
Intel software tools



Intel Parallel Studio

In the following slides we will give an overview of the tools 
avalaible from the Intel Parallel Studio.

You can use these tools on the Cineca HPC machines using 
modules.



Preliminarly...

Load compiler and Intel MPI:

module load intel 

module load intelmpi

(if needed) module load mkl



Poisson

Check the Makefile:



Level-0 MPI profiling

export I_MPI_STATS=ipm

mpirun -np 36 ./poisson.x

check stats.ipm

export I_MPI_STATS=1

mpirun -np 36 ./poisson.x

check stats.txt



I_MPI_DEBUG

export I_MPI_DEBUG=4



Analysis of the Poisson code

Objectives:

● demonstrate features of Intel Trace Analyzer and Collector 
(ITAC) and VTune Amplifier

● find the root cause for suboptimal scaling
● show ways of tuning where the tools indicate suboptimal 

performance



Simple scaling analysis

Just give a look to the code running with different number of 
tasks/threads (up to 2 nodes, for example)

Speedup S is defined as S[p]=T[1]/T[p]

Efficiency E is defined as E[p]=S[p]/p

In the ideal case: S[p]=p and E[p]=1



Before running..

Don’f forget:

- to load the intel modules (and intelmpi)
- to source the psxe.vars
- check the resources you’re running on with cpuinfo



cpuinfo



Poisson solver

It’s a standard problem (e.g. heat equation).

We will investigate a square 3600x3600 computational grid. It’s 
on the edge of the bandwith limitations.

Grid points will be distributed to MPI ranks to a 2D process grid. 
The cartesian process grid is a feature of the Poisson solver. 
Other programs can have different data distribution.



Optimal grid?

Which is the optimal choice for the grid partitioning?



Grid and performances



Measure MPI times with ITAC



Comments

● finding the right path in your case can be troublesome: if you 
can, use the which or the tab autocompletion…

● use OMP_NUM_THREADS=1
● by default, ITAC creates a .stf file for each process. It results 

in a high number of files. To overcome this problem use 
export VT_LOGFILE_FORMAT=STFSINGLE

● after the data collection is completed, you will need a 
graphical interface to visualize with ITAC ( -> use RCM)









MPI times

The total wall clock run time T[p], is given by the time spent in 
MPI plus time spent in computation:

T[p]=T_comp[p]+T_mpi[p]

Speedup and efficiency can be calculated for the compute time 
separately:

S_comp[p]=T_comp[1]/T_comp[p]=T[1]/T_comp[p]





Source of the MPI time

ITAC shows timing of all MPI routines used by an application

The timing of MPI routines may be due to network transfer 
times caused by interconnect bandwith limitations (latencies)

The other possibility are waiting times caused by the algorithm: 
load imbalance or dependencies



A network model

● Latency L is defined as the transfer time for a 0 byte message
● Bandwidth BW is defined as the transfer rate for 

asymptotically large messages
● Message volume V is the data amount sent

The transfer time is:

T_trans[V] = L + (1/BW)*V



ITAC ideal network simulator

It is extremely complicated to simulate a realistic network!

An extreme case – the ideal network – may be simulated by 
setting all transfer times to 0. This would mean L=0 and 
BW=∞ for the simple model

ITAC offers an ideal network simulation with transfer times set 
to zero. Compute times (non MPI) will stay the same

An existing real trace file is used as basis for the simulation



ITAC ideal network simulator

With a perfectly balanced algorithm the total MPI time will be 
vanishing in the ideal case

In most real cases the MPI time will just shrink but not vanish

The remaining part is due to waiting time e.g. when the receiver 
is starting to receive before the sender is ready to send

Start simulator with: 

Advanced -> Idealization





Waiting time due to dependencies



MPI time

The simulated MPI time for the ideal network may be regarded as 
the waiting time T_wait due to imbalance and dependencies: 
T_mpi = T_transfer + T_wait

After generation of an ideal trace file the result can be displayed 
in the Imbalance Diagram:

Advanced  Application ->  Imbalance Diagram



16 nodes, 24 MPI 
tasks each
16 nodes with 24 
MPI tasks each



Imbalance diagram
The imbalance diagram displays the relation of transfer to wait 

time. Due to the result we can decide how to proceed with 
tuning:

• Transfer time (Interconnect) dominates: the algorithm is 
balanced but we have to improve the network performance 
by e.g. different process placement or new network hardware

• Waiting time (Imbalance) dominates: the algorithm has to be 
revisited e.g. better load balancing. New network hardware or 
better process placement will not help!



Testing different grids



Testing different grids











Global load imbalance

A portion of the waiting time is normally due to Global Load Imbalance. The 
Global Load Imbalance is measured by determining the maximum per rank 
and average compute time over all processes:

T_load = T_compute_max - T_compute

= T_mpi - T_mpi_min

T_load is the time we may win by achieving a perfect load  balance. It should 
be lower than the previously calculated MPI time for an ideal network (= 
T_wait = Imbalance/p)



Load imbalance: MPI for 1D 384x1



Split of timings

We have now all components of our split of timings:

T = T_compute + T_mpi 

= T_compute + T_trans + T_wait

= T_compute + T_trans + T_load + T_depend

The Imbalance diagram shows only the second line but we might 
additionally compute T_load and T_depend for a deeper analysis. 
T_depend is called Dependency time. This is just the rest of the 
imbalance time T_wait that is not due to the Global Load 
Imbalance.



Refined imbalance diagram



Message passing profile

Message passing profile displays various characteristics of message 
passing in a sender/receiver Matrix

Charts  -> Message Profile

The Matrix element N,M corresponds to the message passing 
characteristics from rank N to rank M. Change these attributes by:

Right Click -> Attribute to show

Characteristics are: total message volume, message passing time, max, 
min, average rate and count







Process aggregation

For 16 nodes (384 ranks on IVB) the total Message Passing 
profile is not very handy

We may fuse the communication to compute node level. In this 
case 384 ranks are fused to 16 compute nodes:

Advanced  Process  -> Aggregation

This will pop up a new window: check All_Nodes and apply



Total volume 2D vs 1D distribution



Average rate: 2D vs 1D distribution



Number of messages: 2D vs 1D dist



Message profile: observations

Inter node communication has about the same volume in the 2D 
case but 16x more messages are sent

There is just a single inter node message per boundary exchange 
in the 1D case ( 3 exchanges per iteration times 100 iterations 
== 300 messages)

Communication rate drops so much in the quadratic 2D case 
that the total transfer time (Imbalance diagram) is almost 
equal for both configurations



Optimization hints

A compromise between quadratic and 1D processor grid may be more 
appropriate here like 48x8 or 96x4. This will reduce the number of 
inter node messages and raise the bandwidth for each message

The default rank to node mapping is just linear. This leads to 
alternating communication patterns (see following slides)

A better mapping can be achieved by putting all ranks of a rectangular 
sub process grid onto a single node. The following slides explain the 
ranks to node mapping



Default mapping for 24x16 grid



Optimal mapping



Impact of mapping



Detailed visualization of MPI programs

After some global evaluations we may dive now into the MPI 
algorithm by showing the temporal evolution with ITAC

Most programs consist of recurring patterns like iterations or 
different phases: initialization, computation and I/O

Quantitative timeline shows nicely coarse patterns:

Charts -> Quantitative Timeline



Quantitative timeline



Event timeline

After identification of basic patterns we may now change to the 
more detailed Event Timeline

Event timeline is the most important Chart in ITAC

Temporal development reveals root causes of dependencies due 
to suboptimal implementations

Charts -> Event Timeline



Single iteration



Boundary exchange in ideal networks

MPI times in the ideal network case are due to global load 
imbalances and dependencies

Dependencies are e.g. due to order of blocking sends and

receives

The current naive implementation of the boundary exchange 
uses blocking sends and receives: MPI_Send, MPI_Recv 

The Ideal network simulation helps to clearly identify 
dependencies



Boundary exchange in ideal networks



Optimization hints
Some of the dependencies may be resolved by using MPI_Isend 

and MPI_Irecv with an MPI_Waitall()in the end

In a first step we may just exchange the blocking Sends/Recvs by 
the immediate routines and place a MPI_Waitall() at the end.

Data copies of boundary arrays have to be done after the wait 
routine 

In a second step we may optimize the order of MPI routines and 
data copies. Some requests may be ended by a separate 
MPI_Wait()



Comparing ITAC traces

Compare before and after optimization e.g. compare boundary 
exchange with blocking Send/Receive to non blocking 
Send/Receive

Further potential comparison scenarios:

● Compare ideal to real trace
● Compare different number of ranks
● Compare different mappings



Comparing ITAC traces





Instrumentation of user functions

So far, we only see MPI routines and Application time inside 
ITAC traces

Navigation becomes far more easy when adding user functions

For evaluation of the impact of optimization we may want to see 
the timing of the boundary exchange including all its MPI calls



ITAC compiler instrumentation

All source files or just the files of interest may be compiled with

the -tcollect flag (Intel compiler only)

The executable has to be linked using this flag, as well

As an alternative (different compiler or code blocks that are not 
a function) we might consider to use the ITAC API functions 
for instrumentation. 



User functions 



Intel VTune Amplifier XE

We used ITAC for the analysis of the message passing algorithm

We already saw that computation performance saturated on a 
single node

With this tool we may have a closer look to the processor 
performance and program structure

VTune Amplifier XE based analysis can be started and performed 
by its GUI. Together with MPI on a Cluster which probably 
prefers batch usage, we will use the command line interface



Hotspot analysis

This is the most basic analysis type to start an investigation

The analysis will present hotspots of the calculation for a chosen 
MPI rank. Timings go down to source lines or assembly code

The Call Stack provides information about how the function is 
called and how much time is due to this branch



Collecting data

This analysis may be conducted for each of all 384 ranks but probably 
we may concentrate on a single rank first:

Hotspot analysis is performed on rank 0 and results are stored in 
directory hotspots.0. All other ranks run poisson.x without analysis. 
More complex selection of ranks are possible building groups of 
ranks doing analysis or not



Collecting data

A new syntax:









Advanced hotspots
Hotspot identification using directly the Performance monitoring 

Unit (PMU) . Needs special drivers realized by kernel modules 
(root rights necessary for installation)

Exchange hotspots by advanced-hotspots in previous command 
line

Instructions retired is the basic indicator for processor 
utilization.

Maximum is 4 simultaneous instructions per clock-tick.

The output shows CPI: clock-ticks per Instruction. 4 simultaneous 
instructions mean (CPI=0.25)









Bandwith analysis

The speedup curve for a single node shows saturation for more 
than 12 ranks per node (24 cores per node in total)

Intel® VTune Amplifier XE provides a Bandwidth analysis for 
proving this assumption

We concentrate on total bandwidth which can be related to the 
bandwidth that is delivered by the STREAM benchmark 
(~80GB/s on IVB dual Socket)



BW: Bottom-up sequential run



Efficiency vs BW 



Optimization hints
Bandwidth can be reduced by combining copy and residuum routine. 

This is possible because residuum is at the end and copy at the 
beginning of a new iteration

Bandwidth reduction may only have and impact in the bandwidth 
limited regime that we observe for this grid size only for less than 4 
nodes

Prefetching of data may also improve performance in the copy and 
reduction loop 

A blocked loop structure for the iteration loop may also improve data 
reuse



Summary

Some methodologies were presented for performing a MPI

analysis

ITAC offers interesting new features like simulation of ideal 
traces and the computation of transfer and waiting time 

Intel® VTuneTM Amplifier XE analyzes the compute part of the

application. Bandwidth analysis is useful for many HPC 
applications


