
OpenMP

Introduction to Parallel Computing with MPI and OpenMP

P.Dagna

Segrate, November 2016

A bit of history

• Born to satisfy the need of unification of proprietary solutions

• The past

– October 1997 - Fortran version 1.0

– October 1998 - C/C++ version 1.0

– November 1999 - Fortran version 1.1

– November 2000 - Fortran version 2.0

– March 2002 - C/C++ version 2.0

– May 2005 - combined C/C++ and Fortran version 2.5

– May 2008 - version 3.0 (task!)

– July 2011 - version 3.1

• The present

– July 2013 - version 4.0 (Accelerator, SIMD extensions, …)

– November 2015 – version 4.5 (improved tasks operations and data
dependency issues)

Shared memory architectures

• All processors may access the whole main memory

• Non-Uniform Memory Access

• Memory access time is non -
uniform

• Uniform Memory Access

• Memory access time is uniform

Shared memory architectures

• A process is an instance of a computer
program

• Some information included in a process
are:

• Text

– Machine code

• Data

– Global variables

• Stack

– Local variables

• Program counter (PC)

– A pointer to the istruction to be
executed

Shared memory architectures

• The process contains several concurrent
execution flows (threads)

– Each thread has its own program
counter (PC)

– Each thread has its own private
stack (variables local to the thread)

– The instructions executed by a
thread can access:

• the process global memory
(data)

• the thread local stack

Shared memory parallelism

Shared memory parallel programs may be described as processes in which
the execution flow is divided in different threads when needed. Threads,
being generated inside a process, do share many resources, particularly all
the threads have access to the process global memory.

In these programs there is of course no need of communications between
threads. Parallelization may therefore be easily achieved by means of
automatic tools or by placing directives in the source code.

At process activation only thread 0 (the master thread) is running. On
entering a parallel region, the master awakes the other threads.

Writing shared memory parallel programs appears to be easier than writing
message passing programs but issues often arise because of the accessibility

of memory by all threads.

Shared memory parallelism

Loops are among the program’s constructs most often parallelized by means
of directives. Anyhow in a parallelized loop the execution order of instructions
can’t be pre-defined.

The following loop is not problematic:

On the contrary the following loop can not be parallelized because of
dependencies issues:

DO I = 1, N

A(I) = A(I) + B(I) * C(I)

END DO

fortran for(i=1;i<n;i++){

a[i] = a[i] + b[i] * c[i]

}

c/c++

DO I = 1, N

A(I) = A(I-1) + K * B(I)

END DO

fortran for(i=1;i<n;i++){

a[i] = a[i-1] + k * b[i]

}

c/c++

Data dependence

In the following example the i index loop can be parallelized:

In this loop parallelization is dependent on the K value:

If K > N-M or K < M-N parallelization is straightforward.

DO I = 1, N

DO J = 1, N

A(J,I) = A(J-1,I) + B(J,I)

END DO

END DO

fortran For (i=1; i<n; i++){

for (j=1 ;j<n; j++){

a[j][i] = a[j-1][i] + b[j][i];

}

}

c/c++

DO I = M, N

A(I) = A(I-K) + B(I)/C(I)

END DO

fortran For (i=m; i<n; i++){

a[i] = a[i-k] + b[i]/c[i];

}

c/c++

OpenMP directives

Shared memory parallelization is often realized by using
directives. But directives may be compiler or platform
dependent, thus contrasting portability of programs. On the
contrary OpenMP is a well known and widely used standard
consisting of directives, functions and environment variables.

OpenMP is supported and maintained by the OpenMP
Architecture Review Board (Ref. http://www.openmp.org) and
may be used to parallelize Fortran and C/C++ programs.

Directives are treated as comments by unaware compilers, thus
a program parallelized with OpenMP directives can always be
compiled and run also sequentially.

http://www.openmp.org/

OpenMP directives

In Fortran codes all OpenMP directives are introduced by the sentinel !$OMP
or C$OMP.

In C/C++ codes OpenMP directives are preceded by #pragma omp.

Furthermore Fortran directives are case insensitive, while C/C++ directives
are case sensitive.

OpenMP programs begin execution with one thread only. Other threads are
activated on entering parallel regions, delimited by specific directives. One of
the most used is !$OMP PARALLEL / !$OMP END PARALLEL (Fortran)
or #pragma omp parallel { } (C/C++) .

Outside parallel regions execution is continued by the master thread only.

!$OMP fortran #pragma omp c/c++

Execution model

master

!$OMP END PARALLEL

!$OMP PARALLEL

Master thread only

All threads

Master thread only

#pragma omp parallel {

}

Parallel

The parallel directive defines a region of code in which the instructions
are executed by all threads:

Several clauses may be used with this directive:

– if(scalar-expression)

– num_threads(integer-expression)

– default(shared | none)

– private(list)

– firstprivate(list)

– shared(list)

– copyin(list)

– reduction(operator: list)

!$OMP PARALLEL

…

!$OMP END PARALLEL

fortran #pragma omp parallel {

c/c++ instructions

}

c/c++

Do - for

In a parallel region the directive DO – for may be used to distribute loops
to the threads:

On exiting the loop, threads do halt, waiting for all other threads having
ended their iterations, unless the nowait clause is used.

Care must be taken to use this directive in a parallel region, otherwise all the
iterations of the loop will be executed by the master thread only.

!$OMP DO

DO I = 1, N

fortran instructions

END DO

!$OMP END DO

fortran #pragma omp for

for (i=1; i<n; i++) {

c/c++ instructions

}

c/c++

Do - for

In this example the loop iterations are equally distributed to the threads.

It is possible to change the distribution procedure by using the clause

schedule (type [, chunk]).

!$OMP PARALLEL

.

.

.

!$OMP DO [SCHEDULE(...,...)]

DO I = 1, N

A(I) = A(I) + B(I) * C(I)

END DO

!$OMP END DO [NOWAIT]

.

.

.

!$OMP END PARALLEL

fortran #pragma omp parallel

{

.

.

.

#pragma omp for [schedule(…,…)]

for (i=1; i<n; i++){

a[i] = a[i] + b[i] * c[i]

}

.

.

.

}

c/c++

Schedule

schedule (type [, chunk])

Where:

chunk shall be an integer expression.

type may be one of the following:

• static : iterations are divided in blocks with dimension chunk. The blocks are
statically and orderly distributed to the threads in a round-robin fashion

• dynamic : iterations are divided in blocks with dimension chunk. The blocks are
dinamically assigned to the free threads

• guided : iterations are divided in blocks with decreasing size until chunk is
reached. Blocks are dinamically distributed to the threads

• runtime : scheduling procedure is decided before launching the execution by
means of the environment variable OMP_SCHEDULE:

setenv OMP_SCHEDULE “type,chunk”

export OMP_SCHEDULE=“type,chunk”

Loop Collapse

• Allows parallelization of perfectly nested loops

• The collapse clause on for/do loop indicates how many loops should be
collapsed

• Compiler forms a single loop and then parallelizes it

!$omp do collapse(2)

do j=1, ny

do i=i,nx

...
fortran

#pragma omp for collapse(2) private(j)

for (i=0; i<nx; i++)

for (j=0; j<ny; j++)

...
c/c++

Sections

Wherever there are portions of code that can be divided among threads the
directive sections may be used:

Each parallel section must be preceded by the section directive as in the
above example.

Again, care must be taken to use these directives inside a parallel region,
otherwise all the sections will be executed by the master thread only.

!$OMP SECTIONS

!$OMP SECTION

fortran instructions

!$OMP SECTION

fortran instructions

!$OMP END SECTIONS

fortran #pragma omp sections

{

#pragma omp section

c/c++ instructions

#pragma omp section

c/c++ instructions

...

}

c/c++

Sections

Example - the portions PART A and PART B are executed by different threads:

These directives are used to realize a functional parallelism, in which different
threads execute different instructions, opposite to data parallelism in which
threads execute the same instructions on different data sets.

!$OMP PARALLEL

.

.

.

!$OMP SECTIONS

!$OMP SECTION

PART A

!$OMP SECTION

PART B

!$OMP END SECTIONS

.

.

.

!$OMP END PARALLEL

fortran #pragma omp parallel

{

.

.

#pragma omp sections

{

#pragma omp section

PART A

#pragma omp section

PART B

}

}

c/c++

Single

The single directive defines a portion of code that shall be executed by one
thread only:

The code inside a single portion is executed by the first free thread. On
reaching the same portion of code the other threads skip it and stay blocked
until the single region has been completely executed, unless the NOWAIT
clause is specified.

This directive must be used in parallel regions to access disk devices (i.e.
open, read, write files) or may be used to update shared variables.

!$OMP SINGLE

…

!$OMP END SINGLE

fortran
#pragma omp single {

c/c++ instructions

}

c/c++

Single

!$OMP PARALLEL

…

!$OMP SINGLE

PRINT *,'**********************'

PRINT *,'STEP ', ij

PRINT *,'**********************'

T1=T/TFF

PRINT *,'t=',T1

WRITE(18,110)T1,RL1TES,RL25TE,RL5TES

&,RL75TE,RL9TES,RR(IR(1)),RR(IR(NPAR))

!$OMP END SINGLE

…

!$OMP END PARALLEL

fortran #pragma omp parallel

{

...

#pragma omp single

{

cout << “*******************”;

cout << “Step “ << ij

cout << “*******************”;

t1=t/tff

cout << “t=“ << t1

outfile << t1 << rl1tesrl25te <<

rl5tes << rl75te << rl9tes <<

rr(ir[1]) << rr(ir[npar]);

}

...

}

c/c++

Master

The portion of code delimited by the master directive is only executed by the
master thread. The other threads simply skip it and go on without waiting.

!$OMP MASTER

Instructions

!$OMP END MASTER

fortran

#pragma omp master

{

instructions

}

c/c++

Parallel do – parallel for

The parallel do/for directive enables distribution of the iterations of a
loop to the threads.

This directive does not require to be used inside a parallel region.

At the end of the code portion delimited by this directive the execution
continues in a sequential mode

!$OMP PARALLEL DO

DO

instructions

END DO

!$OMP END PARALLEL DO

fortran #pragma omp parallel for

for {

instructions

}

c/c++

Workshare

The WORKSHARE directive enables distribution of iterations implied by array
syntax, FORALL and WHERE constructs in Fortran only programs.

This directive must be used inside a parallel region.

!$OMP WORKSHARE

VA(1:n) = VA(1:n) + VB(1:n) * K

VC(1:m) = (VL(1:m) + VM(1:m)) / (K * VL(1:m))

!$OMP END WORKSHARE NOWAIT

fortran

If

The IF clause may be used with the directives PARALLEL, PARALLEL
SECTIONS, PARALLEL DO. It depends on the value of the condition if the
workload is distributed or not.

In the above example the loop can be parallelized only if K is in a range of
values. Some time it can be useful to check if the number of iterations is high
enough to have any benefit from parallelization:

!$OMP PARALLEL DO &

!$OMP IF (((N-K)<M).OR.((M-K)>N))

DO I = M, N

A(I) = A(I-K) + B(I)/C(I)

END DO

!$OMP PARALLEL END DO

fortran #pragma omp parallel for \

if (((n-k)<m) || ((m-k)>n))

{

for(i>=m;i<n;i++)

a[i] = a[i-k] + b[i]/c[i]

}

!$OMP PARALLEL DO IF (N>1000)

DO I=1,N

A(i)=...

END DO

!$OMP END PARALLEL DO

fortran #pragma omp parallel for if(n>1000)

{

for(i=1;i<n;i++)

a[i]=...

}

c/c++

c/c++

SHARED and PRIVATE variables

In an OpenMP program all threads have visibility of the allocated variables,
unless otherwise specified. Anyhow there are variables that should not be
shared by the threads. An example is a loop counter: every thread executes a
different set of iterations, therefore the value of the loop counter shall not be
shared. In such a case if in a parallel region a number T of threads have been
activated, there will be T+1 distinct copies of the counter: one per each thread
and one visible by all the threads. Therefore a loop counter shall be declared of a
private type.

Otherwise, if a variable (scalar, matrix or other) is read only or shall be updated
by all threads, it will be declared of shared type.

The programmer needs to pay attention to properly manage shared variables
because of synchronization issues.

SHARED and PRIVATE variables

When needed shared variables must be declared in the directives that define
parallel regions (PARALLEL - parallel, PARALLEL DO -

parallel for, PARALLEL SECTIONS - parallel sections).

Private variables instead may be declared also in the directives DO - for

and SECTIONS - sections.

If none is declared, all the variables are shared, unless the default clause is
used. This clause may be used to state the type of the variables not otherwise
declared. If default(none) is specified (which may be useful in many
cases) all the variables must be explicitly declared either shared or private. If
default(private)(Fortran only) is specified all variables are private (i.e.
will be duplicated per each thread) unless explicitly declared. The clause
default(shared) may be used too, either in Fortran or in C.

The programmer is adviced to use the clause default(none) in order to
be sure to have analyzed all the envolved variables

SHARED and PRIVATE variables

In the above example the loop counter (i) must be declared private. The variable k
has been declared private too, therefore each thread will be assigned a distinct
memory location to keep the value of k. Then each thread will use a different
value, but care must be taken to properly define the value of k.

The a(:) vector instead is shared, but in this case no problem comes up because
each thread will execute a different set of iterations, therefore will update
distinct elements of the vector.

....

REAL, DIMENSION :: a(N)

INTEGER :: i,k

.....

!$OMP PARALLEL &

!$OMP DEFAULT(NONE) &

!$OMP SHARED (a,...) &

!$OMP PRIVATE (i,k,...)

...

!$OMP DO

DO i=1,N

a(i)=a(i)+k

END DO

!$OMP END DO

.....

!$OMP END PARALLEL

fortran ...

float a[n];

int i,k;

...

#pragma omp parallel

default(none) shared (a,...)

private(i,k,...)

{

#pragma omp for

for(i=1;i<n;i++)

a[i]=a[i]+k

}

c/c++

Subroutines and functions

Functions and subroutines may be called in a parallel region. In such a case:

• All the activated threads will call the function

• Each variable declared in the function is private to the thread

• Dummy arguments keep their original state, i.e. are shared if they were
shared

!$omp parallel num_threads(2) &

!$omp shared(i)

call sub1(i)

!$omp end parallel

subroutine sub1(a)

integer :: a,b

b = a**2

... ...

end subroutine

fortran #pragma omp parallel shared(i) \

num_threads(2)

{

sub1(i);

}

void sub1(int a) {

int b;

b = pow(a,2);

... ...

}

c/c++

Firstprivate

It has already pointed out that care must be paid to define the value of
variables that have been stated to be private. In such a case there will be a
copy of the variable shared by all the threads (that may have been defined
previously) and a copy per each thread (that has never been initialized). The
clause FIRSTPRIVATE - firstprivate may be used to initialize the
value of the private copies of a variable with the value of the shared instance.

This clause is used in the «parallel» directives:

...

k=a+b

!$OMP PARALLEL FIRSTPRIVATE(k)

!$OMP DO PRIVATE(i)

DO i=1,N

v(i)=k

k=i+1

END DO

!$OMP END DO

...

!$OMP END PARALLEL

...

fortran ...

k = a+b

#pragma omp parallel firstprivate(k)

{

#pragma omp for private(i)

for (i=1; i<n; i++){

v[i]=k

k=i+1

}

}

c/c++

Lastprivate

The clause LASTPRIVATE – lastprivate can be used in parallel loops
only. It may be used to copy the value relevant to the last iteration (according
to a sequential execution) into the shared instance of a variable.

As an example the shared instance of variable b will have value v(N):

...

REAL, DIMENSION :: v(N)

REAL :: b

...

!$OMP PARALLEL DO &

!$OMP PRIVATE (i) &

!$OMP LASTPRIVATE (b)

DO I = 1, N

b=v(i)

...

END DO

!$OMP END PARALLEL DO

WRITE (*,*) b ! Resulting b=v(N)

fortran ...

float v[n];

float b;

...

#pragma parallel for \

private(i) lastprivate(b)

{

for (i=1; i<n; i++)

b=v[i]

}

cout << b; /* Resulting b=v[n] */

c/c++

Threadprivate

In Fortran programs the directive THREADPRIVATE may be used to create
private copies of a COMMON block. It must be placed immediately after the
common block declaration.

In the above example problems would arise in PARALLEL DO if A and B
were not private.

The COPYIN clause should be used to copy the values of the shared instance
of common block in the private copies.

subroutine sub(c,n)

integer :: n

real :: x,y

real, dimension(n) :: a,b

real, dimension(n,n):: c

common /dati/ a,b

!$omp THREADPRIVATE(/dati/)

do i=1,n

a(i)=10+i

b(i)=5-i

end do

x=5

y=6

fortran !$omp parallel do &

!$omp default(none)&

!$omp shared(c,n)&

!$omp private (i,j,x,y) &

!$omp copyin(a,b)

do i=1,n

do j=1,i

a(j)=a(i)*sin(real(i))

b(j)=b(i)*cos(real(i))

end do

end do

!$omp end parallel do

end

fortran

Threadprivate

In C/C++ programs the threadprivate directive may be used to create
private copies of file scope variables and static variables. The directive should
be placed immediately after the variable declarations.

In the above example the counter variable has file scope and must be
privatized.

«Threadprivate» variables differ from «private» variables because the first
ones do not vanish between parallel regions.

int counter = 0;

#pragma omp threadprivate(counter)

int sub()

{

counter++;

return(counter);

}

c/c++

Critical

This directive delimits a portion of code that is executed by all threads but
only one at a time:

!$OMP CRITICAL

…

!$OMP END CRITICAL

fortran #pragma omp critical {

istruzioni c/c++

}

c/c++

...

NMAX=k

!$OMP PARALLEL DO

DO i=1,N

if (a(i).gt.NMAX) then

!$OMP CRITICAL

if (a(i).gt.NMAX) then NMAX=a(i)

!$OMP END CRITICAL

end if

END DO

!$OMP END PARALLEL DO

fortran ...

nmax=k

#pragma omp parallel for

for(1=1;i<n;i++){

if(a[i]>nmax){

#pragma omp critical

if(a[i]>nmax)

nmax=a[i];

}

}

c/c++

Barrier

The BARRIER - barrier directive defines a synchronization point in the
code where threads must wait until all threads have reached the directive
place.

This directive must not be positioned inside parallel loops or regions or
critical sections.

Synchronization points should be used only if they are unavoidable.

As an example a barrier might be properly used after a parallel loop with
nowait clause, before accessing variables that are updated inside the loop

Atomic

• The ATOMIC - atomic construct applies only to statements that
update the value of a variable

• Ensures that no other thread updates the variable between reading and
writing

• It is a special lightweight form of a critical

• Only read/write are serialized, and only if two or more threads access the
same memory address

!$omp atomic [clause]

<statement>

fortran #pragma omp atomic [clause]

<statement>

c/c++

Atomic - Examples

!$omp atomic update

x = x + n*mass ! default

Update

!$omp atomic read

v = x ! read atomically

!$omp atomic write

x = n*mass !write atomically

!$omp atomic capture

v = x !capture x in v and

x = x+1 !update x atomical

!$omp end atomic

fortran #pragma omp atomic update

x += n*mass; // default update

#pragma omp atomic read

v = x; // read atomically

#pragma omp atomic write

x = n*mass; //write atomically

#pragma omp atomic capture

v = x++; // capture x in v and

// update x atomically

c/c++

Reduction

Whenever in a parallel loop a reduction operation is implemented, the
reduction clause should be used.

Supported operations :

– C/C++ : +, *, -, &, |, ^, &&, || max and min operators (3.1)

– Fortran : +, *, -, .and., .or., .eqv., .neqv., max, min, iand, ior, ieor

The variables associated to this clause must be of shared type: all threads
execute reduction operations on automatic local copies, which at last are
used to compute the global result.

If T=threads and N=operands, in the case that T << N the reduction operation
may achieve a good parallel efficiency because, in spite of the unavoidable
last operation that requires a synchronization effort, only T operations have to
be done sequentially while each thread executes roughly N/T operations only.

Reduction

The reduction clause has the following syntax:

reduction (operator|intrinsic: &

reduction shared variable)

fortran reduction(operator: \

reduction shared variable)

c/c++

maxa=a(1)

!$omp parallel do &

!$omp shared (a,N)&

!$omp private (i) &

!$omp reduction (max:maxa)

do i=1,N

maxa=max(a(i),maxa)

end do

!$omp end parallel do

fortran max_val=arr[0];

#pragma omp parallel for \

reduction(max : max_val)

for(i=0;i<10; i++)

{

if(arr[i] > max_val)

max_val = arr[i];

}

c/c++

Example: using reduction to compute maximum in a vector:

Reduction

The previous example may be re-written as follow using critical regions with a
bit of improved functionality:

max_local=a(1); maxloc_local = 1

!$omp parallel private(i) &

!$omp firstprivate(max_local, &

!$omp maxloc_local)

!$omp DO

DO i = 1, N

IF (a(i)> max_local) THEN

max_local=a(i)

maxloc_local = i

END IF

END DO

!$omp END DO nowait

!$omp critical

if (max_local > maxv) THEN

maxv = max_local

maxloc = maxloc_local

END IF

!$omp END critical

!$omp END parallel

fortran max_local=a[0]; maxloc_local = 0;

#pragma omp parallel \

shared(a,n,max, maxloc) private(i) \

firstprivate(max_local, maxloc_local)

{

#pragma omp for nowait

for(i=ifi; i<ila; i++)

if (a[i]> max_local) {

max_local=a[i];

maxloc_local = i;

}

#pragma omp critical

{

if (max_local > max) {

max = max_local;

maxloc = maxloc_local;

}

}

}

c/c++

Reduction

An example of sum reduction:

!$OMP DO

!$OMP REDUCTION(+:EKIN)&

!$OMP REDUCTION(+:ETERM)

DO I=1,NPAR

X=DBLE(P1(I))

Y=DBLE(P2(I))

Z=DBLE(P3(I))

VX=DBLE(VF1(I))

VY=DBLE(VF2(I))

VZ=DBLE(VF3(I))

M=DBLE(MS(I))

.......

EKIN=.5*M*(VX*VX+VY*VY+VZ*VZ)+EKIN

IF (I.LE.NSPH) THEN

ETERM=ETERM+MEN*DBLE(UF(I))

END IF

END DO

!$OMP END DO

fortran #pragma omp for reduction(+:ekin)

reduction(+:eterm)

for(i=1;i<npar;i++){

x=dble(p1[i]);

y=dble(p2[i]);

z=dble(p3[i]);

vx=dble(vf1[i]);

vy=dble(vf2[i]);

vz=dble(vf3[i]);

m=dble(ms[i]);

...

ekin=.5*m*(vx*vx+vy*vy+vz*vz)+ekin;

if(i<nsph)

eterm=eterm+men*dble(uf(i));

}

c/c++

Orphaned directives

Directives that would distribute work among threads but are not
placed in parallel regions are called orphaned directives.

Orphaned directives are often written in functions, which could
be called from within paralell regions or not.

In the case the directive does not occur in parallel regions,
execution is carried on sequentially.

Orphaned directives

integer ,parameter :: N=100,M=N*100

real, dimension :: a(N)

real, dimension :: b(M)

real :: x,y

.....

do i=1,N

a(i)=real(i)

end do

call somma (x,a,N)

!$omp parallel &

!$omp shared (b,N)&

!$omp do private(i)

do i=1,M

b(i)=1/real(i+1)

end do

!$omp end do

fortran int n,m;

n=100;

m=n*100;

float a[n],b[m];

float x,y;

...

for(i=1;i<n;i++)

a[i]=(float)i;

somma(x,a,n)

#pragma omp parallel shared(b,n)

#pragma omp for private(i)

{

for(i=1;i<n;i++)

b[i]=1/(float)(i+1);

}

c/c++

Orphaned directives

At the first invocation of the function somma (call somma(x,a))
execution is carried on sequentially, while the latter call (call
somma(y,b)) is executed in parallel because it is placed inside a parallel
region.

y=0.

call somma (y,b,M)

!$omp end parallel

....

subroutine somma(z,c,L)

integer :: i,L

real, dimension :: c(L)

real:: z

!$omp do reduction (+:z)

do i=1,L

z=z+c(i)

end do

!$omp end do

end

fortran y=0;

somma(y,b,m)

}

function somma(z,c,l){

int i,l;

float c[l];

float z;

#pragma omp for reduction(+:z)

{

for(i=1;i<l;i++)

z=z+c[i];

}

}

c/c++

Task parallelism

• Main addition to OpenMP 3.0 enhanced in 3.1 and 4.0

• Allows to parallelize irregular problems

– Unbounded loop

– Recursive algorithms

– Producer/consumer schemes

– Multiblock grids, Adaptive Mesh Refinement

– ...

Pointer chasing in OpenMP 2.5

• Trasformation to a “canonical” loop can be very labour-
intensive/expensive

• The main drawback of the single nowait solution is that it is
not composable

• Remind that all worksharing construct can not be nested

!$omp parallel private(p)

p = head

do while (associated(p))

!$omp single nowait

call process(p)

p => p%next

end do

fortran

#pragma omp parallel private(p)

p = head;

while (p) {

#pragma omp single nowait

process(p);

p = p->next;

}

c/c++

Tree traversal in OpenMP 2.5

• You need to set OMP_NESTED to true, but stressing nested
parallelism so much is not a good idea ...

recursive subroutine preorder(p)

type(node), pointer :: p

call process(p%data)

!$omp parallel sections

!$omp num_threads(2)

!$omp section

if (associated(p%left))

call preorder(p%left)

end if

!$omp section

if (associated(p%right))

call preorder(p%right)

end if

!$omp end sections

end subroutine preorder

fortran

void preorder (node *p) {

process(p->data);

#pragma omp parallel sections \

num_threads(2)

{

#pragma omp section

if (p->left)

preorder(p->left);

#pragma omp section

if (p->right)

preorder(p->right);

}

}

c/c++

New tasking construct

• Immediately creates a new task but not a new thread

• This task is “explicit”

• It will be executed by a thread in the current team

• It can be deferred until a thread is available to execute

• The data environment is built at creation time

– Variables inherit their data-sharing attributes

– Private variables become firstprivate

!$omp task [clauses]

<structured block>

!$omp end task

fortran #pragma omp task [clauses]

{

<structured block>

}

c/c++

Pointer chasing using task

• One thread creates task

– It packages code and data environment

– Then it reaches the implicit barrier and starts to execute the task

• The other threads reach straight the implicit barrier and start to execute task

!$omp parallel private(p)

!$omp single

p = head

do while (associated(p))

!$omp task

call process(p)

!$omp end task

p => p%next

end do

!$omp end single

!$omp end parallel

fortran #pragma omp parallel private(p)

#pragma omp single

{

p = head;

while (p) {

#pragma omp task

process(p);

p = p->next;

}

}

c/c++

Pointer chasing using task

!$omp parallel private(p)

!$omp single

p = head

do while (associated(p))

!$omp task

call process(p)

!$omp end task

p => p%next

end do

!$omp end single

!$omp end parallel

fortran

TASK QUEUE

Load balancing on lists with task

• Assign one list per thread could be unbalanced

• Multiple threads create task

• The whole team cooperates to execute them

!$omp parallel

!$omp do private(p)

do i=1,num_lists

p => head[i]

do while (associated(p))

!$omp task

call process(p)

!$omp end task

p => p%next

end do

end do

!$omp end do

!$omp end parallel

fortran #pragma omp parallel

{

#pragma omp for private(p)

for (i=0; i<num_lists; i++) {

p = head[i];

while (p) {

#pragma omp task

process(p);

p = p->next;

}

}

}

c/c++

Tree traversal with task

• Tasks are composable

• It isn’t a worksharing construct

• Taskwait directive suspends parent task until children tasks are completed

recursive subroutine preorder(p)

type(node), pointer :: p

call process(p%data)

if (associated(p%left))

!$omp task

call preorder(p%left)

!$omp end task

end if

if (associated(p%right))

!$omp task

call preorder(p%right)

!$omp end task

end if

end subroutine preorder

fortran

void preorder (node *p) {

process(p->data);

if (p->left)

#pragma omp task

preorder(p->left);

if (p->right)

#pragma omp task

preorder(p->right);

}

c/c++

OpenMP functions

INTEGER OMP_GET_THREAD_NUM()

int omp_get_thread_num()

returns identity of the calling thread, i.e. a number between 0 and T-1 if
T=number of threads.

INTEGER OMP_GET_NUM_THREADS()

int omp_get_num_threads()

returns the number T of the activated threads.

REAL(8) OMP_GET_WTIME()

double omp_get_wtime()

returns the elapsed wall clock time in seconds.

OpenMP functions

SUBROUTINE OMP_SET_DYNAMIC (logical dynamic_threads)

void omp_set_dynamic(int dynamic_threads)

sets or disables dynamic number of threads. In order to use THREADPRIVATE
directive dynamic threads should be disabled.

SUBROUTINE OMP_SET_NUM_THREADS(num_threads)

void omp_set_num_threads(int num_threads)

sets number of threads to be used in the following parallel region.

On entering a parallel region the number of threads that are activated may vary
according to:

•IF clause

•NUM_THREADS clause (to be used in parallel directive)

•omp_set_num_threads() function

•OMP_NUM_THREADS environment variable

•Default: most often the number of processor units on a node

OpenMP functions

The sentinel !$ must be used where calling the OpenMP functions in Fortran
programs.

On the contrary in C/C++ programs these functions are called following the
usual syntax, but:

• omp.h file must be included in the source code

• #ifdef _OPENMP #endif construct must be used to be able
to compile the program using OpenMP unaware compilers.

!$ thread_id = OMP_GET_THREAD_NUM()

!$ threads = OMP_GET_NUM_THREADS()

fortran #ifdef _OPENMP

threadid = omp_get_thread_num()

threads = omp_get_num_threads()

#endif

c/c++

Program compilation
Compiling OpenMP programs in Linux

Intel compilers:

PGI compilers:

GNU compilers:

ifort -openmp -O3 -o nomefile.exe nomefile.f90

icpc -openmp -O3 -o nomefile.exe nomefile.cpp

icc -openmp -O3 -o nomefile.exe nomefile.c

pgf90 -mp -O3 -o nomefile.exe nomefile.f90

pgCC -mp -O3 -o nomefile.exe nomefile.cpp

pgcc -mp -O3 -o nomefile.exe nomefile.c

gfortran -fopenmp -O3 -o nomefile.exe nomefile.f90
c++ -fopenmp -O3 -o nomefile.exe nomefile.cpp

gcc -fopenmp -O3 -o nomefile.exe nomefile.c

Program execution

There are no peculiar manners for launching execution of OpenMP programs.
The only thing that is worth while considering is the opportunity of defining
the value of a few environmental variables.

Two of these might often be taken into consideration:

Defining the number fo threads (most useful when running on nodes with
many cores):

Defining workload distribution method:

setenv OMP_NUM_THREADS number_of_threads (tcsh shell)

export OMP_NUM_THREADS=number_of_threads (bash shell)

setenv OMP_SCHEDULE “type,chunk” (tcsh shell)

export OMP_SCHEDULE=“type,chunk” (bash shell)

Bibliography

OpenMP official site:

– http://www.openmp.org/

OpenMP, Blaise Barney, Lawrence Livermore National Laboratory

– https://computing.llnl.gov/tutorials/openMP/

“Using OpenMP” - Portable Shared Memory Parallel Programming, Chapman,
Jost, van der Pas - MIT Press, 2008 - ISBN-10: 0-262-53302-2, ISBN-13:
978-0-262-53302-7

Parallel computing with Fortran modules and OpenMP directives: Panoramica
sulle tecnologie e sugli strumenti per la programmazione parallela (I
parte), G. Bottoni, M. Cremonesi, Bollettino del CILEA, N. 73

http://bollettino.cilea.it/viewissue.php?id=23

