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Available options...

Right here, right now… two kind of solutions 
are available on the market:

● IBM+ nVIDIA (Coral-like)
● Intel-based (Xeon/Xeon Phi)



IBM+NVIDIA

Each node will be based on a Power CPU + 4/6/8 nVIDIA TESLA 
GPUs connected using an nVIDIA NVlink interconnect



Intel Xeon and Xeon Phi

Intel will keep on with the production of server processors on 
the Xeon line, together with the introduction of the Xeon Phi 
many-core chips

Intel Xeon Phi will not be a co-processor anymore, but a 
self-standing CPU with a very high number of cores

Such systems are integrated by several vendors in many 
different configurations (Cray, HP, Lenovo, E4..)



MARCONI

FERMI, the IBM BlueGene/Q deployed in Cineca ended its 
lifecycle in 2016

We needed a new HPC machine that could

- increase the computational power 
- respect the agreements with PRACE
- satisfy the needs of the italian computing community



MARCONI



MARCONI
NeXtScale architecture
nx360M5 nodes: 

Supporting Intel HSW & BDW 
Able to host both IB network Mellanox EDR & Intel Omni-Path 
Twelve nodes are grouped into a Chassis (6 chassis per rack) 
The compute node is made of: 

2 x Intel Broadwell (Xeon processor E5-2697 v4) 18 cores, 2,3 HGz 
8 x 16GB DIMM memory (RAM DDR4 2400 MHz), 128 GB total 
1 x 129 GB SATA MLC S3500 Enterprise Value SSD 

Further details 
1 x link OPA 100GBs 
2*18*2,3*16 = 1.325 GFs peak 

24 rack in total: 
21 rack compute 
1 rack service nodes 
2 racks core switch



MARCONI - Network



MARCONI - Network



MARCONI - Storage



CINECA - Roadmap



Intel® Xeon Processor Architecture



Intel® Xeon® Processor E5-2600 v4 Product Family - TICK

Typically, Increases in Transistor Density Enables New Capabilities, Higher 
Performance Levels, and Greater Energy Efficiency

Haswell

BROADWELL

Sandy
Bridge

Ivy Bridge

Nehalem

Westmere

32nm 22nm 14nm45nm

Nehalem 
Microarchitecture

Sandy Bridge 
Microarchitecture

Haswell 
Microarchitecture

TICK

TOCK
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Features Xeon E5-2600 v3 (Haswell-EP) Xeon E5-2600 v4 (Broadwell-EP)

Cores Per Socket Up to 18 Up to 22

Threads Per Socket Up to 36 threads Up to 44 threads

Last-level Cache (LLC) Up to 45 MB Up to 55 MB

QPI Speed (GT/s) 2x QPI 1.1 channels 6.4, 8.0, 9.6 GT/s

PCIe* Lanes / Speed(GT/s) 40 / 10 / PCIe* 3.0  (2.5, 5, 8 GT/s)

Memory  Population 4 channels of up to 3 RDIMMs or 
3 LRDIMMs + 3DS LRDIMM†

Memory RAS
ECC, Patrol Scrubbing, Demand 

Scrubbing, Sparing, Mirroring, 
Lockstep Mode, x4/x8 SDDC

+ DDR4 Write CRC

Max Memory Speed Up to 2133 Up to 2400

TDP (W) 160 (Workstation only), 145, 135, 120, 105, 90, 85, 65, 55

◊ Requires BIOS and firmware update; ^ not available broadly on E5-2600 v3; † Depends on market availability

Intel® Xeon® Processor 
E5-2600 v4

Core Core

Core Core

Core Core

Shared Cache

QPI

QPI

2x Intel® QPI 
1.1

4 Channels DDR4

40 Lanes PCIe* 
3.0

DMI2

DDR4

DDR4

DDR4

DDR4
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Intel® Xeon® E5-2600 v4 Product Family Overview

New Features:
▪ Broadwell microarchitecture
▪ Built on 14nm process technology

▪ Socket compatible◊ replacement/ upgrade 
on Grantley-EP platforms

New Performance Technologies:
▪ Optimized Intel® AVX Turbo mode
▪ Intel TSX instructions^

Other Enhancements:
▪ Virtualization speedup
▪ Orchestration control
▪ Security improvements
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Intel® Xeon® Processor E5-2600 v4 Product Family MCC/LCC



Intel® Xeon® Processor E5-2600 v4 Product Family HCC
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High core count (HCC) die 
configuration
• Used by SKUs with 16 to 22 

cores
• E5-2699 v4
• E5-2698 v4
• E5-2697 v4
• E5-2697A v4
• E5-2695 v4
• E5-2683 v4

• For each core 
• 2.5M last level cache (LLC)
• Caching agent (CBO)

• For each ring 
• Home agent (HA)
• Memory Controller with 2 

DDR4 channels



What’s next …
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• Broadwell (code name) E7 (4-socket server processor models)

• Skylake (code name) server (E5 and E7) 
• Micro-architecture launched in client processors Sep. 2015

• Intel® AVX-512 ( only for server )

• Expect a lot of additional, key changes 

• FPGA and Xeon server integration

• NVM  (non-volatile memory) - 3D XPoint™ Technology



Intel® Many Integrated Core Architecture 
Intel® Xeon Phi™ Coprocessor



22 nm process

Up to 61 Cores

Up to 16GB Memory

2013: 

Intel® Xeon Phi™ 
Coprocessor x100 
Product Family

    “Knights Corner”

2016: 

Second  
Generation Intel® 
Xeon Phi™

“Knights Landing”

14 nm

Processor & 
Coprocessor

+60 cores

On Package, 
High-Bandwidth 
Memory

Future Knights:

Upcoming Gen of 
the Intel® MIC 
Architecture 

In planning

Continued roadmap 
commitment 

*Per Intel’s announced products or planning process for future 
products

Intel® Xeon Phi™ Product Family
based on Intel® Many Integrated Core (MIC)  Architecture



Knights Landing: Next-Generation Intel® Xeon Phi™



Mesh of Rings

▪ Every row and column is a (half) ring

▪ YX routing: Go in Y → Turn → Go in X

▪ Messages arbitrate at injection and on turn

Cache Coherent Interconnect

▪ MESIF protocol (F = Forward)

▪ Distributed directory to filter snoops

Three Cluster Modes

(1) All-to-All 

(2) Quadrant 

(3) Sub-NUMA Clustering (SNC)

KNL Mesh Interconnect
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Address uniformly hashed across all 
distributed directories

No affinity between Tile, Directory and 
Memory

Lower performance mode, compared to 
other modes. Mainly for fall-back

Typical Read L2 miss
1. L2 miss encountered

2. Send request to the distributed directory

3. Miss in the directory. Forward to memory

4. Memory sends the data to the requestor

Cluster Mode: All-to-All
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Chip divided into four virtual Quadrants

Address hashed to a Directory in the same 
quadrant as the Memory

Affinity between the Directory and Memory

Lower latency and higher BW than all-to-all.  
Software transparent.

1. L2 miss,  2. Directory access,  3. Memory access,  
4. Data return

Cluster Mode: Quadrant
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Each Quadrant (Cluster) exposed as 
a separate NUMA domain to OS

Looks analogous to 4-Socket Xeon

Affinity between Tile, Directory and 
Memory

Local communication. Lowest latency 
of all modes
Software needs to be NUMA-aware 
to get benefit

Cluster Mode: Sub-NUMA Clustering (SNC)
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1. L2 miss,  2. Directory access,  3. Memory access,  4. Data return
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KNL Core and VPU

Out-of-order core w/ 4 SMT threads

VPU tightly integrated with core pipeline

2-wide decode/rename/retire

2x 64B load & 1 64B store port for D$

L1 prefetcher and L2 prefetcher

Fast unaligned and cache-line split support

Fast gather/scatter support



Large impact:  Intel® AVX-512  instruction set
– Slightly different from future Intel® Xeon™ architecture AVX-512 extensions 
– Includes SSE, AVX, AVX-2
– Apps built for HSW and earlier can run on KNL ( few exceptions like TSX )
– Incompatible with 1st Generation Intel® Xeon™ Phi  ( KNC )

Medium impact: New, on-chip high bandwidth memory (MCDRAM) creates  
heterogeneous (NUMA) memory access
– can be used transparently too however 

Minor impact: Differences in floating point execution / rounding 
due to FMA and new HW-accelerated transcendental 
functions  - like exp()
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Software Adaption for KNL – Key New Features 



AVX-512 - Greatly increased Register File

XMM0-15 

16- bytes
YMM0-15

 32 bytes

ZMM0-31 

64 bytes

SSE
AVX2

AVX-512

0

15
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Vector Registers IA32 
(32bit)

Intel64 (64bit)

SSE
(1999)

8 x 128bit 16 x 128bit

AVX and AVX-2
(2011 / 2013)

8 x 256bit 16 x 256bit

AVX-512
(2014 – KNL) 

8 x 512bit 32 x 512bit



The Intel® AVX-512 Subsets [1]

❑ Comprehensive vector extension for HPC and enterprise
❑ All the key AVX-512 features: masking, broadcast…
❑ 32-bit and 64-bit integer and floating-point instructions
❑ Promotion of many AVX and AVX2 instructions to AVX-512
❑ Many new instructions added to accelerate HPC workloads

AVX-512 F: 512-bit Foundation instructions common between MIC and  Xeon

❑ Allow vectorization of loops with possible address conflict
❑ Will show up on Xeon

AVX-512 CD (Conflict Detection instructions)

❑ fast (28 bit)  instructions for exponential and reciprocal and transcendentals ( as 
well as RSQRT) 
❑ New prefetch instructions: gather/scatter prefetches and PREFETCHWT1 

AVX-512 extensions for exponential and prefetch operations  

AVX-512 F

AVX-512CD

AVX-512ER

AVX-512PR



The Intel® AVX-512 Subsets [2]

❑ All of (packed) 32bit/64 bit operations AVX-512F doesn’t provide 
❑ Close 64bit gaps like VPMULLQ :  packed 64x64 ➔ 64
❑ Extend mask architecture to word and byte (to handle vectors)
❑ Packed/Scalar converts of signed/unsigned to SP/DP

AVX-512 Double and Quad word instructions

❑ Extent packed (vector) instructions to byte and word (16 and 8 bit) datatype
❑ MMX/SSE2/AVX2 re-promoted to AVX512 semantics
❑ Mask operations extended to 32/64 bits to adapt to number of objects in 512bit
❑ Permute architecture extended to words (VPERMW, VPERMI2W, …)

AVX-512 Byte and Word instructions 

❑ Vector length orthogonality
❑ Support for 128 and 256 bits instead of full 512 bit
❑ Not a new instruction set but an attribute of existing 512bit instructions 

AVX-512 Vector Length extensions

AVX-512DQ

AVX-512BW

AVX-512VL



Other New Instructions

❑Set of instructions to implement checking a pointer against its bounds 
❑Pointer Checker support in HW ( today a SW only solution of e.g. Intel compilers ) 
❑Debug and security features 

Intel® MPX – Intel Memory Protection Extension

❑ Intel® Software Guard Extensions enables applications to execute code and 
protect secrets from within their own protected execution environment, giving 
developers direct control over their application security

Intel® SGX – Intel® Software Guard Extensions 

❑ needed for future memory technologies

Single Instruction – Flush  a cache line 

MPX

SGX 

CLFLUSHOPT

Save and restore extended processor state XSAVE{S,C}



AVX-512 – KNL and future XEON

– KNL and future Xeon architecture 
share a large set of instructions

• but sets are not identical 

– Subsets are represented by 
individual feature flags (CPUID) 

2nd Generation 
Xeon Phi (KNL)

SSE*

AVX

AVX2*

AVX-512F

Future Xeon 
(Skylake Server)  

SSE*

AVX

AVX2

AVX-512F

SNB

SSE*

AVX

HSW

SSE*

AVX

AVX2

NHM

SSE*

AVX-512CD AVX-512CD

AVX-512ER

AVX-512PR AVX-512BW

AVX-512DQ

AVX-512VL

MPX,SGX, …

C
om

m
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 In
st

ru
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io
n 

S
et
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Intel® Compiler Processor Switches

Switch Description 

-xmic-avx512 KNL  only;   already in 14.0

-xcore-avx512 Future XEON only, already in 15.0.1

-xcommon-avx512 AVX-512 subset common to both, already in 
15.0.2

-m, -march,  /arch Not  yet !

-ax<…-avx512> Same as for “-x<…-avx512>”

-mmic No – not for KNL 
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KNL Memory Modes
– Mode selected at boot

– MCDRAM-Cache covers all DDR

DDR

MCDRAM

DDR

MCDRAM

Flat Models

P
hy

si
ca

l A
dd

re
ss Hybrid Model

DDRMCDRAM

MCDRAM

DDRMCDRAM

Cache Model
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MCDRAM: Cache vs Flat Mode

DDR 
Only

MCDRAM 
as Cache

MCDRAM 
Only

Flat DDR + 
MCDRAM Hybrid

Software 
Effort

Performance

No software changes required Change allocations for 
bandwidth-critical data.

Not peak 
performance. Best performance.

DDR 
Only

MCDRAM 
as Cache Hybrid

Not peak 
performance.

Recommended

Limited 
memory 
capacity

Optimal HW 
utilization + 

opportunity for 
new algorithms



• API is open-sourced (BSD licenses)
• https://github.com/memkind 
• Uses jemalloc API underneath 

• http://www.canonware.com/jemalloc/
• https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemall

oc/480222803919
Malloc replacement: 
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High Bandwidth On-Chip Memory API

#include <memkind.h>

  hbw_check_available()
  hbw_malloc, _calloc, _realloc,… (memkind_t kind, …)
  hbw_free()
  hbw_posix_memalign() 
  hbw_get_size(), _psize()

ld …  -ljemalloc –lnuma –lmemkind –lpthread

https://github.com/memkind
https://github.com/memkind
http://www.canonware.com/jemalloc/
http://www.canonware.com/jemalloc/
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919


Fortran:

!DIR$ ATTRIBUTES FASTMEM :: data_object1, data_object2
• All Fortran data types supported
• Global, local, stack or heap;     scalar, array, …
• Support in compiler 15.0 update 1 and later versions 

C++:

standard allocator replacement for e.g. STL like 
#include <hbwmalloc.h>
std::vector<int, hbwmalloc::hbw_allocator>

42

HBW API for Fortran, C++



Porting codes on Knights Landing



Trends that are here to stay

Data parallelism

• Lots of threads, spent on MPI ranks or OpenMP/TBB/pthreads

• Improving support for both peak tput and modest/single thread

Bigger, better, faster memory

• High capacity, high bandwidth, low latency DRAM

• Effective caching and paging

• Increasing support for irregular memory refs, modest tuning

ISA innovation

• Increasing support for vectorization, new usages



Evolution or revolution?

Incremental changes, significant gains

Parallelization – consistent strategy

• MPI vs. OpenMP – already needed to tune and tweak

• Less thread-level parallelism required

• Vectorization – more opportunity, more profitable

Enable new features with memory tuning

• Access MCDRAM with special allocation

• Blocking for MCDRAM vs. just cache



Compatibility



KNL specific enabling

● Recompilation, with –xMIC-AVX512

● Threading: more MPI ranks, 1 thread/core

● Vectorization: increased efficiency

● MCDRAM and memory tuning: tile, 1GB pages



What is needed?

● Building

Change compiler switches in make files

● Coding

Parallelization: vectorization, offload

Memory management: MCDRAM enumeration and memory allocation

● Tuning

Potentially fewer threads: more cores but less need for SMT

More memory  more MPI ranks



Take-aways

Keep doing what you were doing for KNC and Xeon

Some goodness comes for free with a recompile

With some extra enabling, use new MCDRAM feature



Programming paradigms for the future?

Fabio Affinito (SCAI - Cineca)



What tools are there?

Differently from hetereogenous architectures (i.e. GPUs), 
changes can be made without being dramaticaly disruptives.

GPUs require to use CUDA, or in alternative, OpenMP4 directives 
to address the data copy between host and devices.

Some solutions based on PGAS is avalaible but still far to be 
optimal



So what?

Actually you could use codes already compiled for a x86 arch and 
they could work (in theory) on a Haswell/Broadwell/KNL 
processor.

So, at least on principle, the existence of legacy codes is 
completely preserved. 



But...

The fact that a code can run on a KNL architecture doesn’t mean 
that it is really exploiting all the power offered by your 
machine. 

It’s like driving a car always with the second gear..



Code modernization: a must

If you don’t want to waste resources (i.e. money and time) you 
may need to:

- modernize your code
- re-write your code from scratch (yeah, just like if you were 

porting it on a GPU!)



Code modernization



Code modernization - 1st stage

At the beginning of your optimization project, select an optimizing development 
environment. The decision you make at this step will have a profound influence in 
the later steps. Not only will it affect the results you get, it could substantially 
reduce the amount of work to do. 

The right optimizing development environment can provide you with good compiler 
tools, optimized, ready-to-use libraries, and debugging and profiling tools to 
pinpoint exactly what the code is doing at the runtime.



Code modernization - 2nd stage
Before you begin active parallel programming, you need to make sure your application 

delivers the right results before you vectorize and parallelize it. Equally important, 
you need to make sure it does the minimum number of operations to get that 
correct result.

● Choosing the right floating point precision

● Choosing the right approximation method accuracy; polynomial vs. rational

● Avoiding jump algorithms

● Reducing the loop operation strength by using iteration calculations

● Avoiding or minimizing conditional branches in your algorithms

● Avoiding repetitive calculations, using previously calculated results.



Code modernization - 3rd stage

Try vector level parallelism. First try to vectorize the inner most loop. For 
efficient vector loops, make sure that there is minimal control flow 
divergence and that memory accesses are coherent. 

Outer loop vectorization is a technique to enhance performance. By default, 
compilers attempt to vectorize innermost loops in nested loop structures. 
But, in some cases, the number of iterations in the innermost loop is small. 
In this case, inner-loop vectorization is not profitable. 

However, if an outer loop contains more work, a combination of elemental 
functions, strip-mining, and pragma/directive SIMD can force vectorization 
at this outer, profitable level. (we’ll see later…)



Code modernization - 4th step

Now we get to thread level parallelization. Identify the outermost level and try to parallelize it. Obviously, this 

requires taking care of potential data races and moving data declaration to inside the loop as necessary. It may 

also require that the data be maintained in a cache efficient manner, to reduce the overhead of maintaining 

the data across multiple parallel paths. 

Since the amount of work needs to compensate for the overhead of parallelization, it helps to have as large a 

parallel effort in each thread as possible. If the outermost level cannot be parallelized due to unavoidable data 

dependencies, try to parallelize at the next-outermost level that can be parallelized correctly.

https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads


4th step: threads
1. If the amount of parallel work achieved at the outermost level appears sufficient for the target hardware and 

likely to scale with a reasonable increase of parallel resources, you are done. Do not add more parallelism, as the 

overhead will be noticeable (thread control overhead will negate any performance improvement) and the gains 

are unlikely.

2. If the amount of parallel work is insufficient, e.g. as measured by core scaling that only scales up to a small core 

count and not to the actual core count, attempt to parallelize additional layer, as outmost as possible. Note that 

you don’t necessarily need to scale the loop hierarchy to all the available cores, as there may be additional loop 

hierarchies executing in parallel.

3. If step 2 did not result in scalable code, there may not be enough parallel work in your algorithm. This may mean 

that partitioning a fixed amount of work among many threads gives each thread too little work, so the overhead 

of starting and terminating threads swamps the useful work. Perhaps the algorithms can be scaled to do more 

work, for example by trying on a bigger problem size.

4. Make sure your parallel algorithm is cache efficient. If it is not, rework it to be cache efficient, as cache inefficient 

algorithms do not scale with parallelism.

https://software.intel.com/en-us/articles/optimize-data-structures-and-memory-access-patterns-to-improve-data-locality


Code modernization - 5th step

Lastly we get to multi-node (Rank) parallelism. To many developers message passing 
interface (MPI) is a black box that “just works” behind the scenes, to transfer data 
from one MPI task (process) to another. 

The beauty of MPI for the developer is that the algorithmic coding is hardware 
independent. The concern that developers have, is that with the many core 
architecture with 60+ cores, the communication between tasks may create a 
communication storm either within a node or across nodes. To mitigate these 
communication bottlenecks, applications should employ hybrid techniques, 
employing a few MPI tasks and many OpenMP threads.



Leverage your skills!

Some time ago, codes were parallelized using either MPI or 
OpenMP.

Only in some few cases both of them were used.

Nowadays, using MPI+OpenMP is a must!

Two parallelization levels are necessary to exploit both the 
intra-node (OpenMP) and inter-node (MPI) parallelism.



Leverage your skills!

Plus, a lot of new features of the MPI and OpenMP standards 
permit to successfully deal with the new HPC architectures, in 
particular to exploit data-level parallelism, reducing the 
latencies, etc.

MPI: Non-blocking collectives, RMA, Shred memory parallelism, 
etc.

OpenMP: SIMD, tasks, etc.



Data-level parallelism

In particular for the new Intel architectures, a lot of 
performances depend on how much you’re able to use the 
data-level parallelism, in terms of SIMD vectorization.

We recall, for example, that in MARCONI A1, a factor 16 of the 
peak-performance is given by the vectorization...  



Overview of the vectorization techniques.
Getting ready for AVX-512

Fabio Affinito (SCAI - Cineca)



The need for SIMD vectorization 
Is the Intel® Xeon PhiTM coprocessor right for me?

Single thread (ST) performance is limited in today’s 
CPUs

– Clock frequency constraints

– Difficult to discover “near” Instruction 
level parallelism (ILP) by hardware

More transistors dedicated to exploit “distant” 
parallelism

– Task level parallelism (TLP)

• Improves Multi Thread 
performance (MT)

– Data level parallelism (DLP)

• Improves Single Thread 
performance (ST)

• Enabled by using SIMD vectors

66“Is the Intel® Xeon PhiTM coprocessor right for me?”, by Eric Gardner - 
https://software.intel.com/en-us/articles/is-the-intel-xeon-phi-coprocessor-right-for-me 

Enable Thread Level 
Parallelism (TLP) with 

threads

Enable Data Level 
Parallism (DLP) 

with  SIMD vectors

Benefit from 
more available 

bandwidth

https://software.intel.com/en-us/articles/is-the-intel-xeon-phi-coprocessor-right-for-me
https://software.intel.com/en-us/articles/is-the-intel-xeon-phi-coprocessor-right-for-me


How to enable SIMD vectorization?
Enabling parallelism with Intel® Parallel Studio XE 2015 tool suite
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Compiler, 
libraries, and 
parallel 
programming 
models

Source code
+
annotations
(OpenMP, 
MPI, 
compiler 
directives)

Single programming model for all your code

– Based on standards: OpenMP/MPI, C/C++/Fortran

– Programmers/tools responsibility to expose DLP/TLP parallelism

Exposing TLP/DLP in your application will benefit today and future Intel® Xeon® processors 
and Intel® Xeon PhiTM coprocessors

– Including SIMD vectorization on future Intel® AVX-512 products



Single Instruction Multiple Data (SIMD)

Technique for exploiting DLP on a single thread
– Operate on more than one element at a time
– Might decrease instruction counts significantly 

Elements are stored on SIMD registers or vectors
Code needs to be vectorized

– Vectorization usually on inner loops
– Main and remainder loops are generated
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for (int i = 0; i < N; i++)
    c[i] = a[i] + b[i];

for (int i = 0; i < N; i += 4)
    c[i:4] = a[i:4] + b[i:4];  

a[i:4]

b[i:4]

c[i:4]

Scalar loop

SIMD loop (4 elements)



AVX-512

AVX2

Advanced Vector eXtensions (AVX)

Streaming SIMD Extensions 
(SSE*)

Past, present, and future of Intel SIMD types
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MultiMedia eXtensions 
(MMX) Foundation instructions (FI)

Exponential & Reciprocal Instructions (ERI)

Conflict Detection Instructions (CDI)

Prefetch Instructions (PFI)

Byte & Word Instructions (BWI)

Double-/Quad-word Instructions (DQI)

Vector Length Extensions (VLE)

Initial Many Core Instructions (IMCI)

Current Intel® Xeon PhiTM coprocessors (Knights Corner)

Current Intel® Xeon® processors

Future Intel® Xeon
PhiTM coprocessors
(including Knights Landing)

Future Intel® Xeon®
processors

64-bit SIMD

128-bit SIMD

256-bit SIMD

512-bit SIMD

512-bit 
SIMD

For more information about Intel® AVX-512 instructions, check out James Reinders’ initial and updated post for this 
topic.

https://software.intel.com/en-us/blogs/2013/avx-512-instructions
https://software.intel.com/en-us/blogs/additional-avx-512-instructions


Intel® AVX2/IMCI/AVX-512 differences
Intel® Initial Many Core Instructions

IMCI
Intel® Advanced Vector Extensions 2

AVX2
Intel® Advanced Vector Extensions 

512

AVX-512

Introduction 2012 2013 2015

Products Knights Corner Haswell, Broadwell
Knights Landing, future Intel® Xeon® and 

Xeon® PhiTM products

Register file
SP/DP/int32/int64 data types

32 x 512-bit SIMD registers
8 x 16-bit mask registers

SP/DP/int32/int64 data types
16 x 256-bit SIMD registers

No mask registers (instr. blending)

SP/DP/int32/int64 data types
32 x 512-bit SIMD registers

8 x (up to) 64-bit mask

ISA features

Not compatible with AVX*/SSE*
No unaligned data support

Embedded broadcast/cvt/swizzle
MVEX encoding

Fully compatible with AVX/SSE*
Unaligned data support (penalty)

VEX encoding

Fully compatible with AVX*/SSE*
Unaligned data support (penalty)
Embedded broadcast/rounding

EVEX encoding

Instruction 
features

Fused multiply-and-add (FMA)
Partial gather/scatter

Transcendental support

Fused multiply-and-add (FMA)
Full gather

Fused multiply-and-add (FMA)
Full gather/scatter

Transcendental support (ERI only)
Conflict detection instructions
PFI/BWI/DQI/VLE (if applies)

70Intel® AVX-512 is a major step in unifying the instruction set of Intel® MIC and Intel® Xeon® architecture



Vectorization on Intel® compilers

Auto 
Vectorization

•Compiler knobs

Guided 
Vectorization

•Compiler hints/pragmas
•Array notation

Low level 
Vectorization

•C/C++ vector classes
•Intrinsics/Assembly

71

Easy of use

Fine control



Auto vectorization
Relies on the compiler for vectorization

– No source code changes

– Enabled with -vec compiler knob (default in -O2 and -O3 modes)

Compiler smart enough to apply loop transformations
– It will allow to vectorize more loops
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Option Description

-OO Disables all optimizations.

-O1 Enables optimizations for speed which are know to not cause code size increase.

-O2/-O 
(default)

Enables intra-file interprocedural optimizations for speed, including:
• Vectorization
• Loop unrolling

-O3 Performs O2 optimizations and enables more aggressive loop transformations such as:
• Loop fusion
• Block unroll-and-jam
• Collapsing IF statements
This option is recommended for applications that have loops that heavily use floating-point calculations and process 
large data sets. However, it might incur in slower code, numerical stability issues, and compilation time increase.



Option Description

-mmic Builds an application that runs natively on Intel® MIC Architecture. 

-xfeature
-xHost

Tells the compiler which processor features it may target, referring to which instruction sets and 
optimizations it may generate (not available for Intel® Xeon PhiTM architecture). Values for feature are:

• COMMON-AVX512 (includes AVX512 FI and CDI instructions)
• MIC-AVX512 (includes AVX512 FI, CDI, PFI, and ERI instructions)
• CORE-AVX512 (includes AVX512 FI, CDI, BWI, DQI, and VLE instructions)
• CORE-AVX2
• CORE-AVX-I (including RDRND instruction)
• AVX
• SSE4.2, SSE4.1
• ATOM_SSE4.2, ATOM_SSSE3 (including MOVBE instruction)
• SSSE3, SSE3, SSE2

When using -xHost, the compiler will generate instructions for the highest instruction set available on 
the compilation host processor.

-axfeature Tells the compiler to generate multiple, feature-specific auto-dispatch code paths for Intel® processors if 
there is a performance benefit. Values for feature are the same described for -xfeature option. 
Multiple features/paths possible, e.g.: -axSSE2,AVX. It also generates a baseline code path for the 
default case. 

Vectorization: target architecture options
On which architecture do we want to run our program?
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https://software.intel.com/en-us/node/522798
https://software.intel.com/en-us/node/522798
https://software.intel.com/en-us/node/522845
https://software.intel.com/en-us/node/522845
https://software.intel.com/en-us/node/522845
https://software.intel.com/en-us/node/522846
https://software.intel.com/en-us/node/522846
https://software.intel.com/en-us/node/522823
https://software.intel.com/en-us/node/522823
https://software.intel.com/en-us/node/522823


Auto vectorization: not all loops will vectorize
Data dependencies between iterations

– Proven Read-after-Write data (i.e., loop carried) dependencies
– Assumed data dependencies

• Aggressive optimizations (e.g., IPO) might help
Vectorization won’t be efficient

– Compiler estimates how better the vectorized version will be
– Affected by data alignment, data layout, etc.

Unsupported loop structure
– While-loop, for-loop with unknown number of iterations
– Complex loops, unsupported data types, etc.
– (Some) function calls within loop bodies

• Not the case for SVML functions
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for (int i = 0; i < N; i++)
    a[i] = a[i-1] + b[i];

RaW dependency

for (int i = 0; i < N; i++)
    a[c[i]] = b[d[i]];

Inefficient vectorization

for (int i = 0; i < N; i++)
    a[i] = foo(b[i]);

Function call within loop body



Auto vectorization on Intel® compilers

75

Polyhedron benchmark suite
Intel® Xeon PhiTM 7120A, 61 cores x 4 threads

Intel® Fortran Compiler 15.0.1.14 [-O3 -fp-model fast=2 -align array64byte -ipo -mmic ]

http://www.polyhedron.com/fortran-compiler-comparisons/polyhedron-benchmark-suite
http://www.polyhedron.com/fortran-compiler-comparisons/polyhedron-benchmark-suite


Validating vectorization success
Generate compiler report about optimizations

-qopt-report[=n] Generate report (level [1..5], default 2)

-qopt-report-file=<fname> Optimization report file (stderr, stdout also valid)

-qopt-report-phase=<phase> Info about opt. phase:
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LOOP BEGIN at gas_dyn2.f90(193,11) inlined into 
gas_dyn2.f90(4326,31)
   remark #15300: LOOP WAS VECTORIZED
   remark #15448: unmasked aligned unit stride loads: 1 
   remark #15450: unmasked unaligned unit stride loads: 1 
   remark #15475: --- begin vector loop cost summary ---
   remark #15476: scalar loop cost: 53 
   remark #15477: vector loop cost: 14.870 
   remark #15478: estimated potential speedup: 2.520 
   remark #15479: lightweight vector operations: 19 
   remark #15481: heavy-overhead vector operations: 1 
   remark #15488: --- end vector loop cost summary ---
   remark #25456: Number of Array Refs Scalar Replaced In Loop: 1
   remark #25015: Estimate of max trip count of loop=4
LOOP END

LOOP BEGIN at gas_dyn2.f90(2346,15)
   remark #15344: loop was not vectorized: vector dependence prevents vectorization
   remark #15346: vector dependence: assumed OUTPUT dependence between IOLD line 376 and IOLD line 
354
   remark #25015: Estimate of max trip count of loop=3000001
LOOP END

Vectorized loop

Non-vectorized loop

loop Loop nest optimizations
par Auto-parallelization
vec Vectorization
openmpOpenMP
offload  Offload
ipo Interprocedural optimizations 
pgo Profile Guided optimizations 
cg Code generation optimizations 
tcollect Trace analyzer (MPI) collection
all All optimizations (default)



Guided vectorization: disambiguation hints
Get rid of assumed vector dependencies 

Assume function arguments won’t be aliased
– C/C++: Compile with -fargument-noalias

C99 “restrict” keyword for pointers
– Compile with -restrict otherwise

Ignore assumed vector dependencies (compiler directive)
– C/C++: #pragma ivdep
– Fortran: !dir$ ivdep

77

void v_add(float *c, float *a, float *b)
{
#pragma ivdep
    for (int i = 0; i < N; i++)
        c[i] = a[i] + b[i];
}

void v_add(float *restrict c,
           float *restrict a,
           float *restrict b)
{
    for (int i = 0; i < N; i++)
        c[i] = a[i] + b[i];
}



Some Intel® compiler directives
Directive Description

distribute, distribute_point Instructs the compiler to prefer loop distribution at the location indicated.

inline Instructs the compiler to inline the calls in question.

ivdep Instructs the compiler to ignore assumed vector dependencies.

loop_count Indicates the loop count is likely to be an integer.

optimization_level Enables control of optimization for a specific function.

parallel/noparallel Facilitates auto-parallelization of an immediately following loop; using
keyword always forces the compiler to auto-parallelize; noparallel pragma
prevents auto-parallelization.

[no]unroll Instructs the compiler the number of times to unroll/not to unroll a loop

[no]unroll_and_jam Prevents or instructs the compiler to partially unroll higher loops and jam the 
resulting loops back together.

unused Describes variables that are unused (warnings not generated).

[no]vector Specifies whether the loop should be vectorised. In case of forcing 
vectorization that should be according to the given clauses.
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https://software.intel.com/en-us/node/524559


Guided vectorization: #pragma simd

Force loop vectorization ignoring all dependencies
– Additional clauses for specify reductions, etc.
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void v_add(float *c, float *a, float *b)
{
#pragma simd
    for (int i = 0; i < N; i++)
        c[i] = a[i] + b[i];
}

__declspec(vector)
void v_add(float c, float a, float b)
{
    c = a + b;
}
    …
for (int i = 0; i < N; i++)
    v_add(C[i], A[i], B[i]);

SIMD loop SIMD function

https://software.intel.com/en-us/node/524555


Guided vectorization: #pragma simd

Also supported in OpenMP
– Almost same functionality/syntax

• Use #pragma omp simd [clauses] for SIMD loops

• Use #pragma omp declare simd [clauses] for SIMD functions

– See OpenMP 4.0 specification for more information
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http://openmp.org/wp/openmp-specifications/


Explicit vectorization with array notation
Express high-level vector parallel array operations

– Valid notation in Fortran since Fortran 90

– Supported in C/C++ by Intel® compiler (CilkTM Plus) and GCC 4.9

• Enabled by default on Intel® compiler, use -fcilkplus option on GCC

– No additional modifications to source code

– Most arithmetic and logic operations already overloaded

– Also built-in reducers for array sections

Vectorization becomes explicit
– C/C++ syntax: array-expression[lower-bound:length[:stride]]
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__declspec(vector)
void v_add(float c, float a, float b)
{
    c = a + b;
}
    …
v_add(C[:], A[:], B[:]);

SIMD function invoked with array notation

a[:]      // All elements
a[2:6]    // Elements 2 to 7
a[:][5]   // Column 5
a[0:3:2]  // Elements 0,2,4

Samples

https://www.cilkplus.org/tutorial-array-notation
https://www.cilkplus.org/tutorial-array-notation
https://www.cilkplus.org/tutorial-array-notation


Improving vectorization: data layout
Vectorization more efficient with unit strides

– Non-unit strides will generate gather/scatter

– Unit strides also better for data locality

– Compiler might refuse to vectorize

AoS vs SoA

– Layout your data as Structure of Arrays (SoA)

Traverse matrices in the right direction

– C/C++: a[i][:] , Fortran: a(:,i)

– Loop interchange might help

• Usually the compiler is smart enough to 
apply it

• Check compiler optimization report
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// Structure of Arrays (SoA)
struct coordinate {
    float x[N], y[N], z[N];
} crd;
    …
for (int i = 0; i < N; i++)
    … = … f(crd.x[i], crd.y[i], crd.z[i]);

// Array of Structures (AoS)
struct coordinate {
    float x, y, z;
} crd[N];
    …
for (int i = 0; i < N; i++)
    … = … f(crd[i].x, crd[i],y, crd[i].z);

x0 x1 …x(n-1) y0 y1 …y(n-1) z0 z1 … z(n-1)

x0 y0 z0 x1 y1 z1 …x(n-1) y(n-1) z(n-1)

Consecutive elements in memory

Array of Structures vs Structure of Arrays

Consecutive elements in memory



Improving vectorization: data alignment
Unaligned accesses might cause significant performance degradation

– Two instructions on current Intel® Xeon PhiTM coprocessor
– Might cause “false sharing” problems

• Consumer/producer thread on the same cache line

Alignment is generally unknown at compile time
– Every vector access is potentially an unaligned access

• Vector access size = cache line size (64-byte)
– Compiler might “peel” a few loop iterations

• In general, only one array can be aligned, though

When possible, we have to
– Align our data
– Tell the compiler data is aligned

• Might not be always the case
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Improving vectorization: data alignment 
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How 
to… Language Syntax Semantics

…align 
data

C/C++ void* _mm_malloc(int size, int n)
Allocate memory on heap aligned to n 
byte boundary.C/C++ int posix_memalign

    (void **p, size_t n, size_t size)

C/C++ __declspec(align(n)) array

Alignment for variable declarations.

Fortran (not in 
common 
section)

!dir$ attributes align:n::array

Fortran
(compiler 
option)

-alignnbyte

…tell the 
compiler 
about it

C/C++ #pragma vector aligned Vectorize assuming all array data 
accessed are aligned (may cause fault 
otherwise).Fortran !dir$ vector aligned

C/C++ __assume_aligned(array, n) Compiler may assume array is aligned 
to n byte boundary.Fortran !dir$ assume_aligned array:n



Vectorization with multi-version loops
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LOOP BEGIN at gas_dyn2.f90(2330,26)
<Peeled>
   remark #15389: vectorization support: reference AMAC1U has unaligned access
   remark #15381: vectorization support: unaligned access used inside loop 
body
   remark #15301: PEEL LOOP WAS VECTORIZED
LOOP END
LOOP BEGIN at gas_dyn2.f90(2330,26)
   remark #25084: Preprocess Loopnests: Moving Out Store
   remark #15388: vectorization support: reference AMAC1U has aligned access
   remark #15399: vectorization support: unroll factor set to 2
   remark #15300: LOOP WAS VECTORIZED
   remark #15475: --- begin vector loop cost summary ---
   remark #15476: scalar loop cost: 8
   remark #15477: vector loop cost: 0.620
   remark #15478: estimated potential speedup: 15.890
   remark #15479: lightweight vector operations: 5
   remark #15488: --- end vector loop cost summary ---
   remark #25018: Total number of lines prefetched=4
   remark #25019: Number of spatial prefetches=4, dist=8
   remark #25021: Number of initial-value prefetches=6
LOOP END
LOOP BEGIN at gas_dyn2.f90(2330,26)
<Remainder>
   remark #15388: vectorization support: reference AMAC1U has aligned access
   remark #15388: vectorization support: reference AMAC1U has aligned access
   remark #15301: REMAINDER LOOP WAS VECTORIZED
LOOP END

Peel loop
Alignment purposes
Might be vectorized

Remainder loop
Remainder iterations
Might be vectorized

Main loop
Vectorized
Unrolled by x2 or 
x4



Other considerations
Loop tiling/blocking to improve data locality

– Square tiles so elements can be reused

Use streaming loads/stores to save bandwidth
● #pragma vector [non]temporal(list)
● -qopt-streaming-stores=[always|never|auto]
● -qopt-streaming-cache-evict[=n] (Intel® MIC only)

Tune software prefetcher

● -qopt-prefetch[=n]
● -qprefetch-distance=n1[,n2]  (Intel® MIC only)
● #pragma [no]prefetch [clauses]  (Intel® MIC only)
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Low level (explicit) vectorization
A.k.a “ninja programming”

Vectorization relies on the 
programmer with some 
help from the compiler

Might be convenient for low 
level performance 
tuning of critical 
hotspots

Not portable among 
different SIMD 
architectures
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SIMD C++ class Intrinsics Assembly

#include <fvec.h>

F32vec4 a,b,c;
a = b + c;

#include <xmmintrin.h>

__m128 a,b,c;
a = _mm_add_ps(b,c);

__m128 a,b,c;
__asm { 
    movaps xmm0,b
    movaps xmm1,c
    addps xmm0,xmm1
    movaps a, xmm0
}

https://software.intel.com/sites/landingpage/IntrinsicsGuide/


How to get ready for Intel® AVX-512?

BKM: Start optimizing your application today for current generation 
of Intel® Xeon® processors and Intel® XeonTM Phi coprocessors

Tune your AVX-512 kernels on non-existing silicon
– Compile with latest compiler toolchains

• Intel® compiler (v15.0): -xCOMMON-AVX512 , -xMIC-AVX512 , -xCORE-AVX512
• GNU compiler (v4.9): -mavx512f , -mavx512cd , -mavx512er , -mavx512pf

– Run Intel® Software Development emulator (SDE)
• Emulate (future) Intel® Architecture Instruction Set Extensions (e.g. Intel® MPX, …)
• Tools available for detailed analysis

– Instruction type histogram
– Pointer/misalignment checker

• Also possible to debug the application while emulated
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https://software.intel.com/en-us/articles/intel-software-development-emulator


Summary

Programmers are mostly responsible of exposing DLP (SIMD) parallelism

Intel® compilers provide sophisticated/flexible support for vectorization

– Auto, guided (assisted), and low-level (explicit) vectorization

– Based on OpenMP standards and specific directives

– Easily portable across different Intel® SIMD architectures

Fine-tuning of generated code is key to achieve the best performance

– Check whether code is actually vectorized

– Data layout, alignment, remainder loops, etc.

Get ready for Intel® AVX-512 by optimizing your application today on current generation of Intel® Xeon® 
processors and Intel® XeonTM Phi coprocessors
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Online resources
Intel® Xeon PhiTM

– Developer portal Programming guides, tools, trainings, case studies, etc.

– Solutions catalog Existing Intel® Xeon PhiTM solutions for known codes

Intel® software development tools, performance tuning, etc.

– Documentation library All available documentation about Intel software

– Learning lab Learning  material with Intel® Parallel Studio XE

– Performance Resources about performance tuning on Intel hardware

– Forums Public discussions about Intel SIMD, threading, ISAs, etc.

Other resources (white papers, benchmarks, case studies, etc.)

– Go parallel BKMs for Intel multi- and many-core architectures

– Colfax research Publications and material on parallel programming

– Bayncore  labs Research and development activities (WIP)
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https://software.intel.com/mic-developer
https://software.intel.com/mic-developer
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-applications-and-solutions-catalog
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-applications-and-solutions-catalog
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-applications-and-solutions-catalog
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-applications-and-solutions-catalog
https://software.intel.com/en-us/intel-software-technical-documentation
https://software.intel.com/en-us/intel-software-technical-documentation
https://software.intel.com/en-us/intel-software-technical-documentation
https://software.intel.com/en-us/intel-software-technical-documentation
https://software.intel.com/en-us/intel-learning-lab
https://software.intel.com/en-us/intel-learning-lab
https://software.intel.com/en-us/intel-learning-lab
https://software.intel.com/en-us/intel-learning-lab
https://software.intel.com/en-us/intel-learning-lab
https://software.intel.com/en-us/performance
https://software.intel.com/en-us/performance
https://software.intel.com/en-us/performance
https://software.intel.com/en-us/performance
https://software.intel.com/en-us/performance
https://software.intel.com/en-us/forum
https://software.intel.com/en-us/forum
https://software.intel.com/en-us/forum
https://software.intel.com/en-us/forum
https://software.intel.com/en-us/forum
https://software.intel.com/en-us/forum
http://goparallel.sourceforge.net/
http://goparallel.sourceforge.net/
http://goparallel.sourceforge.net/
http://goparallel.sourceforge.net/
http://goparallel.sourceforge.net/
http://research.colfaxinternational.com/
http://research.colfaxinternational.com/
http://research.colfaxinternational.com/
http://research.colfaxinternational.com/
http://research.colfaxinternational.com/
http://www.bayncore.com/bayncore-labs/
http://www.bayncore.com/bayncore-labs/
http://www.bayncore.com/bayncore-labs/
http://www.bayncore.com/bayncore-labs/
http://www.bayncore.com/bayncore-labs/
http://www.bayncore.com/bayncore-labs/
http://www.bayncore.com/bayncore-labs/


Recommended books

91

Intel® Xeon PhiTM coprocessor 
high-performance programming, 

by Jim Jeffers and James 
Reinders, Morgan Kaufmann, 

2013

Optimizing HPC applications 
with Intel® cluster tools, by 
Alexander Supalov et al, Apress, 
2014

High performance parallelism pearls: 
multi-core and many-core approaches, by 
James Reinders and Jim Jeffers, Morgan 
Kaufmann, 2014

Parallel programming with Intel® Parallel Studio XE, by 
Stephen Blair-Chappell and Andrew Stokes, Wrox press, 
2012 

The software optimization 
handbook, by Aart Bik, Intel® press, 

2004



Introduction to the hands-on



General layout of a HPC cluster

login01

login02

viz-login

SSH

VNC, 
etc.

Compute nodes I/O



Job scheduler

In order to permit to all users to work, a job scheduler is in 
charge to define the execution of the jobs. 

On the Cineca HPC clusters, the job scheduler is PBS.

PBS can work 

- with the submission of a script
- or in an interactive session



qsub

interactive

batch



Workbench: Poisson

We will use as a workbench to test the Intel software tools a 
small program that simulate the solution of the Poisson 
equation on a grid.

Exercise: familiarize with the code, understanding (just a little 
bit) what is it doing, what are the computational kernels, etc. 

Exercise: compile the code and run on one single node. Check 
the execution times changing the number of MPI processes, 
OpenMP threads, etc



Graphic sessions

In order to work with Intel tools, it can be necessary to work 
with a graphic session rather than text-only ssh. 

A tool is avalaible from Cineca to work with a VNC session: RCM

You can download RCM from: 
http://www.hpc.cineca.it/software/rcm



Credentials etc.

GALILEO login: login.galileo.cineca.it

usernames: a08traXX where XX=21..24

account_no = train_cintel16 


