the program.)
I Be careful, on some machine can be consistently given as too

large by a factor four!

time-output

I The output of time command contains potentially useful
informations:

I (The "user" time is comparable with "sys" time)
I (The percentage of CPU usage is 100%)
I (There is no I/O)
I (There are (almost) no "page-faults")

I (The Maximum resident set size of the program.)
I Be careful, on some machine can be consistently given as too

large by a factor four!

time-output

I The output of time command contains potentially useful
informations:

I (The "user" time is comparable with "sys" time)
I (The percentage of CPU usage is 100%)
I (There is no I/O)
I (There are (almost) no "page-faults")
I (The Maximum resident set size of the program.)

I Be careful, on some machine can be consistently given as too
large by a factor four!

time-output

I The output of time command contains potentially useful
informations:

I (The "user" time is comparable with "sys" time)
I (The percentage of CPU usage is 100%)
I (There is no I/O)
I (There are (almost) no "page-faults")
I (The Maximum resident set size of the program.)
I Be careful, on some machine can be consistently given as too

large by a factor four!

Page-faults

I The higher the size of the problem, the more the number of
"page-faults" (at least 8 millions). What happens?

I A "page-fault" is a type of signal, called trap, raised by the
hardware when a running program accesses a memory page
that is mapped into the virtual address space, but not loaded in
physical memory.

I When handling a page fault, the operating system tries to make
the required page accessible at the location in physical
memory, moving another non-free page from memory to disk to
save space.

I This operation is really time-consuming and may slow-down
the execution of our program.

Page-faults

I The higher the size of the problem, the more the number of
"page-faults" (at least 8 millions). What happens?

I A "page-fault" is a type of signal, called trap, raised by the
hardware when a running program accesses a memory page
that is mapped into the virtual address space, but not loaded in
physical memory.

I When handling a page fault, the operating system tries to make
the required page accessible at the location in physical
memory, moving another non-free page from memory to disk to
save space.

I This operation is really time-consuming and may slow-down
the execution of our program.

Page-faults

I The higher the size of the problem, the more the number of
"page-faults" (at least 8 millions). What happens?

I A "page-fault" is a type of signal, called trap, raised by the
hardware when a running program accesses a memory page
that is mapped into the virtual address space, but not loaded in
physical memory.

I When handling a page fault, the operating system tries to make
the required page accessible at the location in physical
memory, moving another non-free page from memory to disk to
save space.

I This operation is really time-consuming and may slow-down
the execution of our program.

Page-faults

I The higher the size of the problem, the more the number of
"page-faults" (at least 8 millions). What happens?

I A "page-fault" is a type of signal, called trap, raised by the
hardware when a running program accesses a memory page
that is mapped into the virtual address space, but not loaded in
physical memory.

I When handling a page fault, the operating system tries to make
the required page accessible at the location in physical
memory, moving another non-free page from memory to disk to
save space.

I This operation is really time-consuming and may slow-down
the execution of our program.

time: output analysis

I For this example System time ∼ User time.

I it is not good, because it‘s may be due to page-faults activity or
inefficient memory usage. In this case, a lot of system calls are
done.
The program need to "allocate" and "deallocate" a lot of
matrices during its executioni: this is highly forbidden.

I System time + User time ∼ Elapsed time
there is only one running process on machine.

time: output analysis

I For this example System time ∼ User time.
I it is not good, because it‘s may be due to page-faults activity or

inefficient memory usage. In this case, a lot of system calls are
done.

The program need to "allocate" and "deallocate" a lot of
matrices during its executioni: this is highly forbidden.

I System time + User time ∼ Elapsed time
there is only one running process on machine.

time: output analysis

I For this example System time ∼ User time.
I it is not good, because it‘s may be due to page-faults activity or

inefficient memory usage. In this case, a lot of system calls are
done.
The program need to "allocate" and "deallocate" a lot of
matrices during its executioni: this is highly forbidden.

I System time + User time ∼ Elapsed time
there is only one running process on machine.

time: output analysis

I For this example System time ∼ User time.
I it is not good, because it‘s may be due to page-faults activity or

inefficient memory usage. In this case, a lot of system calls are
done.
The program need to "allocate" and "deallocate" a lot of
matrices during its executioni: this is highly forbidden.

I System time + User time ∼ Elapsed time

there is only one running process on machine.

time: output analysis

I For this example System time ∼ User time.
I it is not good, because it‘s may be due to page-faults activity or

inefficient memory usage. In this case, a lot of system calls are
done.
The program need to "allocate" and "deallocate" a lot of
matrices during its executioni: this is highly forbidden.

I System time + User time ∼ Elapsed time
there is only one running process on machine.

time: output analysis
Changing the program structure (e.g. avoiding allocations and
deallocations during program lifetime) lead to significant
performance improvement:
1.57user 0.10system 0:01.67elapsed 100%CPU (0avgtext+0avgdata 375944maxresident)k
0inputs+0outputs (0major+1080minor)pagefaults 0swaps

now, things are beginning to make sense. Infact: System time
<< User time.

In the end, time command is a good tool to track useful
informations in a "quick-and-dirty" way. Furthermore, it is
non-intrusive.
A major limitation of the time command: is quite difficult (or
impossible) to extract some interesting features from a
real-world application. For example, running COSMO
meteorological application up 1 hour simulation 48 ("cores") of
a standard multiprocessors machine (like Galileo):
12973.38user 1915.82system 20:55.80elapsed 1185%CPU (0avgtext+0avgdata 2597648maxresident)k
19608inputs+10649880outputs (147major+223489935minor)pagefaults 0swaps

time: output analysis
Changing the program structure (e.g. avoiding allocations and
deallocations during program lifetime) lead to significant
performance improvement:
1.57user 0.10system 0:01.67elapsed 100%CPU (0avgtext+0avgdata 375944maxresident)k
0inputs+0outputs (0major+1080minor)pagefaults 0swaps

now, things are beginning to make sense. Infact: System time
<< User time.

In the end, time command is a good tool to track useful
informations in a "quick-and-dirty" way. Furthermore, it is
non-intrusive.
A major limitation of the time command: is quite difficult (or
impossible) to extract some interesting features from a
real-world application. For example, running COSMO
meteorological application up 1 hour simulation 48 ("cores") of
a standard multiprocessors machine (like Galileo):
12973.38user 1915.82system 20:55.80elapsed 1185%CPU (0avgtext+0avgdata 2597648maxresident)k
19608inputs+10649880outputs (147major+223489935minor)pagefaults 0swaps

time: output analysis
Changing the program structure (e.g. avoiding allocations and
deallocations during program lifetime) lead to significant
performance improvement:
1.57user 0.10system 0:01.67elapsed 100%CPU (0avgtext+0avgdata 375944maxresident)k
0inputs+0outputs (0major+1080minor)pagefaults 0swaps

now, things are beginning to make sense. Infact: System time
<< User time.

In the end, time command is a good tool to track useful
informations in a "quick-and-dirty" way. Furthermore, it is
non-intrusive.

A major limitation of the time command: is quite difficult (or
impossible) to extract some interesting features from a
real-world application. For example, running COSMO
meteorological application up 1 hour simulation 48 ("cores") of
a standard multiprocessors machine (like Galileo):
12973.38user 1915.82system 20:55.80elapsed 1185%CPU (0avgtext+0avgdata 2597648maxresident)k
19608inputs+10649880outputs (147major+223489935minor)pagefaults 0swaps

time: output analysis
Changing the program structure (e.g. avoiding allocations and
deallocations during program lifetime) lead to significant
performance improvement:
1.57user 0.10system 0:01.67elapsed 100%CPU (0avgtext+0avgdata 375944maxresident)k
0inputs+0outputs (0major+1080minor)pagefaults 0swaps

now, things are beginning to make sense. Infact: System time
<< User time.

In the end, time command is a good tool to track useful
informations in a "quick-and-dirty" way. Furthermore, it is
non-intrusive.
A major limitation of the time command: is quite difficult (or
impossible) to extract some interesting features from a
real-world application. For example, running COSMO
meteorological application up 1 hour simulation 48 ("cores") of
a standard multiprocessors machine (like Galileo):
12973.38user 1915.82system 20:55.80elapsed 1185%CPU (0avgtext+0avgdata 2597648maxresident)k
19608inputs+10649880outputs (147major+223489935minor)pagefaults 0swaps

time: output analysis

At a first glance, the program should have worked. The first
number (1185 %CPU):

I is the percentage of CPU usage. It is something much higher
than 100% (lit is not surprising that, because we are using 48
cores of our supercomputer).

I Letting System time to zero, the User time is equal to the
elapsed time times a number proportional to the CPU
percentage.

I This number is lower than the number of used cores
I The resulting parallel efficiency is not really satisfactory.

time: output analysis

At a first glance, the program should have worked. The first
number (1185 %CPU):

I is the percentage of CPU usage. It is something much higher
than 100% (lit is not surprising that, because we are using 48
cores of our supercomputer).

I Letting System time to zero, the User time is equal to the
elapsed time times a number proportional to the CPU
percentage.

I This number is lower than the number of used cores
I The resulting parallel efficiency is not really satisfactory.

time: output analysis

At a first glance, the program should have worked. The first
number (1185 %CPU):

I is the percentage of CPU usage. It is something much higher
than 100% (lit is not surprising that, because we are using 48
cores of our supercomputer).

I Letting System time to zero, the User time is equal to the
elapsed time times a number proportional to the CPU
percentage.

I This number is lower than the number of used cores
I The resulting parallel efficiency is not really satisfactory.

time: output analysis

At a first glance, the program should have worked. The first
number (1185 %CPU):

I is the percentage of CPU usage. It is something much higher
than 100% (lit is not surprising that, because we are using 48
cores of our supercomputer).

I Letting System time to zero, the User time is equal to the
elapsed time times a number proportional to the CPU
percentage.

I This number is lower than the number of used cores

I The resulting parallel efficiency is not really satisfactory.

time: output analysis

At a first glance, the program should have worked. The first
number (1185 %CPU):

I is the percentage of CPU usage. It is something much higher
than 100% (lit is not surprising that, because we are using 48
cores of our supercomputer).

I Letting System time to zero, the User time is equal to the
elapsed time times a number proportional to the CPU
percentage.

I This number is lower than the number of used cores
I The resulting parallel efficiency is not really satisfactory.

Outline

Introduction

Architectures

Cache and memory system

Pipeline

Profilers
Motivations
time
top
gprof
Scalasca
Papi
Final considerations

Top

The time command returns useful informations of the time
spent in the execution of a given process (program).
Nevertheless, this information is static (available only when the
program completes) without giving us any additional
informations about its "behaviour" (over the time).

Besides, time command does not return any other kind of
information about computing and network resources (cores,
I/O, network) status and activity related to our application.
In the end, Top is a quite simple command returning these and
other informations.
Command Sintax:
top [options ...]

Top

The time command returns useful informations of the time
spent in the execution of a given process (program).
Nevertheless, this information is static (available only when the
program completes) without giving us any additional
informations about its "behaviour" (over the time).
Besides, time command does not return any other kind of
information about computing and network resources (cores,
I/O, network) status and activity related to our application.

In the end, Top is a quite simple command returning these and
other informations.
Command Sintax:
top [options ...]

Top

The time command returns useful informations of the time
spent in the execution of a given process (program).
Nevertheless, this information is static (available only when the
program completes) without giving us any additional
informations about its "behaviour" (over the time).
Besides, time command does not return any other kind of
information about computing and network resources (cores,
I/O, network) status and activity related to our application.
In the end, Top is a quite simple command returning these and
other informations.
Command Sintax:
top [options ...]

Top command output

top - 14:57:46 up 19 days, 23:19, 38 users, load average: 4.38, 1.68, 0.73
Tasks: 449 total, 3 running, 442 sleeping, 3 stopped, 1 zombie
Cpu(s): 39.3%us, 0.9%sy, 0.0%ni, 59.7%id, 0.0%wa, 0.0%hi, 0.1%si, 0.0%st
Mem: 24725848k total, 11623572k used, 13102276k free, 124732k buffers
Swap: 15999960k total, 96420k used, 15903540k free, 8921564k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
21524 lanucara 20 0 2407m 1.5g 4880 R 860.9 6.3 0:26.85 mm_mkl
21450 fferre 20 0 115m 6752 1640 R 99.0 0.0 0:27.21 parseBlastout.p
21485 lanucara 20 0 17400 1572 976 R 0.7 0.0 0:00.04 top

416 root 20 0 0 0 0 S 0.3 0.0 14:55.00 rpciod/0
424 root 20 0 0 0 0 S 0.3 0.0 0:27.90 rpciod/8
442 root 15 -5 0 0 0 S 0.3 0.0 2:59.49 kslowd001
450 root 20 0 0 0 0 S 0.3 0.0 22:58.02 nfsiod

8430 paoletti 20 0 114m 2116 1040 S 0.3 0.0 0:01.43 sshd
9522 nobody 20 0 167m 13m 1020 S 0.3 0.1 14:54.15 gmond

20338 tbiagini 20 0 114m 1920 872 S 0.3 0.0 0:00.04 sshd
26365 lanucara 20 0 149m 3384 2088 S 0.3 0.0 0:01.82 xterm
26395 lanucara 20 0 17396 1568 972 S 0.3 0.0 0:29.53 top

1 root 20 0 21444 1112 932 S 0.0 0.0 0:05.37 init
2 root 20 0 0 0 0 S 0.0 0.0 0:00.45 kthreadd
3 root RT 0 0 0 0 S 0.0 0.0 0:08.27 migration/0
4 root 20 0 0 0 0 S 0.0 0.0 0:05.73 ksoftirqd/0

Outline

Introduction

Architectures

Cache and memory system

Pipeline

Profilers
Motivations
time
top
gprof
Scalasca
Papi
Final considerations

gprof overview

I time and top are nice tools to return "large-grain" and "global"
informations of our application.

I Clearly, this kind of analysis is often applied to quite simple
benchmarks while we need something more effective dealing
with "real-world" applications (like COSMO code for example).

I At a first glance, what we need is a tool simple, "portable"
across different computing machines and returning the main
informations relevant to our application.

I gprof, is part of the GNU toolchain, so the "portability" is fairly
satisfied.

I Main features:
I a little bit intrusive (but not too much!)
I it returns "subroutine" and "functions" related informations
I it returns "call-graph" related informations
I is based on top of "Sampling" and "Instrumentation" concepts

gprof overview

I time and top are nice tools to return "large-grain" and "global"
informations of our application.

I Clearly, this kind of analysis is often applied to quite simple
benchmarks while we need something more effective dealing
with "real-world" applications (like COSMO code for example).

I At a first glance, what we need is a tool simple, "portable"
across different computing machines and returning the main
informations relevant to our application.

I gprof, is part of the GNU toolchain, so the "portability" is fairly
satisfied.

I Main features:
I a little bit intrusive (but not too much!)
I it returns "subroutine" and "functions" related informations
I it returns "call-graph" related informations
I is based on top of "Sampling" and "Instrumentation" concepts

gprof overview

I time and top are nice tools to return "large-grain" and "global"
informations of our application.

I Clearly, this kind of analysis is often applied to quite simple
benchmarks while we need something more effective dealing
with "real-world" applications (like COSMO code for example).

I At a first glance, what we need is a tool simple, "portable"
across different computing machines and returning the main
informations relevant to our application.

I gprof, is part of the GNU toolchain, so the "portability" is fairly
satisfied.

I Main features:
I a little bit intrusive (but not too much!)
I it returns "subroutine" and "functions" related informations
I it returns "call-graph" related informations
I is based on top of "Sampling" and "Instrumentation" concepts

gprof overview

I time and top are nice tools to return "large-grain" and "global"
informations of our application.

I Clearly, this kind of analysis is often applied to quite simple
benchmarks while we need something more effective dealing
with "real-world" applications (like COSMO code for example).

I At a first glance, what we need is a tool simple, "portable"
across different computing machines and returning the main
informations relevant to our application.

I gprof, is part of the GNU toolchain, so the "portability" is fairly
satisfied.

I Main features:
I a little bit intrusive (but not too much!)
I it returns "subroutine" and "functions" related informations
I it returns "call-graph" related informations
I is based on top of "Sampling" and "Instrumentation" concepts

gprof overview

I time and top are nice tools to return "large-grain" and "global"
informations of our application.

I Clearly, this kind of analysis is often applied to quite simple
benchmarks while we need something more effective dealing
with "real-world" applications (like COSMO code for example).

I At a first glance, what we need is a tool simple, "portable"
across different computing machines and returning the main
informations relevant to our application.

I gprof, is part of the GNU toolchain, so the "portability" is fairly
satisfied.

I Main features:

I a little bit intrusive (but not too much!)
I it returns "subroutine" and "functions" related informations
I it returns "call-graph" related informations
I is based on top of "Sampling" and "Instrumentation" concepts

gprof overview

I time and top are nice tools to return "large-grain" and "global"
informations of our application.

I Clearly, this kind of analysis is often applied to quite simple
benchmarks while we need something more effective dealing
with "real-world" applications (like COSMO code for example).

I At a first glance, what we need is a tool simple, "portable"
across different computing machines and returning the main
informations relevant to our application.

I gprof, is part of the GNU toolchain, so the "portability" is fairly
satisfied.

I Main features:
I a little bit intrusive (but not too much!)

I it returns "subroutine" and "functions" related informations
I it returns "call-graph" related informations
I is based on top of "Sampling" and "Instrumentation" concepts

gprof overview

I time and top are nice tools to return "large-grain" and "global"
informations of our application.

I Clearly, this kind of analysis is often applied to quite simple
benchmarks while we need something more effective dealing
with "real-world" applications (like COSMO code for example).

I At a first glance, what we need is a tool simple, "portable"
across different computing machines and returning the main
informations relevant to our application.

I gprof, is part of the GNU toolchain, so the "portability" is fairly
satisfied.

I Main features:
I a little bit intrusive (but not too much!)
I it returns "subroutine" and "functions" related informations

I it returns "call-graph" related informations
I is based on top of "Sampling" and "Instrumentation" concepts

gprof overview

I time and top are nice tools to return "large-grain" and "global"
informations of our application.

I Clearly, this kind of analysis is often applied to quite simple
benchmarks while we need something more effective dealing
with "real-world" applications (like COSMO code for example).

I At a first glance, what we need is a tool simple, "portable"
across different computing machines and returning the main
informations relevant to our application.

I gprof, is part of the GNU toolchain, so the "portability" is fairly
satisfied.

I Main features:
I a little bit intrusive (but not too much!)
I it returns "subroutine" and "functions" related informations
I it returns "call-graph" related informations

I is based on top of "Sampling" and "Instrumentation" concepts

gprof overview

I time and top are nice tools to return "large-grain" and "global"
informations of our application.

I Clearly, this kind of analysis is often applied to quite simple
benchmarks while we need something more effective dealing
with "real-world" applications (like COSMO code for example).

I At a first glance, what we need is a tool simple, "portable"
across different computing machines and returning the main
informations relevant to our application.

I gprof, is part of the GNU toolchain, so the "portability" is fairly
satisfied.

I Main features:
I a little bit intrusive (but not too much!)
I it returns "subroutine" and "functions" related informations
I it returns "call-graph" related informations
I is based on top of "Sampling" and "Instrumentation" concepts

Gprof "Sampling"

I The "Sampling" technique is used by Gprof (and in general by
Profiling tools) to collect informations which are related to the
"behaviour" of our application during its execution.

I Gprof is a Time Based Sampling profiler, that is it derives the
information it provides by recording the address in the program
counter at regular intervals over the course of a run.

I The "program counter" is recording at a fixed rate (e.g. we can
fix to 100 for sake of clarity) per second of i "run-time". This
"number" may vary from machine to another machine.

I The "Sampling" technique is intrinsically statistical, so its
effectiveness is strictly depending on this "sampling period".

I Because its little intrusivity we should be granted about the
correctness of the profiled execution.

Gprof "Sampling"

I The "Sampling" technique is used by Gprof (and in general by
Profiling tools) to collect informations which are related to the
"behaviour" of our application during its execution.

I Gprof is a Time Based Sampling profiler, that is it derives the
information it provides by recording the address in the program
counter at regular intervals over the course of a run.

I The "program counter" is recording at a fixed rate (e.g. we can
fix to 100 for sake of clarity) per second of i "run-time". This
"number" may vary from machine to another machine.

I The "Sampling" technique is intrinsically statistical, so its
effectiveness is strictly depending on this "sampling period".

I Because its little intrusivity we should be granted about the
correctness of the profiled execution.

Gprof "Sampling"

I The "Sampling" technique is used by Gprof (and in general by
Profiling tools) to collect informations which are related to the
"behaviour" of our application during its execution.

I Gprof is a Time Based Sampling profiler, that is it derives the
information it provides by recording the address in the program
counter at regular intervals over the course of a run.

I The "program counter" is recording at a fixed rate (e.g. we can
fix to 100 for sake of clarity) per second of i "run-time". This
"number" may vary from machine to another machine.

I The "Sampling" technique is intrinsically statistical, so its
effectiveness is strictly depending on this "sampling period".

I Because its little intrusivity we should be granted about the
correctness of the profiled execution.

Gprof "Sampling"

I The "Sampling" technique is used by Gprof (and in general by
Profiling tools) to collect informations which are related to the
"behaviour" of our application during its execution.

I Gprof is a Time Based Sampling profiler, that is it derives the
information it provides by recording the address in the program
counter at regular intervals over the course of a run.

I The "program counter" is recording at a fixed rate (e.g. we can
fix to 100 for sake of clarity) per second of i "run-time". This
"number" may vary from machine to another machine.

I The "Sampling" technique is intrinsically statistical, so its
effectiveness is strictly depending on this "sampling period".

I Because its little intrusivity we should be granted about the
correctness of the profiled execution.

Gprof "Sampling"

I The "Sampling" technique is used by Gprof (and in general by
Profiling tools) to collect informations which are related to the
"behaviour" of our application during its execution.

I Gprof is a Time Based Sampling profiler, that is it derives the
information it provides by recording the address in the program
counter at regular intervals over the course of a run.

I The "program counter" is recording at a fixed rate (e.g. we can
fix to 100 for sake of clarity) per second of i "run-time". This
"number" may vary from machine to another machine.

I The "Sampling" technique is intrinsically statistical, so its
effectiveness is strictly depending on this "sampling period".

I Because its little intrusivity we should be granted about the
correctness of the profiled execution.

Gprof "Sampling"

I The "Sampling" technique is used by Gprof (and in general by
Profiling tools) to collect informations which are related to the
"behaviour" of our application during its execution.

I Gprof is a Time Based Sampling profiler, that is it derives the
information it provides by recording the address in the program
counter at regular intervals over the course of a run.

I The "program counter" is recording at a fixed rate (e.g. we can
fix to 100 for sake of clarity) per second of i "run-time". This
"number" may vary from machine to another machine.

I The "Sampling" technique is intrinsically statistical, so its
effectiveness is strictly depending on this "sampling period".

I Because its little intrusivity we should be granted about the
correctness of the profiled execution.

Gprof "Instrumentation"

I Using Gprof, instrumentation code is automatically inserted
into the program code during compilation to gather "call-graph"
data.

I A call to the monitor function mcount is inserted before each
function call.

I This techique can generate a limited overhead (depending on
the application). Nevertheless, the compiler is (often) able to
drive this process in an efficient way.

Gprof "Instrumentation"

I Using Gprof, instrumentation code is automatically inserted
into the program code during compilation to gather "call-graph"
data.

I A call to the monitor function mcount is inserted before each
function call.

I This techique can generate a limited overhead (depending on
the application). Nevertheless, the compiler is (often) able to
drive this process in an efficient way.

Gprof "Instrumentation"

I Using Gprof, instrumentation code is automatically inserted
into the program code during compilation to gather "call-graph"
data.

I A call to the monitor function mcount is inserted before each
function call.

I This techique can generate a limited overhead (depending on
the application). Nevertheless, the compiler is (often) able to
drive this process in an efficient way.

Gprof "Instrumentation"

I Using Gprof, instrumentation code is automatically inserted
into the program code during compilation to gather "call-graph"
data.

I A call to the monitor function mcount is inserted before each
function call.

I This techique can generate a limited overhead (depending on
the application). Nevertheless, the compiler is (often) able to
drive this process in an efficient way.

Gprof:how-to

I Using Gprof is a three step process. First, the source code
(written in Fortran, C, ...) is compiled and linked with gcc (or
your favorite compiler) using options that signal the runtime to
collect statistical information (-pg option)

I Use:
<compiler> -pg programma.f -o nome_eseguibile
./nome_eseguibile
gprof nome_eseguibile

I Then, the program is run one or more times, each time creating
a gmon.out file with run-time informations (after successful
runs!)

I Gprof is then run against the gmon.out file producing one or
more reports of the runtime behavior. Caution, old gmon.out
files are oversubscribed.

Gprof:how-to

I Using Gprof is a three step process. First, the source code
(written in Fortran, C, ...) is compiled and linked with gcc (or
your favorite compiler) using options that signal the runtime to
collect statistical information (-pg option)

I Use:
<compiler> -pg programma.f -o nome_eseguibile
./nome_eseguibile
gprof nome_eseguibile

I Then, the program is run one or more times, each time creating
a gmon.out file with run-time informations (after successful
runs!)

I Gprof is then run against the gmon.out file producing one or
more reports of the runtime behavior. Caution, old gmon.out
files are oversubscribed.

Gprof:how-to

I Using Gprof is a three step process. First, the source code
(written in Fortran, C, ...) is compiled and linked with gcc (or
your favorite compiler) using options that signal the runtime to
collect statistical information (-pg option)

I Use:
<compiler> -pg programma.f -o nome_eseguibile
./nome_eseguibile
gprof nome_eseguibile

I Then, the program is run one or more times, each time creating
a gmon.out file with run-time informations (after successful
runs!)

I Gprof is then run against the gmon.out file producing one or
more reports of the runtime behavior. Caution, old gmon.out
files are oversubscribed.

gprof: Flat profile
I Flat profile: This generates flat-profile analytics, where time

calls are given for comparison.In particular, cumulative and self
calls are given for functions (subroutines) to be profiled. The
function ordering is from the higher to the lower in terms of
CPU time. Let′s see with a simple C example:

#include <stdio.h>
i n t a(void) {

i n t i=0,g=0;
while(i++<100000)
{

g+=i;
}
return g;

}
i n t b(void) {

i n t i=0,g=0;
while(i++<400000)
{

g+=i;
}
return g;

}
i n t main(i n t argc, char** argv)
{

i n t iterations;

i f (argc != 2)
{

gprof: Flat profile

I Flat profile: to be continue....

printf("Usage %s <No of Iterations>\n", argv[0]);
exit(-1);

}
else

iterations = atoi(argv[1]);
printf("No of iterations = %d\n", iterations);

while(iterations--)
{

a();
b();

}
}

I The last step above produces an analysis file which is in
human readable format.

I The file shows that most of the time is spent in the routine b()
and that its workload is approximately 4 times the workload of
routine a():

gprof: Flat profile

I Flat profile: to be continue....

printf("Usage %s <No of Iterations>\n", argv[0]);
exit(-1);

}
else

iterations = atoi(argv[1]);
printf("No of iterations = %d\n", iterations);

while(iterations--)
{

a();
b();

}
}

I The last step above produces an analysis file which is in
human readable format.

I The file shows that most of the time is spent in the routine b()
and that its workload is approximately 4 times the workload of
routine a():

gprof: Flat profile

I Flat profile: to be continue....

printf("Usage %s <No of Iterations>\n", argv[0]);
exit(-1);

}
else

iterations = atoi(argv[1]);
printf("No of iterations = %d\n", iterations);

while(iterations--)
{

a();
b();

}
}

I The last step above produces an analysis file which is in
human readable format.

I The file shows that most of the time is spent in the routine b()
and that its workload is approximately 4 times the workload of
routine a():

gprof: flat profile

/usr/bin/time ./Main_example.exe 10000
No of iterations = 10000
3.22user 0.00system 0:03.23elapsed 99%CPU (0avgtext+0avgdata 1760maxresident)k
0inputs+0outputs (0major+131minor)pagefaults 0swaps

gcc -O Main_example.c -o Main_example_gprof.exe -pg
[lanucara@louis ~]$ /usr/bin/time ./Main_example_gprof.exe 10000
No of iterations = 10000
3.33user 0.00system 0:03.34elapsed 99%CPU (0avgtext+0avgdata 2064maxresident)k
0inputs+8outputs (0major+150minor)pagefaults 0swaps

gprof ./Main_example_gprof.exe > Main_example.gprof

Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls us/call us/call name
81.43 2.73 2.73 10000 272.78 272.78 b
19.60 3.38 0.66 10000 65.67 65.67 a

Flat profile:description

1. The percentage of time (with respect to the total time) spent in
the routine.

2. The cumulative time spent in the routine and above.
3. The time (in seconds) spent in the routine.
4. The number of times this routine is called.
5. The mean time (in milliseconds) spent in this routine per single

call.
6. The total mean time spent in this routine per call (including also

its descendents).
7. The name of the routine.

In this example there are no "descendents", so "self and "total"
time are practically the same.

gprof: flat profile

Try to vary the workload within source, introducing a simple
function:
i n t cinsideb(i n t d) {
{
}
return d;

}

and we pose this function within b() in place of g computation:
i n t b(void) {

i n t i=0,g=0;
while(i++<400000)
{

g+=cinsideb(i);
}
return g;

}

Let′s see what happens, with this new program:

gprof: flat profile
The new Flaf profile:
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls us/call us/call name
44.72 3.28 3.28 10000 327.78 604.55 b
37.76 6.05 2.77 4000000000 0.00 0.00 cinsideb
18.53 7.40 1.36 10000 135.86 135.86 a

Comments:

I Combining the routines b() and cinsideb() together, a global
percentage of 80 is reached.

I The "child" function cinsideb() of b() is visible in the Flat-profile
and its contribution is responsible for the increasing of the
"total" time of function b()

I For this example, an increasing overhead is due to the
enormous number of calls of function cinsideb()

gprof: flat profile
The new Flaf profile:
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls us/call us/call name
44.72 3.28 3.28 10000 327.78 604.55 b
37.76 6.05 2.77 4000000000 0.00 0.00 cinsideb
18.53 7.40 1.36 10000 135.86 135.86 a

Comments:

I Combining the routines b() and cinsideb() together, a global
percentage of 80 is reached.

I The "child" function cinsideb() of b() is visible in the Flat-profile
and its contribution is responsible for the increasing of the
"total" time of function b()

I For this example, an increasing overhead is due to the
enormous number of calls of function cinsideb()

gprof: flat profile
The new Flaf profile:
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls us/call us/call name
44.72 3.28 3.28 10000 327.78 604.55 b
37.76 6.05 2.77 4000000000 0.00 0.00 cinsideb
18.53 7.40 1.36 10000 135.86 135.86 a

Comments:

I Combining the routines b() and cinsideb() together, a global
percentage of 80 is reached.

I The "child" function cinsideb() of b() is visible in the Flat-profile
and its contribution is responsible for the increasing of the
"total" time of function b()

I For this example, an increasing overhead is due to the
enormous number of calls of function cinsideb()

gprof: flat profile
The new Flaf profile:
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls us/call us/call name
44.72 3.28 3.28 10000 327.78 604.55 b
37.76 6.05 2.77 4000000000 0.00 0.00 cinsideb
18.53 7.40 1.36 10000 135.86 135.86 a

Comments:

I Combining the routines b() and cinsideb() together, a global
percentage of 80 is reached.

I The "child" function cinsideb() of b() is visible in the Flat-profile
and its contribution is responsible for the increasing of the
"total" time of function b()

I For this example, an increasing overhead is due to the
enormous number of calls of function cinsideb()

gprof: Call tree profile
The "Call-tree" profile shows the percentage of time and
"self"/"children" calls timings for each routine.

The ordering is based on the percentage of time spent in each
single routine (and descendents) in decreasing order.
Let′s see the Call tree profile of the last modified version of
code:

Call graph (explanation follows)

granularity: each sample hit covers 2 byte(s) for 0.14% of 7.40 seconds

index % time self children called name
<spontaneous>

[1] 100.0 0.00 7.40 main [1]
3.28 2.77 10000/10000 b [2]
1.36 0.00 10000/10000 a [4]

3.28 2.77 10000/10000 main [1]

[2] 81.7 3.28 2.77 10000 b [2]
2.77 0.00 4000000000/4000000000 cinsideb [3]

2.77 0.00 4000000000/4000000000 b [2]

[3] 37.4 2.77 0.00 4000000000 cinsideb [3]

1.36 0.00 10000/10000 main [1]
[4] 18.3 1.36 0.00 10000 a [4]

...

gprof: Call tree profile
The "Call-tree" profile shows the percentage of time and
"self"/"children" calls timings for each routine.
The ordering is based on the percentage of time spent in each
single routine (and descendents) in decreasing order.

Let′s see the Call tree profile of the last modified version of
code:

Call graph (explanation follows)

granularity: each sample hit covers 2 byte(s) for 0.14% of 7.40 seconds

index % time self children called name
<spontaneous>

[1] 100.0 0.00 7.40 main [1]
3.28 2.77 10000/10000 b [2]
1.36 0.00 10000/10000 a [4]

3.28 2.77 10000/10000 main [1]

[2] 81.7 3.28 2.77 10000 b [2]
2.77 0.00 4000000000/4000000000 cinsideb [3]

2.77 0.00 4000000000/4000000000 b [2]

[3] 37.4 2.77 0.00 4000000000 cinsideb [3]

1.36 0.00 10000/10000 main [1]
[4] 18.3 1.36 0.00 10000 a [4]

...

gprof: Call tree profile
The "Call-tree" profile shows the percentage of time and
"self"/"children" calls timings for each routine.
The ordering is based on the percentage of time spent in each
single routine (and descendents) in decreasing order.
Let′s see the Call tree profile of the last modified version of
code:

Call graph (explanation follows)

granularity: each sample hit covers 2 byte(s) for 0.14% of 7.40 seconds

index % time self children called name
<spontaneous>

[1] 100.0 0.00 7.40 main [1]
3.28 2.77 10000/10000 b [2]
1.36 0.00 10000/10000 a [4]

3.28 2.77 10000/10000 main [1]

[2] 81.7 3.28 2.77 10000 b [2]
2.77 0.00 4000000000/4000000000 cinsideb [3]

2.77 0.00 4000000000/4000000000 b [2]

[3] 37.4 2.77 0.00 4000000000 cinsideb [3]

1.36 0.00 10000/10000 main [1]
[4] 18.3 1.36 0.00 10000 a [4]

...

Call tree profile:description

1. An index defining "main program" and different routines within
Flat-profile.

2. The percentage of time spent in each single routine and
"childs" with respect to the total.

3. The total time spent in the routine.
4. The total time spent in its "childs".
5. The number of times the routine is called as "parent" and

"child" with respect to the total number of calls in the entire
program.

6. The name of the routine.

gprof: limitations

Let′s see what happens with a simple program doing classical
"matrix-matrix" product.Two approaches:

1. a program linking the MKL system libraries (which are fully
optimized for the given hardware)

2. or using oppure a "standalone" library built compiling and
linking BLAS sources on target machine
Results, in terms of "Flat Profile", profiling the two different
versions:
MKL usage profiling:
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
71.43 0.10 0.10 for_simd_random_number
14.29 0.12 0.02 1 20.00 20.00 MAIN__
14.29 0.14 0.02 __intel_memset
0.00 0.14 0.00 4 0.00 0.00 timing_module_mp_timing_

gprof: limitations
BLAS usage profiling:
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
97.76 6.10 6.10 dgemm_
1.60 6.20 0.10 for_simd_random_number
0.32 6.22 0.02 1 20.00 20.00 MAIN__
0.32 6.24 0.02 __intel_memset
0.00 6.24 0.00 4 0.00 0.00 timing_module_mp_timing_

Comments:

I Gprof cannot measure time spent in kernel mode (syscalls,
waiting for CPU or I/O waiting), and only user-space code is
profiled. So, for the MKL version, there is no useful
informations apart some auxiliary library call with some
(meaningless) time report.

I The profiling of the BLAS version is correctly reporting the
dgemm_ call, which is responsible for the virtually all the total
time.

gprof: other limitations

I Gprof "granularity" (which is strictly related to its "sampling
rate") is quite high. Therefore, is not so easy to estimate
complex real-world application performances and fine tuning is
quite difficult (also, knowing in advance which is the
function/routine which is responsible for the most of the cycles
of a given applications).

I Gprof intrusivity may be quite huge. It is a good practice to
compare the "naive" execution with the "gprof" execution and
verify the impact of Gprof with the elapsed time of our
application.

I The sampling period (that is printed at the beginning of the flat
profile) says how often samples are taken. The rule of thumb is
that a run-time execution will be accurate if it is considerably
bigger than the sampling period (this give us a brute-force
estimate of the expected error (in seconds) of the Gprof
analysis.

gprof: other limitations
I Gprof "granularity" (which is strictly related to its "sampling

rate") is quite high. Therefore, is not so easy to estimate
complex real-world application performances and fine tuning is
quite difficult (also, knowing in advance which is the
function/routine which is responsible for the most of the cycles
of a given applications).

I Gprof intrusivity may be quite huge. It is a good practice to
compare the "naive" execution with the "gprof" execution and
verify the impact of Gprof with the elapsed time of our
application.

I The sampling period (that is printed at the beginning of the flat
profile) says how often samples are taken. The rule of thumb is
that a run-time execution will be accurate if it is considerably
bigger than the sampling period (this give us a brute-force
estimate of the expected error (in seconds) of the Gprof
analysis.

gprof: other limitations
I Gprof "granularity" (which is strictly related to its "sampling

rate") is quite high. Therefore, is not so easy to estimate
complex real-world application performances and fine tuning is
quite difficult (also, knowing in advance which is the
function/routine which is responsible for the most of the cycles
of a given applications).

I Gprof intrusivity may be quite huge. It is a good practice to
compare the "naive" execution with the "gprof" execution and
verify the impact of Gprof with the elapsed time of our
application.

I The sampling period (that is printed at the beginning of the flat
profile) says how often samples are taken. The rule of thumb is
that a run-time execution will be accurate if it is considerably
bigger than the sampling period (this give us a brute-force
estimate of the expected error (in seconds) of the Gprof
analysis.

gprof: other limitations
I Gprof "granularity" (which is strictly related to its "sampling

rate") is quite high. Therefore, is not so easy to estimate
complex real-world application performances and fine tuning is
quite difficult (also, knowing in advance which is the
function/routine which is responsible for the most of the cycles
of a given applications).

I Gprof intrusivity may be quite huge. It is a good practice to
compare the "naive" execution with the "gprof" execution and
verify the impact of Gprof with the elapsed time of our
application.

I The sampling period (that is printed at the beginning of the flat
profile) says how often samples are taken. The rule of thumb is
that a run-time execution will be accurate if it is considerably
bigger than the sampling period (this give us a brute-force
estimate of the expected error (in seconds) of the Gprof
analysis.

Gprof: Hands-on

I Profiling of a serial code solving a Partial Differential Equation
problem.

I Use Gprof tool to profile the applications. Compare the results
of Gprof analysis changing the size of the problem.

I Source files under hpcforge:
https://hpc-forge.cineca.it/files/CoursesDev/public/2016/Rome/...
.../Debugging_and_Optimization_of_Scientific_Application/
tar xvfz Gprof_Profiling_exercise.tgz
cd GPROF/JACOBI

I read the content of README file
I execute benchmarks
I try to explain the profiling results in terms of the expected

performances

Time a Function

I Gprof granularity is well suited for finding bottlenecks in a
program at a "function level" (e.g. to find which is the function
responsible for the most of the time).

I After completing the gprof′s analysis, we can manually
"instrument" this routine with time measurement functions to
finalize at a deeper level our analysis.

I This effective technique is used to avoid the large overhead of
Gprof "line-by-line" analysis.

I the drawbacks of this kind of technique is the lack of
"portability" and " the level of coding intrusivity, that is
particularly true for "third-party" complex applications. Some
example:

I etime(),dtime() (Fortran 77)
I cputime(),system_clock(), date_and_time() (Fortran 90)
I clock() (C/C++)
I ...

Time a Function
I Gprof granularity is well suited for finding bottlenecks in a

program at a "function level" (e.g. to find which is the function
responsible for the most of the time).

I After completing the gprof′s analysis, we can manually
"instrument" this routine with time measurement functions to
finalize at a deeper level our analysis.

I This effective technique is used to avoid the large overhead of
Gprof "line-by-line" analysis.

I the drawbacks of this kind of technique is the lack of
"portability" and " the level of coding intrusivity, that is
particularly true for "third-party" complex applications. Some
example:

I etime(),dtime() (Fortran 77)
I cputime(),system_clock(), date_and_time() (Fortran 90)
I clock() (C/C++)
I ...

Time a Function
I Gprof granularity is well suited for finding bottlenecks in a

program at a "function level" (e.g. to find which is the function
responsible for the most of the time).

I After completing the gprof′s analysis, we can manually
"instrument" this routine with time measurement functions to
finalize at a deeper level our analysis.

I This effective technique is used to avoid the large overhead of
Gprof "line-by-line" analysis.

I the drawbacks of this kind of technique is the lack of
"portability" and " the level of coding intrusivity, that is
particularly true for "third-party" complex applications. Some
example:

I etime(),dtime() (Fortran 77)
I cputime(),system_clock(), date_and_time() (Fortran 90)
I clock() (C/C++)
I ...

Time a Function
I Gprof granularity is well suited for finding bottlenecks in a

program at a "function level" (e.g. to find which is the function
responsible for the most of the time).

I After completing the gprof′s analysis, we can manually
"instrument" this routine with time measurement functions to
finalize at a deeper level our analysis.

I This effective technique is used to avoid the large overhead of
Gprof "line-by-line" analysis.

I the drawbacks of this kind of technique is the lack of
"portability" and " the level of coding intrusivity, that is
particularly true for "third-party" complex applications. Some
example:

I etime(),dtime() (Fortran 77)
I cputime(),system_clock(), date_and_time() (Fortran 90)
I clock() (C/C++)
I ...

Time a Function
I Gprof granularity is well suited for finding bottlenecks in a

program at a "function level" (e.g. to find which is the function
responsible for the most of the time).

I After completing the gprof′s analysis, we can manually
"instrument" this routine with time measurement functions to
finalize at a deeper level our analysis.

I This effective technique is used to avoid the large overhead of
Gprof "line-by-line" analysis.

I the drawbacks of this kind of technique is the lack of
"portability" and " the level of coding intrusivity, that is
particularly true for "third-party" complex applications. Some
example:

I etime(),dtime() (Fortran 77)
I cputime(),system_clock(), date_and_time() (Fortran 90)
I clock() (C/C++)
I ...

Time a Function
I Gprof granularity is well suited for finding bottlenecks in a

program at a "function level" (e.g. to find which is the function
responsible for the most of the time).

I After completing the gprof′s analysis, we can manually
"instrument" this routine with time measurement functions to
finalize at a deeper level our analysis.

I This effective technique is used to avoid the large overhead of
Gprof "line-by-line" analysis.

I the drawbacks of this kind of technique is the lack of
"portability" and " the level of coding intrusivity, that is
particularly true for "third-party" complex applications. Some
example:

I etime(),dtime() (Fortran 77)

I cputime(),system_clock(), date_and_time() (Fortran 90)
I clock() (C/C++)
I ...

Time a Function
I Gprof granularity is well suited for finding bottlenecks in a

program at a "function level" (e.g. to find which is the function
responsible for the most of the time).

I After completing the gprof′s analysis, we can manually
"instrument" this routine with time measurement functions to
finalize at a deeper level our analysis.

I This effective technique is used to avoid the large overhead of
Gprof "line-by-line" analysis.

I the drawbacks of this kind of technique is the lack of
"portability" and " the level of coding intrusivity, that is
particularly true for "third-party" complex applications. Some
example:

I etime(),dtime() (Fortran 77)
I cputime(),system_clock(), date_and_time() (Fortran 90)

I clock() (C/C++)
I ...

Time a Function
I Gprof granularity is well suited for finding bottlenecks in a

program at a "function level" (e.g. to find which is the function
responsible for the most of the time).

I After completing the gprof′s analysis, we can manually
"instrument" this routine with time measurement functions to
finalize at a deeper level our analysis.

I This effective technique is used to avoid the large overhead of
Gprof "line-by-line" analysis.

I the drawbacks of this kind of technique is the lack of
"portability" and " the level of coding intrusivity, that is
particularly true for "third-party" complex applications. Some
example:

I etime(),dtime() (Fortran 77)
I cputime(),system_clock(), date_and_time() (Fortran 90)
I clock() (C/C++)
I ...

C/C++ example

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
clock_t time1, time2;
double dub_time;
i n t main(){
i n t i,j,k,nn=1000;
double c[nn][nn],a[nn][nn],b[nn][nn];
...
time1 = clock();
for (i = 0; i < nn; i++)
for (k = 0; k < nn; k++)
for (j = 0; j < nn; j ++)
c[i][j] = c[i][j] + a[i][k]*b[k][j];
time2 = clock();
dub_time = (time2 - time1)/(double) CLOCKS_PER_SEC;
printf("Time -----------------> %lf \n", dub_time);
...
return 0;
}

Fortran example

rea l(8)::a(1000,1000),b(1000,1000),c(1000,1000)
rea l(8) ::t1,t2
integer :: time_array(8)
a=0;b=0;c=0;n=1000
...
...
c a l l date_and_time(values=time_array)
t1 = 3600.*time_array(5)+60.*time_array(6)+time_array(7)+time_array(8)/1000.
do j = 1,n
do k = 1,n
do i = 1,n
c(i,j) = c(i,j) + a(i,k)*b(k,j)
enddo
enddo
enddo
c a l l date_and_time(values=time_array)
t2 = 3600.*time_array(5)+60.*time_array(6)+time_array(7)+time_array(8)/1000.
write(6,*) t2-t1
...
...
end

Outline

Introduction

Architectures

Cache and memory system

Pipeline

Profilers
Motivations
time
top
gprof
Scalasca
Papi
Final considerations

Scalasca: overview
I Tool developed by Felix Wolf in a collaboration between Juelich

Supercomputing Centre and and the German Research School
for Simulation Sciences.

I Scalasca was borned as a "successor" to another well-known
tool (KOJAK)

I It is the reference toolset for the "scalable" "performance
analysis" of large-scale parallel applications (MPI & OpenMP).

I Can be installed and used on practically all the modern High
Performance Computing (HPC) machines with dozens of
thousand of "cores"....

I ...but also on "medium-size" parallel architectures.

I It′s an "open-source" (but licensed) tool, continuously updated
and mantained from Juelich.

I See: www.scalasca.org

Scalasca: overview
I Tool developed by Felix Wolf in a collaboration between Juelich

Supercomputing Centre and and the German Research School
for Simulation Sciences.

I Scalasca was borned as a "successor" to another well-known
tool (KOJAK)

I It is the reference toolset for the "scalable" "performance
analysis" of large-scale parallel applications (MPI & OpenMP).

I Can be installed and used on practically all the modern High
Performance Computing (HPC) machines with dozens of
thousand of "cores"....

I ...but also on "medium-size" parallel architectures.

I It′s an "open-source" (but licensed) tool, continuously updated
and mantained from Juelich.

I See: www.scalasca.org

Scalasca: overview
I Tool developed by Felix Wolf in a collaboration between Juelich

Supercomputing Centre and and the German Research School
for Simulation Sciences.

I Scalasca was borned as a "successor" to another well-known
tool (KOJAK)

I It is the reference toolset for the "scalable" "performance
analysis" of large-scale parallel applications (MPI & OpenMP).

I Can be installed and used on practically all the modern High
Performance Computing (HPC) machines with dozens of
thousand of "cores"....

I ...but also on "medium-size" parallel architectures.

I It′s an "open-source" (but licensed) tool, continuously updated
and mantained from Juelich.

I See: www.scalasca.org

Scalasca: overview
I Tool developed by Felix Wolf in a collaboration between Juelich

Supercomputing Centre and and the German Research School
for Simulation Sciences.

I Scalasca was borned as a "successor" to another well-known
tool (KOJAK)

I It is the reference toolset for the "scalable" "performance
analysis" of large-scale parallel applications (MPI & OpenMP).

I Can be installed and used on practically all the modern High
Performance Computing (HPC) machines with dozens of
thousand of "cores"....

I ...but also on "medium-size" parallel architectures.

I It′s an "open-source" (but licensed) tool, continuously updated
and mantained from Juelich.

I See: www.scalasca.org

Scalasca: overview

I Stuitable for Fortran, C e C++ applications.

I Scalasca analysis can be done using two different workflows:
I "summary" workflow, suitable to obtain aggregated informations

for our application (but detailed at the single instruction level)
and

I a "tracing" workflow, "process–local" and suitable to aggregate a
huge variety of informations (qualitatively enriched). This report
can be particolarly demanging in terms of computing, memory
and storage resources.

I After running the instrumented code on the parallel machine,
Scalasca is able to load "tracing" files in memory and analize
them in parallel using the same number of cores of the original
application.

Scalasca: overview

I Stuitable for Fortran, C e C++ applications.
I Scalasca analysis can be done using two different workflows:

I "summary" workflow, suitable to obtain aggregated informations
for our application (but detailed at the single instruction level)
and

I a "tracing" workflow, "process–local" and suitable to aggregate a
huge variety of informations (qualitatively enriched). This report
can be particolarly demanging in terms of computing, memory
and storage resources.

I After running the instrumented code on the parallel machine,
Scalasca is able to load "tracing" files in memory and analize
them in parallel using the same number of cores of the original
application.

Scalasca: overview

I Stuitable for Fortran, C e C++ applications.
I Scalasca analysis can be done using two different workflows:

I "summary" workflow, suitable to obtain aggregated informations
for our application (but detailed at the single instruction level)
and

I a "tracing" workflow, "process–local" and suitable to aggregate a
huge variety of informations (qualitatively enriched). This report
can be particolarly demanging in terms of computing, memory
and storage resources.

I After running the instrumented code on the parallel machine,
Scalasca is able to load "tracing" files in memory and analize
them in parallel using the same number of cores of the original
application.

Scalasca: overview

I Stuitable for Fortran, C e C++ applications.
I Scalasca analysis can be done using two different workflows:

I "summary" workflow, suitable to obtain aggregated informations
for our application (but detailed at the single instruction level)
and

I a "tracing" workflow, "process–local" and suitable to aggregate a
huge variety of informations (qualitatively enriched). This report
can be particolarly demanging in terms of computing, memory
and storage resources.

I After running the instrumented code on the parallel machine,
Scalasca is able to load "tracing" files in memory and analize
them in parallel using the same number of cores of the original
application.

Scalasca: overview

I Stuitable for Fortran, C e C++ applications.
I Scalasca analysis can be done using two different workflows:

I "summary" workflow, suitable to obtain aggregated informations
for our application (but detailed at the single instruction level)
and

I a "tracing" workflow, "process–local" and suitable to aggregate a
huge variety of informations (qualitatively enriched). This report
can be particolarly demanging in terms of computing, memory
and storage resources.

I After running the instrumented code on the parallel machine,
Scalasca is able to load "tracing" files in memory and analize
them in parallel using the same number of cores of the original
application.

Scalasca: comprehensive guide

The entire analysis process can be divided into three steps:

I Compilation (source code is "instrumented"):

scalasca -instrument [options_scalasca]

ifort -openmp [other_options]
<codice_sorgente>

scalasca -instrument [options_scalasca] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory epik_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] epik_[characteristics]

Scalasca: comprehensive guide

The entire analysis process can be divided into three steps:
I Compilation (source code is "instrumented"):

scalasca -instrument [options_scalasca]

ifort -openmp [other_options]
<codice_sorgente>

scalasca -instrument [options_scalasca] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory epik_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] epik_[characteristics]

Scalasca: comprehensive guide

The entire analysis process can be divided into three steps:
I Compilation (source code is "instrumented"):

scalasca -instrument [options_scalasca]

ifort -openmp [other_options]
<codice_sorgente>

scalasca -instrument [options_scalasca] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory epik_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] epik_[characteristics]

Scalasca: comprehensive guide

The entire analysis process can be divided into three steps:
I Compilation (source code is "instrumented"):

scalasca -instrument [options_scalasca] ifort -openmp [other_options]
<codice_sorgente>

scalasca -instrument [options_scalasca] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory epik_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] epik_[characteristics]

Scalasca: comprehensive guide

The entire analysis process can be divided into three steps:
I Compilation (source code is "instrumented"):

scalasca -instrument [options_scalasca] ifort -openmp [other_options]
<codice_sorgente>

scalasca -instrument [options_scalasca]

mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory epik_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] epik_[characteristics]

Scalasca: comprehensive guide

The entire analysis process can be divided into three steps:
I Compilation (source code is "instrumented"):

scalasca -instrument [options_scalasca] ifort -openmp [other_options]
<codice_sorgente>
scalasca -instrument [options_scalasca] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory epik_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] epik_[characteristics]

Scalasca: comprehensive guide

The entire analysis process can be divided into three steps:
I Compilation (source code is "instrumented"):

scalasca -instrument [options_scalasca] ifort -openmp [other_options]
<codice_sorgente>
scalasca -instrument [options_scalasca] mpif90 [options] <source_code>

I Execution:

scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory epik_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] epik_[characteristics]

Scalasca: comprehensive guide

The entire analysis process can be divided into three steps:
I Compilation (source code is "instrumented"):

scalasca -instrument [options_scalasca] ifort -openmp [other_options]
<codice_sorgente>
scalasca -instrument [options_scalasca] mpif90 [options] <source_code>

I Execution:

scalasca -analyze [options_scalasca]

<executable_code>

scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory epik_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] epik_[characteristics]

Scalasca: comprehensive guide

The entire analysis process can be divided into three steps:
I Compilation (source code is "instrumented"):

scalasca -instrument [options_scalasca] ifort -openmp [other_options]
<codice_sorgente>
scalasca -instrument [options_scalasca] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>

scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory epik_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] epik_[characteristics]

Scalasca: comprehensive guide

The entire analysis process can be divided into three steps:
I Compilation (source code is "instrumented"):

scalasca -instrument [options_scalasca] ifort -openmp [other_options]
<codice_sorgente>
scalasca -instrument [options_scalasca] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>

scalasca -analyze [options_scalasca]

mpirun [options] <executable_code>

A directory epik_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] epik_[characteristics]

Scalasca: comprehensive guide

The entire analysis process can be divided into three steps:
I Compilation (source code is "instrumented"):

scalasca -instrument [options_scalasca] ifort -openmp [other_options]
<codice_sorgente>
scalasca -instrument [options_scalasca] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory epik_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] epik_[characteristics]

Scalasca: comprehensive guide

The entire analysis process can be divided into three steps:
I Compilation (source code is "instrumented"):

scalasca -instrument [options_scalasca] ifort -openmp [other_options]
<codice_sorgente>
scalasca -instrument [options_scalasca] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory epik_[characteristics] is created

I Analysis results :
scalasca -examine [options_scalasca] epik_[characteristics]

Scalasca: comprehensive guide

The entire analysis process can be divided into three steps:
I Compilation (source code is "instrumented"):

scalasca -instrument [options_scalasca] ifort -openmp [other_options]
<codice_sorgente>
scalasca -instrument [options_scalasca] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory epik_[characteristics] is created
I Analysis results :

scalasca -examine [options_scalasca] epik_[characteristics]

Scalasca: comprehensive guide

The entire analysis process can be divided into three steps:
I Compilation (source code is "instrumented"):

scalasca -instrument [options_scalasca] ifort -openmp [other_options]
<codice_sorgente>
scalasca -instrument [options_scalasca] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory epik_[characteristics] is created
I Analysis results :

scalasca -examine [options_scalasca] epik_[characteristics]

Scalasca: score-P integration

Starting from Scalasca 2.x release, users are strongly
encouraged to use the score-P instrumenter directly:

I Compilation (source code is "instrumented" using scorep
command):

scorep [options_scorep]

ifort -openmp [other_options] <codice_sorgente>

scorep [options_scorep] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory scorep_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] scorep_[characteristics]

Scalasca: score-P integration

Starting from Scalasca 2.x release, users are strongly
encouraged to use the score-P instrumenter directly:

I Compilation (source code is "instrumented" using scorep
command):

scorep [options_scorep]

ifort -openmp [other_options] <codice_sorgente>

scorep [options_scorep] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory scorep_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] scorep_[characteristics]

Scalasca: score-P integration

Starting from Scalasca 2.x release, users are strongly
encouraged to use the score-P instrumenter directly:

I Compilation (source code is "instrumented" using scorep
command):

scorep [options_scorep]

ifort -openmp [other_options] <codice_sorgente>

scorep [options_scorep] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory scorep_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] scorep_[characteristics]

Scalasca: score-P integration

Starting from Scalasca 2.x release, users are strongly
encouraged to use the score-P instrumenter directly:

I Compilation (source code is "instrumented" using scorep
command):
scorep [options_scorep] ifort -openmp [other_options] <codice_sorgente>

scorep [options_scorep] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory scorep_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] scorep_[characteristics]

Scalasca: score-P integration

Starting from Scalasca 2.x release, users are strongly
encouraged to use the score-P instrumenter directly:

I Compilation (source code is "instrumented" using scorep
command):
scorep [options_scorep] ifort -openmp [other_options] <codice_sorgente>

scorep [options_scorep]

mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory scorep_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] scorep_[characteristics]

Scalasca: score-P integration

Starting from Scalasca 2.x release, users are strongly
encouraged to use the score-P instrumenter directly:

I Compilation (source code is "instrumented" using scorep
command):
scorep [options_scorep] ifort -openmp [other_options] <codice_sorgente>
scorep [options_scorep] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory scorep_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] scorep_[characteristics]

Scalasca: score-P integration

Starting from Scalasca 2.x release, users are strongly
encouraged to use the score-P instrumenter directly:

I Compilation (source code is "instrumented" using scorep
command):
scorep [options_scorep] ifort -openmp [other_options] <codice_sorgente>
scorep [options_scorep] mpif90 [options] <source_code>

I Execution:

scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory scorep_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] scorep_[characteristics]

Scalasca: score-P integration

Starting from Scalasca 2.x release, users are strongly
encouraged to use the score-P instrumenter directly:

I Compilation (source code is "instrumented" using scorep
command):
scorep [options_scorep] ifort -openmp [other_options] <codice_sorgente>
scorep [options_scorep] mpif90 [options] <source_code>

I Execution:

scalasca -analyze [options_scalasca]

<executable_code>

scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory scorep_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] scorep_[characteristics]

Scalasca: score-P integration

Starting from Scalasca 2.x release, users are strongly
encouraged to use the score-P instrumenter directly:

I Compilation (source code is "instrumented" using scorep
command):
scorep [options_scorep] ifort -openmp [other_options] <codice_sorgente>
scorep [options_scorep] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>

scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory scorep_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] scorep_[characteristics]

Scalasca: score-P integration

Starting from Scalasca 2.x release, users are strongly
encouraged to use the score-P instrumenter directly:

I Compilation (source code is "instrumented" using scorep
command):
scorep [options_scorep] ifort -openmp [other_options] <codice_sorgente>
scorep [options_scorep] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>

scalasca -analyze [options_scalasca]

mpirun [options] <executable_code>

A directory scorep_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] scorep_[characteristics]

Scalasca: score-P integration

Starting from Scalasca 2.x release, users are strongly
encouraged to use the score-P instrumenter directly:

I Compilation (source code is "instrumented" using scorep
command):
scorep [options_scorep] ifort -openmp [other_options] <codice_sorgente>
scorep [options_scorep] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory scorep_[characteristics]

is created

I Analysis results :
scalasca -examine [options_scalasca] scorep_[characteristics]

Scalasca: score-P integration

Starting from Scalasca 2.x release, users are strongly
encouraged to use the score-P instrumenter directly:

I Compilation (source code is "instrumented" using scorep
command):
scorep [options_scorep] ifort -openmp [other_options] <codice_sorgente>
scorep [options_scorep] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory scorep_[characteristics] is created

I Analysis results :
scalasca -examine [options_scalasca] scorep_[characteristics]

Scalasca: score-P integration

Starting from Scalasca 2.x release, users are strongly
encouraged to use the score-P instrumenter directly:

I Compilation (source code is "instrumented" using scorep
command):
scorep [options_scorep] ifort -openmp [other_options] <codice_sorgente>
scorep [options_scorep] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory scorep_[characteristics] is created
I Analysis results :

scalasca -examine [options_scalasca] scorep_[characteristics]

Scalasca: score-P integration

Starting from Scalasca 2.x release, users are strongly
encouraged to use the score-P instrumenter directly:

I Compilation (source code is "instrumented" using scorep
command):
scorep [options_scorep] ifort -openmp [other_options] <codice_sorgente>
scorep [options_scorep] mpif90 [options] <source_code>

I Execution:
scalasca -analyze [options_scalasca] <executable_code>
scalasca -analyze [options_scalasca] mpirun [options] <executable_code>

A directory scorep_[characteristics] is created
I Analysis results :

scalasca -examine [options_scalasca] scorep_[characteristics]

Scalasca: a simple example

I The benchmark is the well known Himeno Benchmark
(simplified Poisson solver):

I Parallelized using OpenMP.
I Run up to 16 cores ("moderate parallelism") on a single

Galileo node
I Intel compiler(ifort -O3 -openmp...command)
I Some useful numbers:

I Number of (grid) points 4276737.
I Number of iterations 100.

Scalasca: a simple example

I The benchmark is the well known Himeno Benchmark
(simplified Poisson solver):

I Parallelized using OpenMP.

I Run up to 16 cores ("moderate parallelism") on a single
Galileo node

I Intel compiler(ifort -O3 -openmp...command)
I Some useful numbers:

I Number of (grid) points 4276737.
I Number of iterations 100.

Scalasca: a simple example

I The benchmark is the well known Himeno Benchmark
(simplified Poisson solver):

I Parallelized using OpenMP.
I Run up to 16 cores ("moderate parallelism") on a single

Galileo node

I Intel compiler(ifort -O3 -openmp...command)
I Some useful numbers:

I Number of (grid) points 4276737.
I Number of iterations 100.

Scalasca: a simple example

I The benchmark is the well known Himeno Benchmark
(simplified Poisson solver):

I Parallelized using OpenMP.
I Run up to 16 cores ("moderate parallelism") on a single

Galileo node
I Intel compiler(ifort -O3 -openmp...command)

I Some useful numbers:
I Number of (grid) points 4276737.
I Number of iterations 100.

Scalasca: a simple example

I The benchmark is the well known Himeno Benchmark
(simplified Poisson solver):

I Parallelized using OpenMP.
I Run up to 16 cores ("moderate parallelism") on a single

Galileo node
I Intel compiler(ifort -O3 -openmp...command)
I Some useful numbers:

I Number of (grid) points 4276737.
I Number of iterations 100.

Scalasca: a simple example

I The benchmark is the well known Himeno Benchmark
(simplified Poisson solver):

I Parallelized using OpenMP.
I Run up to 16 cores ("moderate parallelism") on a single

Galileo node
I Intel compiler(ifort -O3 -openmp...command)
I Some useful numbers:

I Number of (grid) points 4276737.

I Number of iterations 100.

Scalasca: a simple example

I The benchmark is the well known Himeno Benchmark
(simplified Poisson solver):

I Parallelized using OpenMP.
I Run up to 16 cores ("moderate parallelism") on a single

Galileo node
I Intel compiler(ifort -O3 -openmp...command)
I Some useful numbers:

I Number of (grid) points 4276737.
I Number of iterations 100.

Scalasca: compilation ed execution

scorep ifort -O3 -openmp himenoBMTxp_omp.f90

export OMP_NUM_THREADS=2;scan ./a.out

S=C=A=N: Scalasca 2.2 runtime summarization
S=C=A=N: Abort: measurement blocked by existing archive ./scorep_a_Ox2_sum
rm -rf scorep_a_Ox2_sum/
export OMP_NUM_THREADS=2;scan ./a.out
S=C=A=N: Wed Apr 13 11:25:10 2016: Collect done (status=0) 5s
S=C=A=N: ./scorep_a_Ox2_sum complete.

Scalasca: compilation ed execution

scorep ifort -O3 -openmp himenoBMTxp_omp.f90

export OMP_NUM_THREADS=2;scan ./a.out

S=C=A=N: Scalasca 2.2 runtime summarization
S=C=A=N: Abort: measurement blocked by existing archive ./scorep_a_Ox2_sum
rm -rf scorep_a_Ox2_sum/
export OMP_NUM_THREADS=2;scan ./a.out
S=C=A=N: Wed Apr 13 11:25:10 2016: Collect done (status=0) 5s
S=C=A=N: ./scorep_a_Ox2_sum complete.

Scalasca: compilation ed execution

scorep ifort -O3 -openmp himenoBMTxp_omp.f90

export OMP_NUM_THREADS=2;scan ./a.out

S=C=A=N: Scalasca 2.2 runtime summarization
S=C=A=N: Abort: measurement blocked by existing archive ./scorep_a_Ox2_sum
rm -rf scorep_a_Ox2_sum/
export OMP_NUM_THREADS=2;scan ./a.out
S=C=A=N: Wed Apr 13 11:25:10 2016: Collect done (status=0) 5s
S=C=A=N: ./scorep_a_Ox2_sum complete.

Scalasca: analysis of results

square -s scorep_a_Ox2_sum/
INFO: Post-processing runtime summarization report...
/cineca/prod/tools/scalasca/2.2/intelmpi--5.0.2--binary/bin/scorep-score -r ./scorep_a_Ox2_sum/profile.cubex > ./scorep_a_Ox2_sum/scorep.score
INFO: Score report written to ./scorep_a_Ox2_sum/scorep.score

Estimated aggregate size of event trace: 28kB
Estimated requirements for largest trace buffer (max_buf): 28kB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 7MB
(hint: When tracing set SCOREP_TOTAL_MEMORY=7MB to avoid intermediate flushes
or reduce requirements using USR regions filters.)

...
flt type max_buf[B] visits time[s] time[%] time/visit[us] region

ALL 27,918 1,157 6.97 100.0 6025.80 ALL
OMP 27,654 1,146 3.46 49.6 3016.49 OMP
USR 192 8 3.51 50.4 438994.57 USR
COM 72 3 0.00 0.0 1001.07 COM

...

Scalasca: analysis of results

square -s scorep_a_Ox2_sum/
INFO: Post-processing runtime summarization report...
/cineca/prod/tools/scalasca/2.2/intelmpi--5.0.2--binary/bin/scorep-score -r ./scorep_a_Ox2_sum/profile.cubex > ./scorep_a_Ox2_sum/scorep.score
INFO: Score report written to ./scorep_a_Ox2_sum/scorep.score

Estimated aggregate size of event trace: 28kB
Estimated requirements for largest trace buffer (max_buf): 28kB
Estimated memory requirements (SCOREP_TOTAL_MEMORY): 7MB
(hint: When tracing set SCOREP_TOTAL_MEMORY=7MB to avoid intermediate flushes
or reduce requirements using USR regions filters.)

...
flt type max_buf[B] visits time[s] time[%] time/visit[us] region

ALL 27,918 1,157 6.97 100.0 6025.80 ALL
OMP 27,654 1,146 3.46 49.6 3016.49 OMP
USR 192 8 3.51 50.4 438994.57 USR
COM 72 3 0.00 0.0 1001.07 COM

...

Scalasca output: short description

1. Output is divided into different categories, determined for each region according to its
type of call path.

I ALL: aggregated results containing all the regions or "function
calls" within program source(s)

I OMP: regions containing parallelization constructs (OpenMP or
MPI or both).

I USR: regions which are involved in purely local operations
within process.

I COM:the rest of not (USR and OMP (or MPI)).
2. The maximum estimated "trace-buffer" capacity (in bytes) and other parameters.

Scalasca output: short description

1. Output is divided into different categories, determined for each region according to its
type of call path.

I ALL: aggregated results containing all the regions or "function
calls" within program source(s)

I OMP: regions containing parallelization constructs (OpenMP or
MPI or both).

I USR: regions which are involved in purely local operations
within process.

I COM:the rest of not (USR and OMP (or MPI)).
2. The maximum estimated "trace-buffer" capacity (in bytes) and other parameters.

Scalasca output: short description

1. Output is divided into different categories, determined for each region according to its
type of call path.

I ALL: aggregated results containing all the regions or "function
calls" within program source(s)

I OMP: regions containing parallelization constructs (OpenMP or
MPI or both).

I USR: regions which are involved in purely local operations
within process.

I COM:the rest of not (USR and OMP (or MPI)).
2. The maximum estimated "trace-buffer" capacity (in bytes) and other parameters.

Scalasca output: short description

1. Output is divided into different categories, determined for each region according to its
type of call path.

I ALL: aggregated results containing all the regions or "function
calls" within program source(s)

I OMP: regions containing parallelization constructs (OpenMP or
MPI or both).

I USR: regions which are involved in purely local operations
within process.

I COM:the rest of not (USR and OMP (or MPI)).
2. The maximum estimated "trace-buffer" capacity (in bytes) and other parameters.

Scalasca output: short description

1. Output is divided into different categories, determined for each region according to its
type of call path.

I ALL: aggregated results containing all the regions or "function
calls" within program source(s)

I OMP: regions containing parallelization constructs (OpenMP or
MPI or both).

I USR: regions which are involved in purely local operations
within process.

I COM:the rest of not (USR and OMP (or MPI)).

2. The maximum estimated "trace-buffer" capacity (in bytes) and other parameters.

Scalasca output: short description

1. Output is divided into different categories, determined for each region according to its
type of call path.

I ALL: aggregated results containing all the regions or "function
calls" within program source(s)

I OMP: regions containing parallelization constructs (OpenMP or
MPI or both).

I USR: regions which are involved in purely local operations
within process.

I COM:the rest of not (USR and OMP (or MPI)).
2. The maximum estimated "trace-buffer" capacity (in bytes) and other parameters.

Scalasca output: a greater detail

cat scorep_a_Ox2_sum/scorep.score

...
type max_buf[B] visits time[s] time[%] time/visit[us] region
OMP 4,944 206 0.00 0.0 0.64 !$omp atomic @himenoBMTxp_omp.f90:335
OMP 4,944 206 1.26 18.1 6131.05 !$omp do @himenoBMTxp_omp.f90:329
OMP 4,944 206 0.04 0.6 192.49 !$omp barrier @himenoBMTxp_omp.f90:328
OMP 4,944 206 2.12 30.4 10297.42 !$omp do @himenoBMTxp_omp.f90:305
OMP 4,944 206 0.03 0.5 152.34 !$omp barrier @himenoBMTxp_omp.f90:300
OMP 2,472 103 0.00 0.0 0.35 !$omp master @himenoBMTxp_omp.f90:301
OMP 196 4 0.00 0.0 174.94 !$omp parallel @himenoBMTxp_omp.f90:297
OMP 98 2 0.00 0.0 5.88 !$omp parallel @himenoBMTxp_omp.f90:97
USR 96 4 0.00 0.0 0.94 second_
OMP 96 4 0.00 0.0 161.78 !$omp implicit barrier @himenoBMTxp_omp.f90:101
USR 24 1 0.07 1.0 66482.94 initmt_
USR 24 1 0.00 0.0 2589.32 initmem_
USR 24 1 0.00 0.0 16.33 grid_set_
OMP 24 1 0.00 0.0 11.00 !$omp master @himenoBMTxp_omp.f90:98
USR 24 1 3.44 49.4 3442864.26 readparam_
COM 24 1 0.00 0.0 2968.85 MAIN__

....

Scalasca output: a greater detail

cat scorep_a_Ox2_sum/scorep.score

...
type max_buf[B] visits time[s] time[%] time/visit[us] region
OMP 4,944 206 0.00 0.0 0.64 !$omp atomic @himenoBMTxp_omp.f90:335
OMP 4,944 206 1.26 18.1 6131.05 !$omp do @himenoBMTxp_omp.f90:329
OMP 4,944 206 0.04 0.6 192.49 !$omp barrier @himenoBMTxp_omp.f90:328
OMP 4,944 206 2.12 30.4 10297.42 !$omp do @himenoBMTxp_omp.f90:305
OMP 4,944 206 0.03 0.5 152.34 !$omp barrier @himenoBMTxp_omp.f90:300
OMP 2,472 103 0.00 0.0 0.35 !$omp master @himenoBMTxp_omp.f90:301
OMP 196 4 0.00 0.0 174.94 !$omp parallel @himenoBMTxp_omp.f90:297
OMP 98 2 0.00 0.0 5.88 !$omp parallel @himenoBMTxp_omp.f90:97
USR 96 4 0.00 0.0 0.94 second_
OMP 96 4 0.00 0.0 161.78 !$omp implicit barrier @himenoBMTxp_omp.f90:101
USR 24 1 0.07 1.0 66482.94 initmt_
USR 24 1 0.00 0.0 2589.32 initmem_
USR 24 1 0.00 0.0 16.33 grid_set_
OMP 24 1 0.00 0.0 11.00 !$omp master @himenoBMTxp_omp.f90:98
USR 24 1 3.44 49.4 3442864.26 readparam_
COM 24 1 0.00 0.0 2968.85 MAIN__

....

Scalasca: graphic output

Scalasca: graphic output

Scalasca: graphic output

Scalasca: summary vs tracing

I Both analysis workflows are useful.
I "summary" it generates aggregated informations (but detailed at

a single instruction level)
I a "tracing", "process–local" analysis (much more informations)

that can be require huge amount of "resources"
I the "tracing" analysis report includes metrics that are not

available in the "summary" report.

Scalasca: summary vs tracing

I Both analysis workflows are useful.

I "summary" it generates aggregated informations (but detailed at
a single instruction level)

I a "tracing", "process–local" analysis (much more informations)
that can be require huge amount of "resources"

I the "tracing" analysis report includes metrics that are not
available in the "summary" report.

Scalasca: summary vs tracing

I Both analysis workflows are useful.
I "summary" it generates aggregated informations (but detailed at

a single instruction level)

I a "tracing", "process–local" analysis (much more informations)
that can be require huge amount of "resources"

I the "tracing" analysis report includes metrics that are not
available in the "summary" report.

Scalasca: summary vs tracing

I Both analysis workflows are useful.
I "summary" it generates aggregated informations (but detailed at

a single instruction level)
I a "tracing", "process–local" analysis (much more informations)

that can be require huge amount of "resources"

I the "tracing" analysis report includes metrics that are not
available in the "summary" report.

Scalasca: summary vs tracing

I Both analysis workflows are useful.
I "summary" it generates aggregated informations (but detailed at

a single instruction level)
I a "tracing", "process–local" analysis (much more informations)

that can be require huge amount of "resources"
I the "tracing" analysis report includes metrics that are not

available in the "summary" report.

Scalasca: tracing

[planucar@node166 SCALASCA]$ export OMP_NUM_THREADS=2;scan -t ./a.out

S=C=A=N: Scalasca 2.2 trace collection and analysis
S=C=A=N: ./scorep_a_Ox2_trace experiment archive
S=C=A=N: Wed Apr 13 14:47:05 2016: Collect start
./a.out
...
S=C=A=N: Wed Apr 13 14:47:11 2016: Collect done (status=0) 6s
S=C=A=N: Wed Apr 13 14:47:11 2016: Analyze start
/cineca/prod/tools/scalasca/2.2/intelmpi--5.0.2--binary/bin/scout.omp ./scorep_a_Ox2_trace/traces.otf2
...
Analyzing experiment archive ./scorep_a_Ox2_trace/traces.otf2
Writing analysis report ... done (0.034s).
Max. memory usage : 15.383MB
Total processing time : 0.070s
S=C=A=N: Wed Apr 13 14:47:11 2016: Analyze done (status=0) 0s
Warning: analyzed trace data retained in ./scorep_a_Ox2_trace/traces!
S=C=A=N: ./scorep_a_Ox2_trace complete.

Scalasca: tracing

[planucar@node166 SCALASCA]$ export OMP_NUM_THREADS=2;scan -t ./a.out

S=C=A=N: Scalasca 2.2 trace collection and analysis
S=C=A=N: ./scorep_a_Ox2_trace experiment archive
S=C=A=N: Wed Apr 13 14:47:05 2016: Collect start
./a.out
...
S=C=A=N: Wed Apr 13 14:47:11 2016: Collect done (status=0) 6s
S=C=A=N: Wed Apr 13 14:47:11 2016: Analyze start
/cineca/prod/tools/scalasca/2.2/intelmpi--5.0.2--binary/bin/scout.omp ./scorep_a_Ox2_trace/traces.otf2
...
Analyzing experiment archive ./scorep_a_Ox2_trace/traces.otf2
Writing analysis report ... done (0.034s).
Max. memory usage : 15.383MB
Total processing time : 0.070s
S=C=A=N: Wed Apr 13 14:47:11 2016: Analyze done (status=0) 0s
Warning: analyzed trace data retained in ./scorep_a_Ox2_trace/traces!
S=C=A=N: ./scorep_a_Ox2_trace complete.

Scalasca: "tracing" analysis
cube scorep_a_Ox2_trace/

Scalasca: "tracing" analysis

Outline

Introduction

Architectures

Cache and memory system

Pipeline

Profilers
Motivations
time
top
gprof
Scalasca
Papi
Final considerations

Papi
I Gprof and other tools strengths are clearly the simplicity of use

and the poor level of intrusivity.

I Often, this is good enough to "win". Sometimes not. This is
exactly the case when we want to increase the level of
accuracy of the profiling, for example trying to explore
techniques which are related to the underlying hardware. This
is difficult with standard tools. We need something more
accurate.

I PAPI (Performance Application Programming Interface) can be
used having in mind the relation between software
performance and processor events. Main topics:

I portability on a huge variety of Linux, Windows,...machines
(including recent hardware like GPUs, "accelerators" (Intel MIC),
....)

I PAPI is based on the use of so-called Hardware Counters:
"special-purpose" registers built into processor and able to
measure a set of "events" occurring during the execution of our
program.

Papi
I Gprof and other tools strengths are clearly the simplicity of use

and the poor level of intrusivity.
I Often, this is good enough to "win". Sometimes not. This is

exactly the case when we want to increase the level of
accuracy of the profiling, for example trying to explore
techniques which are related to the underlying hardware. This
is difficult with standard tools. We need something more
accurate.

I PAPI (Performance Application Programming Interface) can be
used having in mind the relation between software
performance and processor events. Main topics:

I portability on a huge variety of Linux, Windows,...machines
(including recent hardware like GPUs, "accelerators" (Intel MIC),
....)

I PAPI is based on the use of so-called Hardware Counters:
"special-purpose" registers built into processor and able to
measure a set of "events" occurring during the execution of our
program.

Papi
I Gprof and other tools strengths are clearly the simplicity of use

and the poor level of intrusivity.
I Often, this is good enough to "win". Sometimes not. This is

exactly the case when we want to increase the level of
accuracy of the profiling, for example trying to explore
techniques which are related to the underlying hardware. This
is difficult with standard tools. We need something more
accurate.

I PAPI (Performance Application Programming Interface) can be
used having in mind the relation between software
performance and processor events. Main topics:

I portability on a huge variety of Linux, Windows,...machines
(including recent hardware like GPUs, "accelerators" (Intel MIC),
....)

I PAPI is based on the use of so-called Hardware Counters:
"special-purpose" registers built into processor and able to
measure a set of "events" occurring during the execution of our
program.

Papi
I Gprof and other tools strengths are clearly the simplicity of use

and the poor level of intrusivity.
I Often, this is good enough to "win". Sometimes not. This is

exactly the case when we want to increase the level of
accuracy of the profiling, for example trying to explore
techniques which are related to the underlying hardware. This
is difficult with standard tools. We need something more
accurate.

I PAPI (Performance Application Programming Interface) can be
used having in mind the relation between software
performance and processor events. Main topics:

I portability on a huge variety of Linux, Windows,...machines
(including recent hardware like GPUs, "accelerators" (Intel MIC),
....)

I PAPI is based on the use of so-called Hardware Counters:
"special-purpose" registers built into processor and able to
measure a set of "events" occurring during the execution of our
program.

Papi
I Gprof and other tools strengths are clearly the simplicity of use

and the poor level of intrusivity.
I Often, this is good enough to "win". Sometimes not. This is

exactly the case when we want to increase the level of
accuracy of the profiling, for example trying to explore
techniques which are related to the underlying hardware. This
is difficult with standard tools. We need something more
accurate.

I PAPI (Performance Application Programming Interface) can be
used having in mind the relation between software
performance and processor events. Main topics:

I portability on a huge variety of Linux, Windows,...machines
(including recent hardware like GPUs, "accelerators" (Intel MIC),
....)

I PAPI is based on the use of so-called Hardware Counters:
"special-purpose" registers built into processor and able to
measure a set of "events" occurring during the execution of our
program.

Papi-cont.

I PAPI is essentially an interface to Hardware Counters. We can
distinguish two different interfaces:

I High level interface, a set of (high-level) routines able to collect
informations from a (pre-defined) list of events (PAPI Preset
Events)

I Low level interface, which can be used to manage specific
hardware events. It is meant for experienced application
programmers and tool developers wanting fine-grained
measurement and control of the PAPI interface.

I Please, pay attention to the number of Hardware Counters
available on your machine. This number will return the
maximum number of "events" that can be tracked at the same
time on this machine.

Papi-cont.

I PAPI is essentially an interface to Hardware Counters. We can
distinguish two different interfaces:

I High level interface, a set of (high-level) routines able to collect
informations from a (pre-defined) list of events (PAPI Preset
Events)

I Low level interface, which can be used to manage specific
hardware events. It is meant for experienced application
programmers and tool developers wanting fine-grained
measurement and control of the PAPI interface.

I Please, pay attention to the number of Hardware Counters
available on your machine. This number will return the
maximum number of "events" that can be tracked at the same
time on this machine.

Papi-cont.

I PAPI is essentially an interface to Hardware Counters. We can
distinguish two different interfaces:

I High level interface, a set of (high-level) routines able to collect
informations from a (pre-defined) list of events (PAPI Preset
Events)

I Low level interface, which can be used to manage specific
hardware events. It is meant for experienced application
programmers and tool developers wanting fine-grained
measurement and control of the PAPI interface.

I Please, pay attention to the number of Hardware Counters
available on your machine. This number will return the
maximum number of "events" that can be tracked at the same
time on this machine.

Papi-cont.

I PAPI is essentially an interface to Hardware Counters. We can
distinguish two different interfaces:

I High level interface, a set of (high-level) routines able to collect
informations from a (pre-defined) list of events (PAPI Preset
Events)

I Low level interface, which can be used to manage specific
hardware events. It is meant for experienced application
programmers and tool developers wanting fine-grained
measurement and control of the PAPI interface.

I Please, pay attention to the number of Hardware Counters
available on your machine. This number will return the
maximum number of "events" that can be tracked at the same
time on this machine.

PAPI Preset Events

I This set is a collection of events typically found in many CPUs
that provide performance counters. A PAPI preset event is
something we can always define and use when we want to
tune the performance of a given application.

I PAPI define something like "hundreds" of Preset Events. For a
given platform, a subset of these preset events can be
counted. Let′s see someone:

I PAPI_TOT_CYC - number of total cycles
I PAPI_TOT_INS - number of instructions completed
I PAPI_FP_INS - floating-point instructions
I PAPI_L1_DCA - L1 cache accesses
I PAPI_L1_DCM - L1 cache misses
I PAPI_SR_INS - store instructions
I PAPI_TLB_DM - TLB misses
I PAPI_BR_MSP - conditional branch mispredicted

PAPI Preset Events

I This set is a collection of events typically found in many CPUs
that provide performance counters. A PAPI preset event is
something we can always define and use when we want to
tune the performance of a given application.

I PAPI define something like "hundreds" of Preset Events. For a
given platform, a subset of these preset events can be
counted. Let′s see someone:

I PAPI_TOT_CYC - number of total cycles
I PAPI_TOT_INS - number of instructions completed
I PAPI_FP_INS - floating-point instructions
I PAPI_L1_DCA - L1 cache accesses
I PAPI_L1_DCM - L1 cache misses
I PAPI_SR_INS - store instructions
I PAPI_TLB_DM - TLB misses
I PAPI_BR_MSP - conditional branch mispredicted

PAPI Preset Events

I This set is a collection of events typically found in many CPUs
that provide performance counters. A PAPI preset event is
something we can always define and use when we want to
tune the performance of a given application.

I PAPI define something like "hundreds" of Preset Events. For a
given platform, a subset of these preset events can be
counted. Let′s see someone:

I PAPI_TOT_CYC - number of total cycles

I PAPI_TOT_INS - number of instructions completed
I PAPI_FP_INS - floating-point instructions
I PAPI_L1_DCA - L1 cache accesses
I PAPI_L1_DCM - L1 cache misses
I PAPI_SR_INS - store instructions
I PAPI_TLB_DM - TLB misses
I PAPI_BR_MSP - conditional branch mispredicted

PAPI Preset Events

I This set is a collection of events typically found in many CPUs
that provide performance counters. A PAPI preset event is
something we can always define and use when we want to
tune the performance of a given application.

I PAPI define something like "hundreds" of Preset Events. For a
given platform, a subset of these preset events can be
counted. Let′s see someone:

I PAPI_TOT_CYC - number of total cycles
I PAPI_TOT_INS - number of instructions completed

I PAPI_FP_INS - floating-point instructions
I PAPI_L1_DCA - L1 cache accesses
I PAPI_L1_DCM - L1 cache misses
I PAPI_SR_INS - store instructions
I PAPI_TLB_DM - TLB misses
I PAPI_BR_MSP - conditional branch mispredicted

PAPI Preset Events

I This set is a collection of events typically found in many CPUs
that provide performance counters. A PAPI preset event is
something we can always define and use when we want to
tune the performance of a given application.

I PAPI define something like "hundreds" of Preset Events. For a
given platform, a subset of these preset events can be
counted. Let′s see someone:

I PAPI_TOT_CYC - number of total cycles
I PAPI_TOT_INS - number of instructions completed
I PAPI_FP_INS - floating-point instructions

I PAPI_L1_DCA - L1 cache accesses
I PAPI_L1_DCM - L1 cache misses
I PAPI_SR_INS - store instructions
I PAPI_TLB_DM - TLB misses
I PAPI_BR_MSP - conditional branch mispredicted

PAPI Preset Events

I This set is a collection of events typically found in many CPUs
that provide performance counters. A PAPI preset event is
something we can always define and use when we want to
tune the performance of a given application.

I PAPI define something like "hundreds" of Preset Events. For a
given platform, a subset of these preset events can be
counted. Let′s see someone:

I PAPI_TOT_CYC - number of total cycles
I PAPI_TOT_INS - number of instructions completed
I PAPI_FP_INS - floating-point instructions
I PAPI_L1_DCA - L1 cache accesses

I PAPI_L1_DCM - L1 cache misses
I PAPI_SR_INS - store instructions
I PAPI_TLB_DM - TLB misses
I PAPI_BR_MSP - conditional branch mispredicted

PAPI Preset Events

I This set is a collection of events typically found in many CPUs
that provide performance counters. A PAPI preset event is
something we can always define and use when we want to
tune the performance of a given application.

I PAPI define something like "hundreds" of Preset Events. For a
given platform, a subset of these preset events can be
counted. Let′s see someone:

I PAPI_TOT_CYC - number of total cycles
I PAPI_TOT_INS - number of instructions completed
I PAPI_FP_INS - floating-point instructions
I PAPI_L1_DCA - L1 cache accesses
I PAPI_L1_DCM - L1 cache misses

I PAPI_SR_INS - store instructions
I PAPI_TLB_DM - TLB misses
I PAPI_BR_MSP - conditional branch mispredicted

PAPI Preset Events

I This set is a collection of events typically found in many CPUs
that provide performance counters. A PAPI preset event is
something we can always define and use when we want to
tune the performance of a given application.

I PAPI define something like "hundreds" of Preset Events. For a
given platform, a subset of these preset events can be
counted. Let′s see someone:

I PAPI_TOT_CYC - number of total cycles
I PAPI_TOT_INS - number of instructions completed
I PAPI_FP_INS - floating-point instructions
I PAPI_L1_DCA - L1 cache accesses
I PAPI_L1_DCM - L1 cache misses
I PAPI_SR_INS - store instructions

I PAPI_TLB_DM - TLB misses
I PAPI_BR_MSP - conditional branch mispredicted

PAPI Preset Events

I This set is a collection of events typically found in many CPUs
that provide performance counters. A PAPI preset event is
something we can always define and use when we want to
tune the performance of a given application.

I PAPI define something like "hundreds" of Preset Events. For a
given platform, a subset of these preset events can be
counted. Let′s see someone:

I PAPI_TOT_CYC - number of total cycles
I PAPI_TOT_INS - number of instructions completed
I PAPI_FP_INS - floating-point instructions
I PAPI_L1_DCA - L1 cache accesses
I PAPI_L1_DCM - L1 cache misses
I PAPI_SR_INS - store instructions
I PAPI_TLB_DM - TLB misses

I PAPI_BR_MSP - conditional branch mispredicted

PAPI Preset Events

I This set is a collection of events typically found in many CPUs
that provide performance counters. A PAPI preset event is
something we can always define and use when we want to
tune the performance of a given application.

I PAPI define something like "hundreds" of Preset Events. For a
given platform, a subset of these preset events can be
counted. Let′s see someone:

I PAPI_TOT_CYC - number of total cycles
I PAPI_TOT_INS - number of instructions completed
I PAPI_FP_INS - floating-point instructions
I PAPI_L1_DCA - L1 cache accesses
I PAPI_L1_DCM - L1 cache misses
I PAPI_SR_INS - store instructions
I PAPI_TLB_DM - TLB misses
I PAPI_BR_MSP - conditional branch mispredicted

Papi: C and Fortran interface

Calls to the high-level API are sufficiently clear. Furthermore, is
always possible to call PAPI APIs from C and Fortran sources
(even if PAPI is natively written in C).
Fortran example:
include "fpapi_test.h"
... ; integer events(2), retval ; integer*8 values(2)
... ;
events(1) = PAPI_FP_INS ; events(2) = PAPI_L1_DCM
...

c a l l PAPIf_start_counters(events, 2, retval)
c a l l PAPIf_read_counters(values, 2, retval) ! Clear values

[sezione di codice da monitorare]
c a l l PAPIfstop_counters(values, 2, retval)

pr in t*,’Floating point instructions: ’,values(1)
pr in t*,’ L1 Data Cache Misses: ’,values(2)

...

Papi: C and Fortran interface
C example:
#include <stdio.h>
#include <stdlib.h>
#include "papi.h"

#define NUM_EVENTS 2
#define THRESHOLD 10000
#define ERROR_RETURN(retval) { fprintf(stderr, "Error %d %s:line %d: \n",
retval,__FILE__,__LINE__); exit(retval); }
...
/* stupid codes to be monitored */
void computation_add()

....
i n t main()
{

i n t Events[2] = {PAPI_TOT_INS, PAPI_TOT_CYC};
long long values[NUM_EVENTS];

...
i f ((retval = PAPI_start_counters(Events, NUM_EVENTS)) != PAPI_OK)

ERROR_RETURN(retval);
printf("\nCounter Started: \n");

i f ((retval=PAPI_read_counters(values, NUM_EVENTS)) != PAPI_OK)
ERROR_RETURN(retval);

printf("Read successfully\n");
computation_add();

i f ((retval=PAPI_stop_counters(values, NUM_EVENTS)) != PAPI_OK)
ERROR_RETURN(retval);

printf("Stop successfully\n");
printf("The total instructions executed for addition are %lld \n",values[0]);
printf("The total cycles used are %lld \n", values[1]);

}

PAPI: high-level functions

I A small set of routines which can be used to "instrument" a
program. The functions are:

I PAPI_num_counters - ritorna il numero di hw counters
disponibili

I PAPI_flips - floating point instruction rate
I PAPI_flops - floating point operation rate
I PAPI_ipc - instructions per cycle and time
I PAPI_accum_counters
I PAPI_read_counters - read and reset counters
I PAPI_start_counters - start counting hw events
I PAPI_stop_counters - stop counters return current counts

PAPI: high-level functions

I A small set of routines which can be used to "instrument" a
program. The functions are:

I PAPI_num_counters - ritorna il numero di hw counters
disponibili

I PAPI_flips - floating point instruction rate
I PAPI_flops - floating point operation rate
I PAPI_ipc - instructions per cycle and time
I PAPI_accum_counters
I PAPI_read_counters - read and reset counters
I PAPI_start_counters - start counting hw events
I PAPI_stop_counters - stop counters return current counts

PAPI: high-level functions

I A small set of routines which can be used to "instrument" a
program. The functions are:

I PAPI_num_counters - ritorna il numero di hw counters
disponibili

I PAPI_flips - floating point instruction rate

I PAPI_flops - floating point operation rate
I PAPI_ipc - instructions per cycle and time
I PAPI_accum_counters
I PAPI_read_counters - read and reset counters
I PAPI_start_counters - start counting hw events
I PAPI_stop_counters - stop counters return current counts

PAPI: high-level functions

I A small set of routines which can be used to "instrument" a
program. The functions are:

I PAPI_num_counters - ritorna il numero di hw counters
disponibili

I PAPI_flips - floating point instruction rate
I PAPI_flops - floating point operation rate

I PAPI_ipc - instructions per cycle and time
I PAPI_accum_counters
I PAPI_read_counters - read and reset counters
I PAPI_start_counters - start counting hw events
I PAPI_stop_counters - stop counters return current counts

PAPI: high-level functions

I A small set of routines which can be used to "instrument" a
program. The functions are:

I PAPI_num_counters - ritorna il numero di hw counters
disponibili

I PAPI_flips - floating point instruction rate
I PAPI_flops - floating point operation rate
I PAPI_ipc - instructions per cycle and time

I PAPI_accum_counters
I PAPI_read_counters - read and reset counters
I PAPI_start_counters - start counting hw events
I PAPI_stop_counters - stop counters return current counts

PAPI: high-level functions

I A small set of routines which can be used to "instrument" a
program. The functions are:

I PAPI_num_counters - ritorna il numero di hw counters
disponibili

I PAPI_flips - floating point instruction rate
I PAPI_flops - floating point operation rate
I PAPI_ipc - instructions per cycle and time
I PAPI_accum_counters

I PAPI_read_counters - read and reset counters
I PAPI_start_counters - start counting hw events
I PAPI_stop_counters - stop counters return current counts

PAPI: high-level functions

I A small set of routines which can be used to "instrument" a
program. The functions are:

I PAPI_num_counters - ritorna il numero di hw counters
disponibili

I PAPI_flips - floating point instruction rate
I PAPI_flops - floating point operation rate
I PAPI_ipc - instructions per cycle and time
I PAPI_accum_counters
I PAPI_read_counters - read and reset counters

I PAPI_start_counters - start counting hw events
I PAPI_stop_counters - stop counters return current counts

PAPI: high-level functions

I A small set of routines which can be used to "instrument" a
program. The functions are:

I PAPI_num_counters - ritorna il numero di hw counters
disponibili

I PAPI_flips - floating point instruction rate
I PAPI_flops - floating point operation rate
I PAPI_ipc - instructions per cycle and time
I PAPI_accum_counters
I PAPI_read_counters - read and reset counters
I PAPI_start_counters - start counting hw events

I PAPI_stop_counters - stop counters return current counts

PAPI: high-level functions

I A small set of routines which can be used to "instrument" a
program. The functions are:

I PAPI_num_counters - ritorna il numero di hw counters
disponibili

I PAPI_flips - floating point instruction rate
I PAPI_flops - floating point operation rate
I PAPI_ipc - instructions per cycle and time
I PAPI_accum_counters
I PAPI_read_counters - read and reset counters
I PAPI_start_counters - start counting hw events
I PAPI_stop_counters - stop counters return current counts

PAPI: hands-on

I Profiling using PAPI API of a simple serial code using BLAS
library for implementing "linear-algebra" kernels.

I The analysis follows the next steps:
I Go-to the hpcforge link:

https://hpc-forge.cineca.it/files/CoursesDev/public/2016/Rome/...
.../Debugging_and_Optimization_of_Scientific_Application/
tar xvfz PAPI_Profiling_exercise.tgz
cd PAPI

I analyse README file
I run the benchmarks
I Please, make your comments on the results obtained using

PAPI
I If you have a bit more time, try to instrument the code related to

the other kernels.Make your additional comments on the results
obtained.

Outline

Introduction

Architectures

Cache and memory system

Pipeline

Profilers
Motivations
time
top
gprof
Scalasca
Papi
Final considerations

The "art" of Profiling...

I the lesson does not pretend to be exhaustive or conclusive...
I ...there is a "pletora" of Profiling tools...and much more to say

of the presented Profiling tools!
I some "practical" suggestions:

I use always more than one test case. Try to activate each part of
a complex application

I use always "realistic" test cases to profile your application
I use always different data sizes for your problem
I pay attention to input/output
I use more than one profiling tool (trying to refine a previous

analysis)
I use, when possible, different architectures.

The "art" of Profiling...

I the lesson does not pretend to be exhaustive or conclusive...

I ...there is a "pletora" of Profiling tools...and much more to say
of the presented Profiling tools!

I some "practical" suggestions:
I use always more than one test case. Try to activate each part of

a complex application
I use always "realistic" test cases to profile your application
I use always different data sizes for your problem
I pay attention to input/output
I use more than one profiling tool (trying to refine a previous

analysis)
I use, when possible, different architectures.

The "art" of Profiling...

I the lesson does not pretend to be exhaustive or conclusive...
I ...there is a "pletora" of Profiling tools...and much more to say

of the presented Profiling tools!

I some "practical" suggestions:
I use always more than one test case. Try to activate each part of

a complex application
I use always "realistic" test cases to profile your application
I use always different data sizes for your problem
I pay attention to input/output
I use more than one profiling tool (trying to refine a previous

analysis)
I use, when possible, different architectures.

The "art" of Profiling...

I the lesson does not pretend to be exhaustive or conclusive...
I ...there is a "pletora" of Profiling tools...and much more to say

of the presented Profiling tools!
I some "practical" suggestions:

I use always more than one test case. Try to activate each part of
a complex application

I use always "realistic" test cases to profile your application
I use always different data sizes for your problem
I pay attention to input/output
I use more than one profiling tool (trying to refine a previous

analysis)
I use, when possible, different architectures.

The "art" of Profiling...

I the lesson does not pretend to be exhaustive or conclusive...
I ...there is a "pletora" of Profiling tools...and much more to say

of the presented Profiling tools!
I some "practical" suggestions:

I use always more than one test case. Try to activate each part of
a complex application

I use always "realistic" test cases to profile your application
I use always different data sizes for your problem
I pay attention to input/output
I use more than one profiling tool (trying to refine a previous

analysis)
I use, when possible, different architectures.

The "art" of Profiling...

I the lesson does not pretend to be exhaustive or conclusive...
I ...there is a "pletora" of Profiling tools...and much more to say

of the presented Profiling tools!
I some "practical" suggestions:

I use always more than one test case. Try to activate each part of
a complex application

I use always "realistic" test cases to profile your application

I use always different data sizes for your problem
I pay attention to input/output
I use more than one profiling tool (trying to refine a previous

analysis)
I use, when possible, different architectures.

The "art" of Profiling...

I the lesson does not pretend to be exhaustive or conclusive...
I ...there is a "pletora" of Profiling tools...and much more to say

of the presented Profiling tools!
I some "practical" suggestions:

I use always more than one test case. Try to activate each part of
a complex application

I use always "realistic" test cases to profile your application
I use always different data sizes for your problem

I pay attention to input/output
I use more than one profiling tool (trying to refine a previous

analysis)
I use, when possible, different architectures.

The "art" of Profiling...

I the lesson does not pretend to be exhaustive or conclusive...
I ...there is a "pletora" of Profiling tools...and much more to say

of the presented Profiling tools!
I some "practical" suggestions:

I use always more than one test case. Try to activate each part of
a complex application

I use always "realistic" test cases to profile your application
I use always different data sizes for your problem
I pay attention to input/output

I use more than one profiling tool (trying to refine a previous
analysis)

I use, when possible, different architectures.

The "art" of Profiling...

I the lesson does not pretend to be exhaustive or conclusive...
I ...there is a "pletora" of Profiling tools...and much more to say

of the presented Profiling tools!
I some "practical" suggestions:

I use always more than one test case. Try to activate each part of
a complex application

I use always "realistic" test cases to profile your application
I use always different data sizes for your problem
I pay attention to input/output
I use more than one profiling tool (trying to refine a previous

analysis)

I use, when possible, different architectures.

The "art" of Profiling...

I the lesson does not pretend to be exhaustive or conclusive...
I ...there is a "pletora" of Profiling tools...and much more to say

of the presented Profiling tools!
I some "practical" suggestions:

I use always more than one test case. Try to activate each part of
a complex application

I use always "realistic" test cases to profile your application
I use always different data sizes for your problem
I pay attention to input/output
I use more than one profiling tool (trying to refine a previous

analysis)
I use, when possible, different architectures.

	Introduction
	Architectures
	Cache and memory system
	Pipeline
	Profilers
	Motivations
	time
	top
	gprof
	Scalasca
	Papi
	Final considerations

