Introduction to Intel scalable architectures

Fabio Affinito (SCAI - Cineca)

"""" SC AI SuperComputing Applications and Innovation

SuperC ompu!

HPC Trends

- -

| Moore’s Law [

zel

CINECA

SuperC omputi

Dennard scaling law - Rzt
: ii -
(downscaling) | - Prge - Number of
o transistors per
;fﬂ f@i e At chip double every
f il i i | = 24 month
) ¥ : g
3 '
: .
- Amdahl’s law
£ - _ _Spesdup .
PR maximum
. E = speedup tends to
j] 1/(1-P)
ol P= parallel
fraction
1900 TEas = Ea’|;l! Ao rs u L) 1a 1 2 q !
hnpul.
s e e The upper limit for the scalability of parallel

and performance do not ||
grow following the
Moore's law any longer

maintain the

[| architectures evolution

onthe Moore s law

applications is determined by the fraction of the
NOVA overall execution time spent in non-parallel

operations.

HPC Trends ~_ A 4l
e

PeakPerformance Exaflops——— Moore law
1018

FPU Performance a Gigaflops Dennard law
1079

Number of FPUs 1‘ 1079 Moore + Dennard
. serial fraction ,
App. Parallelism 1‘ 1/10°9 Amdahl s\la:k . A

rower

e E@)& i icati i Moore + Denna
TS _@QuperComputlng Appllcatnd Innova;irt}hé Watt

Energy trends

ct;?dsltfrgatl:lez: Snlfeg ?gr?uigmum | Alot of silicon to

P J . - maximize single thread
performance for all possible . ¢

workloads periormace

Energy

Datacenter Capacity

=

ey s C AI SuperComputing Applications and Innovation
SuperC omputing Applications and Innovation C D m p u t e P Ower

Change of paradigm

New chips designed for - Simple functional units,

maximum performance in a - poor single thread

small set of workloads - performance, but
maximum throughput

Energy

Datacenter Capacity

>

ey s C AI SuperComputing Applications and Innovation
SuperC omputing Applications and Innovation C O m DUte P Dwer

The silicon lattice

Si lattice
50 atoms!

"""" sc AI SuperComputing Applications and Innovation

Su.lperL‘.omo nnnnnnnnnnnnnnnnnnnnnnnn

Exascale architecture

ﬁ Hybrid “

Homogeneus

two model—

—

System attributes 2001

OpenPower/ARM
+Nvidia GPU

ARM
Intel

T T

nﬂ

Total Node 1.5GB/s | 150 GB/fsec
Interconnect BW

':'““ 5C AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovation

1TF 10TF
0.4 TB/sec 4 TB/sec
O(1,000) 0{10,000)
1,000,000 100,000
250 GB/sec 2 TB/sec

Available options...

Right here, right now... two kind of solutions
are available on the market:

. IBM+ nVIDIA (Coral-like)
. Intel-based (Xeon/Xeon Phi)

fffff SCAI SuperComputing Applications and Innovation

IBM+NVIDIA

Mews room > News release

IBM and NVIDIA Launch Supercomputer
Centers of Excellence with the U.S.
Department of Energy’s Oak Ridge and
Lawrence Livermore National Labs

Designed to Accelerate Scientific Research and Strengthen National Security
Centers Bring Government and Industry Engineers Together o Advance Large-

Scale Scientific Applications Leveraging OpenPOWER Innovations for “Summit™
and “Sierra” Systems

Each node will be based on a Power CPU + 4/6/8 nVIDIA TESLA
GPUs connected using an nVIDIA NVlink interconnect

et sc AI SuperComputing Applications and Innovation

Intel Xeon and Xeon Phi

Intel will keep on with the production of server processors on
the Xeon line, together with the introduction of the Xeon Phi
many-core chips

Intel Xeon Phi will not be a co-processor anymore, but a
self-standing CPU with a very high number of cores

Such systems are integrated by several vendors in many
different configurations (Cray, HP, Lenovo, E4..)

fffff SCAl SuperComputing Applications and Innovation

MARCONI

FERMI, the IBM BlueGene/Q deployed in Cineca ended its
lifecycle in 2016

We needed a new HPC machine that could

- increase the computational power
- respect the agreements with PRACE
- satisfy the needs of the italian computing community

fffff SCAI SuperComputing Applications and Innovation

MARCONI

Tender proposal

Partition Installation CPU # nodes # of Racks Power
A1 - Broadwell April 2016 E5-2697 v4 1512 25 T00KW
(2.1PFlops)

A2 - Knight September KNL 3600 50 1300KW
Landing (11 2016

Pflops)

A3 - Skylake June 2017 E5-2680 v5 1512 25 T00KW
(4.5PFlops)

Network: Intel OmniPath

et sc AI SuperComputing Applications and Innovation

MARCONI

NeXtScale architecture
nx360M5 nodes:
Supporting Intel HSW & BDW
Able to host both IB network Mellanox EDR & Intel Omni-Path
Twelve nodes are grouped into a Chassis (6 chassis per rack)
The compute node is made of:
2 x Intel Broadwell (Xeon processor E5-2697 v4) 18 cores, 2,3 HGz
8 x 16GB DIMM memory (RAM DDR4 2400 MHz), 128 GB total
1 x 129 GB SATA MLC S3500 Enterprise Value SSD
Further details
1 x link OPA 100GBs
2*18%2,3*16 = 1.325 GFs peak
24 rack in total:
21 rack compute
1 rack service nodes
2 racks core switch

et 5CAI SuperComputing Applications and Innovation

MARCONI - Network

Network type: new Intel Omnipath
Largest Omnipath cluster of the world

Network topology: Fat-tree
2:1 oversubscription
tapering at the level of the core switches only

Core Switches: 5 x OPA Core Switch “Sawtooth Forest”
768 ports each

Hdge Switch: 216 OPA Edge Switch “Eldorado Forest”
48 ports each

Maximum system configuration:
5(opa) x 768(ports) x 2(tapering) -> 7680 servers

ey SC AI SuperComputing Applications and Innovation

MARCONI - Network

5 x 768 ports core Switches

.'I | \\“_\ "1'&_ ;:;,}/,;__.- IIl II'.
32 dow e

- T i
| ¥ A o e F y
\ e o / L o,
NN s gl NN

POPPIIII cc2acomputenodes HIDPIIDDD
CINECA ECAI Sup: 32 nodes

fully interconnected island

SuperComputing Applications and Innovation

MARCONI - Storage

Storage system:
6 x Lenovo G55-26 Storage

Storage capacity:
17PB(raw capacity)

Storage bandwidth:
100GByte/sec (sustained)

Storage network:
Intel Omnipath (directly attached to the OPA switchs)

ey SC AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovation

CINECA - Roadmap

Fermi
2PFlops . O.BMwatt

Galileo & PICO
1.2PFlops . DLdMwatt

Marconi A1
2.5PFlops . 0.7 watt

Marconi A2
11PFlops. 1.3MwWartt

Marconi A3)
TPFlops. 1.0Mwatt

Slstem a50PFlops. 3.2
Mwatt

1.2Mwatt 2. 4Mwatt 2.3Mwatt 2.3Mwatt 3.2Mwatt
. 50 rack 120 rack 120 rack 120 rack 150 rack
e QT A 100mgq 240mq 240mq 240mq 300mq

SuperComputing Applications and INNGwauws.

Intel® Xeon Processor Architecture

‘‘‘‘‘‘ SC AI SuperComputing Applications and Innovation

SuperC ompu! Application

Intel® Xeon® Processor E5-2600 v4 Product Family - TICK

45nm 32nm 22nm 14nm

TICK Westmere Ivy Bridge BROADWELL

TOCK

Haswell
Microarchitecture

ciNEcA sc AI SuperComputing Applications and Innovation 19

SuperComputing Applications and Innovati

Intel® Xeon® E5-2600 v4 Product Family Overview

New Features: New Performance Technologies:

* Broadwell microarchitecture = Optimized Intel® AVX Turbo mode
* Built on 14nm process technology = Intel TSX instructions”

= Socket compatible® replacement/ upgrade
on Grantley-EP platforms

[Features | Xeon E5-2600 v3 (Haswell-EP) | Xeon E5-2600 v4 (Broadwell-EP) + Channels DDRA
Cores Per Socket Upto 18 Up to 22

Intel® Xeon® Processor
Threads Per Socket Up to 36 threads Up to 44 threads — S

Last-level Cache (LLC) Up to 45 MB Up to 55 MB -
QPI Speed (GT/s) 2x QPI 1.1 channels 6.4, 8.0, 9.6 GT/s P
PCle* Lanes / Speed(GT/s) 40/10/PCle* 3.0 (2.5, 5, 8 GT/s)

DDR4
; 4 channels of up to 3 RDIMMs or + I
Memory Population 3 LRDIMMs + 3DS LRDIMM -

. DDR4
ECC, Patrol Scrubbing, Demand — Shared Cache

Memory RAS Scrubbing, Sparing, Mirroring, + DDR4 Write CRC
Lockstep Mode, x4/x8 SDDC 40 Lanes PCle*

Max Memory Speed Up to 2133 Up to 2400 3.0
TDP (W) 160 (Workstation only), 145, 135, 120, 105, 90, 85, 65, 55

2x Intel® QPI
1.1

QPI

QPI

DMI2

ey SC AI SuperComputing Applications and Innovation

0 Requires BIOS and firmware update; A not available broadly on E5-2600 v3; T Depends on market availability

Intel” Xeon® Processor E5-2600 v4 Product Family MCC/LCC

i B |

. . P—
Medium Core Low Core Count
Count (MCC) g.éi; iggs.

SKLUs

12C to 14C E5-2640 va
E5-26%0 va ol E5-2630 va
E5-2680 v4 E5- E5"2_62_D wi

cingca sc AI SuperComputing Applications and Innovation

SuperC omputing Application:

Intel” Xeon® Processor E5-2600 v4 Product Family HCC

High core count (HCC) die
configuration
* Used by SKUs with 16 to 22
cores
* E5-2699 v4
* E5-2698 v4
e E5-2697 v4
e E5-2697A v4
* E5-2695 v4
* E5-2683 v4
* For each core
* 2.5M last level cache (LLC)
* Caching agent (CBO)
* For each ring
* Home agent (HA)
* Memory Controller with 2
DDR4 channels

ey SC AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovation

CINECA

What’'s next ...

Broadwell (code name) E7 (4-socket server processor models)

Skylake (code name) server (E5 and E7)

* Micro-architecture launched in client processors Sep. 2015
* Intel® AVX-512 (only for server)

* Expect a lot of additional, key changes

FPGA and Xeon server integration

NVM (non-volatile memory) - 3D XPoint™ Technology

SC AI SuperComputing Applications and Innovation

SuperC omputing Application

Intel® Many Integrated Core Architecture
Intel® Xeon Phi™ Coprocessor

ey SC AI SuperComputing Applications and Innovation

Intel® Xeon Phi™ Product Family
based on Intel® Many Integrated Core (MIC) Architecture

Future Knights:

Upcoming Gen of
the Intel® MIC
Architecture

inside
XEON PHI

2016:

Second
Generation Intel®
Xeon Phi™

2013:

Intel® Xeon Phi™ “Knights Landing”

Coprocessor x100 In planning

Product Family 14 nm

Continued roadmap

Processor & commitment

Coprocessor
22 nm process +60 cores
Up to 61 Cores On Package,

Up to 16GB Memory High-Bandwidth
Memory

“Knights Corner”

PPLde *Per Intel’s announced products or planning process for future
SICA 5 products
T

SuperC omputing Appl

Knights Landing: Next-Generation Intel® Xeon Phi™

Stand-alone, Self-boot CPU

60+ new Silvermont-based cores

4 Threads per core

AVX 512 vector units

Binary Compatible? with Intel® Xeon® processor
2-dimensional Mesh on-die interconnect

EEERA M: On-Package memory: 400+ GB/s of

DDR memory
Intel® Omni-path Fabric

Intel® Omni-Path |
Fabric 3+ TFLops (DP) peak per package
~3x ST performance over KNC

Fabric

'-:':'_mf sc AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovation

KNL Mesh Interconnect

(= oilw] OPID .
" s Mesh of Rings
¥ L]
EDC EDLC . .
= Every row and column is a (half) ring
Tile Tile

|
me e J , | = Messages arbitrate at injection and on turn
e T J e e | me | e Cache Coherent Interconnect
o e Tie J e] Tie | - MESIF protocol (F = Forward)

me | e | " e | e | me | Tue | » Distributed directory to filter snoops
- i B T Three Cluster Modes
L J N N (1) All-to-All
= — J — L (2) Quadrant

i I J = = (3) Sub-NUMA Clustering (SNC)

; v + v

= YXrouting: Goin Y — Turn — Go in X

ey SC AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovation

Cluster Mode: All-to-All

BT
4
Tile
4
Tile
Tile
ThAC
ODoOR - == DDA
1
Tile
2 4
Tile
Tile
B
& Ta 'y A
L L ¥ v
OPIo OPIC OPIo OPID

Address uniformly hashed across all
distributed directories

No affinity between Tile, Directory and
Memory

Lower performance mode, compared to
other modes. Mainly for fall-back

Typical Read L2 miss

1
2
3.
4

L2 miss encountered

Send request to the distributed directory
Miss in the directory. Forward to memory
Memory sends the data to the requestor

ey SC AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovation

Cluster Mode: Quadrant

Chip divided into four virtual Quadrants

Address hashed to a Directory in the same
quadrant as the Memory

Affinity between the Directory and Memory

Lower latency and higher BW than all-to-all.
Software transparent.

P i s G S S . 1. L2 miss, 2. Directory access, 3. Memory access,
| |]] . | 4. Data return
& Tk Tk A
v ¥ ¥ ¥
QP L=lole] L= ln] DPIo

ey SC AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovation

Cluster Mode: Sub-NUMA Clustering (SNC)

(=l jle] (=l jle] PCle DPIo DPIo

Each Quadrant (Cluster) exposed as
a separate NUMA domain to OS

Looks analogous to 4-Socket Xeon

Affinity between Tile, Directory and
Memory

Local communication. Lowest latency
of all modes

Software needs to be NUMA-aware

3 3 3 : to get benefit

(=l jle] (=l le] (= o ln] (= o ln]

s ELYTA) DLBERt, ARtRRy Ak MEmANAST RS ARat retum

ication

KNL Core and VPU

Out-of-order core w/ 4 SMT threads

VPU tightly integrated with core pipeline
2-wide decode/rename/retire

2x 64B load & 1 64B store port for DS

L1 prefetcher and L2 prefetcher

Fast unaligned and cache-line split support
Fast gather/scatter support

':'““ 5C AI SuperComputing Applications and Innova

SuperC omputing Applications and Innovation

Icache

(32KB 8-way)

Fetch &
Decode

Allocate/
Rename

FP Rename Buffers

FP RF

Vector
AlLUs

Legacy

Integer Rename Buffer

Integer RF

MEM Recycle
RS(12) Buffer

TLBs

Dcache
(32KB 8-way)

Software Adaption for KNL — Key New Features

Large impact: Intel® AVX-512 instruction set
— Slightly different from future Intel® Xeon™ architecture AVX-512 extensions
— Includes SSE, AVX, AVX-2
— Apps built for HSW and earlier can run on KNL (few exceptions like TSX)
— Incompatible with 1st Generation Intel® Xeon™ Phi (KNC)

Medium impact: New, on-chip high bandwidth memory (MCDRAM) creates

heterogeneous (NUMA) memory access
— can be used transparently too however

Minor impact: Differences in floating point execution / rounding
due to FMA and new HW-accelerated transcendental
functions - like exp()

et 5CAI SuperComputing Applications and Innovation

AVX-512 - Greatly increased Register File

SSE e
AvX2 SSE N

>

’ ~ XMMO-15
0 r4 ————__16-bytes
T r—
} 32bytes ———— s
. 2 ’ P 7
v V4
— 7 /’
+—~ 7 7
15 i/ Z s
Vector Registers Intel64 (64bit)
ZMMO0-31
. 64 bytes SSE 8 x 128bit 16 x 128bit
(1999)
AVX and AVX-2 8 x 256bit 16 x 256bit
(2011 / 2013)
AVX-512 8 x 512bit 32 x 512bit

T sc AI SuperComputing Applications and Innovation (2014 — KNL)

SuperComputing Applications and Innovation

The Intel® AVX-512 Subsets [1]

AVX-512 F F

[Comprehensive vector extension for HPC and enterprise

4 All the key AVX-512 features: masking, broadcast...
 32-bit and 64-bit integer and floating-point instructions

[Promotion of many AVX and AVX2 instructions to AVX-512
[Many new instructions added to accelerate HPC workloads

AVX-512CD C D

3 Allow vectorization of loops with possible address conflict
3 Will show up on Xeon

AVX-512ER

4 fast (28 bit) instructions for exponential and reciprocal and transcendentals (as
well as RSQRT)

- New prefetch instructions: gather/scatter prefetches and PREFETCHWT1
T 5CAI SuperComputing Applications and Innovation

AVX-512PR

The Intel® AVX-512 Subsets [2]
e

4 All of (packed) 32bit/64 bit operations AVX-512F doesn’t provide
A Close 64bit gaps like VPMULLQ : packed 64x64 = 64

1 Extend mask architecture to word and byte (to handle vectors)

O Packed/Scalar converts of signed/unsigned to SP/DP

=

] Extent packed (vector) instructions to byte and word (16 and 8 bit) datatype
O MMX/SSE2/AVX2 re-promoted to AVX512 semantics

[Mask operations extended to 32/64 bits to adapt to number of objects in 512bit
O Permute architecture extended to words (VPERMW, VPERMI2W, ...)

W

O Vector length orthogonality
U Support for 128 and 256 bits instead of full 512 bit
O Not a new instruction set but an attribute of existing 512bit instructions

CINECA
5' AI SDUPSHOQITIRULTNY ARPRNICALQNTS alid innovauoni
SuperComputing Applications and Innovation

Other New Instructions

- Intel® MPX — Intel emory rotection xtension

QSet of instructions to implement checking a pointer against its bounds
Pointer Checker support in HW (today a SW only solution of e.g. Intel compilers)
Debug and security features

_ Intel® SGX — Intel® oftware uard xtensions

A Intel® Software Guard Extensions enables applications to execute code and
protect secrets from within their own protected execution environment, giving
developers direct control over their application security

_ Single Instruction — Flush a cache line

O needed for future memory technologies

_ Save and restore extended processor state

'“"“‘ 5C AI SuperComputing Applications and Innovation

SuperC omputing Applications and Innovation

AVX-512 — KNL and future XEON

— KNL and future Xeon architecture
share a large set of instructions

* but sets are not identical

AVX-512CD

— Subsets are represented by AVX-512CD
individual feature flags (CPUID)

AVX-512F AVX-512F

SW

Common Instruction Set

VX
NHM SNB H

2" Generation Future Xeon
Xeon Phi (KNL) (Skylake Server)

ey SC AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovatio

Intel® Compiler Processor Switches

swith __________________Desipton

-xmic-avx512 KNL only; alreadyin 14.0

-xXcore-avx512 Future XEON only, already in 15.0.1

-xcommon-avx512 AVX-512 subset common to both, already in
15.0.2

-m, -march, /arch Not yet !

-ax<..—avx512> Same as for “-x<...-avx512>"

-mmic No — not for KNL

e s SC AI SuperComputing Applications and Innovation 38

SuperComputing Applications and

Cache Model
KNL Memory Modes

MCDRAM

— Mode selected at boot
— MCDRAM-Cache covers all DDR

% / MCDRAM MCDRAM Hybrid Model

.
©

<

©

©

g MCDRAM

e

ol

=

GINEcA sc AI SuperComputing Applications and Innovation -
SuperComputing Applications and Innovation

MCDRAM: Cache vs Flat Mode

Racommendad
TTGCOUCUWUITTITTITrG

LA B S~ |

\

! |

DDR | MCDRAM | MCDRAM | Flat DDR + Hvbrid
Only as Cache Only MCDRAM y
Software No software chandes required Change allocations for
Effort 9 G bandwidth-critical data.
Not peak Best performance.
performance.
l \ J
| |

Limited Optimal HW
memory utilization +
capacity opportunity for

new algorithms
ey SC AI SuperComputing Applications and Innovation

puting Appl

40

High Bandwidth On-Chip Memory API

* APl is open-sourced (BSD licenses)
* https://github.com/memkind
* Uses jemalloc APl underneath
* http://www.canonware.com/jemalloc/

* https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemall
0c/480222803919

Malloc replacement:

#include <memkind.h>

hbw check available()

hbw malloc, calloc, realloc,.. (memkind t kind, ..)
hbw free ()

hbw posix memalign ()

hbw get size(), psize()

1ld .. -ljemalloc —-lnuma -lmemkind —-lpthread

CINECA - 5 = c
sc AI SuperComputing Applications and Innovation a1

afio:

https://github.com/memkind
https://github.com/memkind
http://www.canonware.com/jemalloc/
http://www.canonware.com/jemalloc/
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919

HBW API for Fortran, C++

Fortran:
IDIRS ATTRIBUTES FASTMEM :: data_object1, data_object2
* All Fortran data types supported
* Global, local, stack or heap; scalar, array, ...
* Supportin compiler 15.0 update 1 and later versions
C++:
standard allocator replacement for e.g. STL like
#include <hbwmalloc.h>
std::vector<int, hbwmalloc::hbw_allocator>

et sc AI SuperComputing Applications and Innovation

42

Porting codes on Knights Landing

““““““ SC AI SuperComputing Applications and Innovation

SuperC ompu! Application

Trends that are here to stay

Data parallelism
e Lots of threads, spent on MPI ranks or OpenMP/TBB/pthreads
* Improving support for both peak tput and modest/single thread

Bigger, better, faster memory
e High capacity, high bandwidth, low latency DRAM
e Effective caching and paging

e Increasing support for irregular memory refs, modest tuning

ISA innovation

e Increasing support for vectorization, new usages

et SC AI SuperComputing Applications and Innovation

Evolution or revolution?

Incremental changes, significant gains

Parallelization — consistent strategy
* MPI vs. OpenMP —already needed to tune and tweak
e Less thread-level parallelism required

e \Vectorization — more opportunity, more profitable

Enable new features with memory tuning
e Access MCDRAM with special allocation
e Blocking for MCDRAM vs. just cache

et sc AI SuperComputing Applications and Innovation

Compatibility

KNC Recompile for functionality

Recompile for

functionality ‘ KNL
ecompile for best performance

ey SC AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovation

KNL specific enabling

e Recompilation, with —xMIC-AVX512

e Threading: more MPI ranks, 1 thread/core

® Vectorization: increased efficiency

e MCDRAM and memory tuning: tile, 1GB pages

et sc AI SuperComputing Applications and Innovation

What is needed?

e Building

Change compiler switches in make files
e Coding

Parallelization: vectorization, offload

Memory management: MCDRAM enumeration and memory allocation
® Tuning

Potentially fewer threads: more cores but less need for SMT

More memory more MPI ranks

et SCAI SuperComputing Applications and Innovation

Take-aways

Keep doing what you were doing for KNC and Xeon

Some goodness comes for free with a recompile

With some extra enabling, use new MCDRAM feature

fffff 5CAI SuperComputing Applications and Innovation

Programming paradigms for the future?

Fabio Affinito (SCAI - Cineca)

"""" SC AI SuperComputing Applications and Innovation

SuperC ompu!

What tools are there?

Differently from hetereogenous architectures (i.e. GPUs),
changes can be made without being dramaticaly disruptives.

GPUs require to use CUDA, or in alternative, OpenMP4 directives
to address the data copy between host and devices.

Some solutions based on PGAS is avalaible but still far to be
optimal

fffff SCAl SuperComputing Applications and Innovation

So what?

Actually you could use codes already compiled for a x86 arch and
they could work (in theory) on a Haswell/Broadwell/KNL
processor.

So, at least on principle, the existence of legacy codes is
completely preserved.

fffff 5CAI SuperComputing Applications and Innovation

But...

The fact that a code can run on a KNL architecture doesn’t mean
that it is really exploiting all the power offered by your
machine.

It’s like driving a car always with the second gear..

fffff 5CAI SuperComputing Applications and Innovation

Code modernization: a must

If you don’t want to waste resources (i.e. money and time) you
may need to:

- modernize your code
- re-write your code from scratch (yeah, just like if you were
porting it on a GPU!)

fffff 5CAI SuperComputing Applications and Innovation

Code modernization

| » Stage 1: Leverage Optimized Tools, Library

I « Stage 3: Vectorization
I » Stage 4: Parallelization
» Stage 5: Scale from Multicore to Many Core

"""" SC AI SuperComputing Applications and Innovation

SuperC ompu! Application

Code modernization - 1st stage

At the beginning of your optimization project, select an optimizing development
environment. The decision you make at this step will have a profound influence in
the later steps. Not only will it affect the results you get, it could substantially
reduce the amount of work to do.

The right optimizing development environment can provide you with good compiler
tools, optimized, ready-to-use libraries, and debugging and profiling tools to
pinpoint exactly what the code is doing at the runtime.

et 5CAI SuperComputing Applications and Innovation

Code modernization - 2nd stage

Before you begin active parallel programming, you need to make sure your application
delivers the right results before you vectorize and parallelize it. Equally important,
you need to make sure it does the minimum number of operations to get that
correct result.

Choosing the right floating point precision

Choosing the right approximation method accuracy; polynomial vs. rational
Avoiding jump algorithms

Reducing the loop operation strength by using iteration calculations
Avoiding or minimizing conditional branches in your algorithms

Avoiding repetitive calculations, using previously calculated results.

et SCAI SuperComputing Applications and Innovation

Code modernization - 3rd stage

Try vector level parallelism. First try to vectorize the inner most loop. For
efficient vector loops, make sure that there is minimal control flow
divergence and that memory accesses are coherent.

Outer loop vectorization is a technique to enhance performance. By default,
compilers attempt to vectorize innermost loops in nested loop structures.
But, in some cases, the number of iterations in the innermost loop is small.
In this case, inner-loop vectorization is not profitable.

However, if an outer loop contains more work, a combination of elemental
functions, strip-mining, and pragmal/directive SIMD can force vectorization
at this outer, profitable level. (we’ll see later...)

et SCAl SuperComputing Applications and Innovation

Code modernization - 4th step

Now we get to thread level parallelization. Identify the outermost level and try to parallelize it. Obviously, this
requires taking care of potential data races and moving data declaration to inside the loop as necessary. It may

also require that the data be maintained in a cache efficient manner, to reduce the overhead of maintaining

the data across multiple parallel paths.

Since the amount of work needs to compensate for the overhead of parallelization, it helps to have as large a
parallel effort in each thread as possible. If the outermost level cannot be parallelized due to unavoidable data

dependencies, try to parallelize at the next-outermost level that can be parallelized correctly.

et 5CAI SuperComputing Applications and Innovation

https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads

4th step: threads

1. If the amount of parallel work achieved at the outermost level appears sufficient for the target hardware and
likely to scale with a reasonable increase of parallel resources, you are done. Do not add more parallelism, as the
overhead will be noticeable (thread control overhead will negate any performance improvement) and the gains
are unlikely.

2. If the amount of parallel work is insufficient, e.g. as measured by core scaling that only scales up to a small core
count and not to the actual core count, attempt to parallelize additional layer, as outmost as possible. Note that
you don’t necessarily need to scale the loop hierarchy to all the available cores, as there may be additional loop
hierarchies executing in parallel.

3. If step 2 did not result in scalable code, there may not be enough parallel work in your algorithm. This may mean
that partitioning a fixed amount of work among many threads gives each thread too little work, so the overhead
of starting and terminating threads swamps the useful work. Perhaps the algorithms can be scaled to do more
work, for example by trying on a bigger problem size.

4. Make sure your parallel algorithm is cache efficient. If it is not, rework it to be cache efficient, as cache inefficient

algorithms do not scale with parallelism.

et SCAI SuperComputing Applications and Innovation

https://software.intel.com/en-us/articles/optimize-data-structures-and-memory-access-patterns-to-improve-data-locality

Code modernization - 5th step

Lastly we get to multi-node (Rank) parallelism. To many developers message passing
interface (MPI) is a black box that “just works” behind the scenes, to transfer data

from one MPI task (process) to another.

The beauty of MPI for the developer is that the algorithmic coding is hardware
independent. The concern that developers have, is that with the many core
architecture with 60+ cores, the communication between tasks may create a
communication storm either within a node or across nodes. To mitigate these
communication bottlenecks, applications should employ hybrid techniques,
employing a few MPI tasks and many OpenMP threads.

et SCAl SuperComputing Applications and Innovation

Leverage your skills!

Some time ago, codes were parallelized using either MPI or
OpenMP.

Only in some few cases both of them were used.

Nowadays, using MPI+OpenMP is a must!

Two parallelization levels are necessary to exploit both the
intra-node (OpenMP) and inter-node (MPI) parallelism.

fffff SCAl SuperComputing Applications and Innovation

Leverage your skills!

Plus, a lot of new features of the MPIl and OpenMP standards
permit to successfully deal with the new HPC architectures, in
particular to exploit data-level parallelism, reducing the
latencies, etc.

MPI: Non-blocking collectives, RMA, Shred memory parallelism,
etc.

OpenMP: SIMD, tasks, etc.

fffff SCAl SuperComputing Applications and Innovation

Data-level parallelism

In particular for the new Intel architectures, a lot of
performances depend on how much you’re able to use the
data-level parallelism, in terms of SIMD vectorization.

We recall, for example, that in MARCONI A1, a factor 16 of the
peak-performance is given by the vectorization...

fffff SCAI SuperComputing Applications and Innovation

Overview of the vectorization techniques.
Getting ready for AVX-512

Fabio Affinito (SCAI - Cineca)

ey SC AI SuperComputing Applications and Innovation

SuperC ompt g Appl

The need for SIMD vectorization

s the Intel® Xeon Phi™ coprocessor right for me?

Enable Data Level
Parallism (DLP)

with SIMD vectors

Y :
Am | running ca‘;‘d’"!"d
anlISVorin- | In-house btlh]
house sc:ale1 :]nnover
i ion?
application? eaney
S

ISV

Contact ISV
to find out if
and when
they will
support
Xeon Phi.

Ready

Yes

E—

Canmy
workload
benefit from

Yes

large
vectors?

No

y

Canmy
workload

benefit from

more

memory
bandwidth?

Single thread (ST) performance is limited in today’s
CPUs

— Clock frequency constraints

— Difficult to discover “near” Instruction
level parallelism (ILP) by hardware

More transistors dedicated to exploit “distant”
parallelism

— Task level parallelism (TLP)

* Improves Multi Thread
performance (MT)

— Data level parallelism (DLP)

* Improves Single Thread
performance (ST)

* Enabled by using SIMD vectors

SuperComputlng Appllcatlons and Innovatlon

[s]9)

https://software.intel.com/en-us/articles/is-the-intel-xeon-phi-coprocessor-right-for-me
https://software.intel.com/en-us/articles/is-the-intel-xeon-phi-coprocessor-right-for-me

How to enable SIMD vectorization?
Enabling parallelism with Intel® Parallel Studio XE 2015 tool suite

L :
XE ‘ Multicore Many-core | Cluster

Source code

+ Compiler, § B
annotations libraries, and
(OpenMP, parallel 3 N 2 s
. . . - o icore
MPI, . programming MU'CT:JFE M""Ct&j”e au;‘?
compiler models Intel®
directives) Xeon Phi™
coprocessor = .
i N Multicore
: : & Many -
Single programming model for all your code ‘ Gusor

— Based on standards: OpenMP/MPI, C/C++/Fortran
— Programmers/tools responsibility to expose DLP/TLP parallelism

Exposing TLP/DLP in your application will benefit today and future Intel® Xeon® processors
and Intel® Xeon Phi™ coprocessors

— Including SIMD vectorization on future Intel® AVX-512 products

et SC AI SuperComputing Applications and Innovation

SuperC ompu!

67

Single Instruction Multiple Data (SIMD)

Technique for exploiting DLP on a single thread

- Operate on more than one element at a time
- Might decrease instruction counts significantly

Elements are stored on SIMD registers or vectors
Code needs to be vectorized

- Vectorization usually on inner loops
- Main and remainder loops are generated

Scalar loop
for (int 1 = 0; 1 < N; i++) X N N N
cl[i] = al[i] + bli];
b[i:4] | 50 6.0 7.0 8.0
SIMD loop (4 elements)
for (int i = 0; 1 < N; 1 += 4) &
cl[i:4] = a[i:4] + b[i:4]
c[i:4] | &0 8.0 100 | 120

ey SC AI SuperComputing Applications and Innovation

68

Past, present, and future of Intel SIMD types

Current Intel® Xeon® processors 64-bit f;':it SIMD 512-bit SIMD
L -DI
r I/ /.
/

7
Exponential & Reciprocal Instructions (ERI)
Prefetch Instructions (PFI) Future Intel® Xeon
= Phi™ coprocessors

Foundation instructions (Fl) (including Knights Landing)
Conflict Detection Instructions (CDI)

" | Future Intel® Xeon®
Byte & Word Instructions (BWI) B processors
Double-/Quad-word Instructions (DQ)

256-bit SIMD Vector Length Extensions (VLE)
AVX-512 J

urrent Intel® Xeon Phi™ coprocessors (Knights Corner)

":I."_““ 5' AI SuperComputing Applicaticrnigcamdolrnnowvationvx-512 instructions, check out James Reinders’ initial and updated post for this

topic.
SuperComputing Applications and Innovation

https://software.intel.com/en-us/blogs/2013/avx-512-instructions
https://software.intel.com/en-us/blogs/additional-avx-512-instructions

Intel® AVX2/IMCI/AVX-512 differences

Intel® Initial Many Core Instructions | Intel® Advanced Vector Extensions 2 Intel® Advanced Vector Extensions

IMCI AVX2 >
AVX-512

Introduction 2012 2013 2015
. Knights Landing, future Intel® Xeon® and
Products Knights Corner Haswell, Broadwell Xeon® Phi™ products
SP/DP/int32/int64 data types SP/DP/int32/int64 data types SP/DP/int32/int64 data types
Register file 32 x 512-bit SIMD registers 16 x 256-bit SIMD registers 32 x 512-bit SIMD registers
8 x 16-bit mask registers No mask registers (instr. blending) 8 x (up to) 64-bit mask
Not compatible with AVX*/SSE* Fully compatible with AVX/SSE* Fully compatible with AVX*/SSE*
ISA features No unaligned data support Unaligned data support (penalty) Unaligned data support (penalty)
Embedded broadcast/cvt/swizzle Embedded broadcast/rounding
MVEX encoding VEX encoding EVEX encoding
Fused multiply-and-add (FMA) Fused multiply-and-add (FMA) Fused multiply-and-add (FMA)
. Partial gather/scatter Full gather Full gather/scatter
Instruction
features Transcendental support Transcendental support (ERI only)

Conflict detection instructions
PFI/BWI/DQI/VLE (if applies)

2818 5CMkvﬁsmmtingpﬁinpliﬂaﬁmamdﬂmwaﬂenof Intel® MIC and Intel® Xeon® architecture 70

SuperComputing Applications and Innovation

Vectorization on Intel® compilers

Easy of use

Auto

eCompiler knobs

Vectorization

Guided eCompiler hints/pragmas
Vectorization RAUEIRtcEl

Low level ¢C/C++ vector classes
\V/YadoldbZ dle]s Bl °Intrinsics/Assembly N

£ sc AI SuperComputing Applications and Innovation 71

SuperComputing Applications and Innovation

Auto vectorization

Relies on the compiler for vectorization
— No source code changes

— Enabled with —vec compiler knob (default in ~02 and -03 modes)

-00
=01

-02/-0
(default)

=03

Disables all optimizations.
Enables optimizations for speed which are know to not cause code size increase.

Enables intra-file interprocedural optimizations for speed, including:
* Vectorization
* Loop unrolling

Performs 02 optimizations and enables more aggressive loop transformations such as:

* Loop fusion

* Block unroll-and-jam

* Collapsing IF statements

This option is recommended for applications that have loops that heavily use floating-point calculations and process
large data sets. However, it might incur in slower code, numerical stability issues, and compilation time increase.

Compiler smart enough to apply loop transformations
— It will allow to vectorize more loops

ey SC AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovation

72

Vectorization: target architecture options

On which architecture do we want to run our program?

-mmic Builds an application that runs natively on Intel® MIC Architecture.

-xfeature Tells the compiler which processor features it may target, referring to which instruction sets and
—xHost optimizations it may generate (not available for Intel® Xeon Phi™ architecture). Values for feature are:
* coMMON-AVx512 (includes AVX512 Fl and CDI instructions)
e MIc-Avx512 (includes AVX512 Fl, CDI, PFl, and ERI instructions)

* CORE-AVX512 (includes AVX512 Fl, CDI, BWI, DQI, and VLE instructions)
+ CORE-AVX2

* CORE-AVX-I (including RDRND instruction)

s AVX

+ SSE4.2, SSE4.1

* ATOM SSE4.2, ATOM SSSE3 (including MOVBE instruction)

* SSSE3, SSE3, SSE2
When using -xHost, the compiler will generate instructions for the highest instruction set available on
the compilation host processor.

-axfeature Tells the compiler to generate multiple, feature-specific auto-dispatch code paths for Intel® processors if
there is a performance benefit. Values for feature are the same described for -xfeatureoption.
Multiple features/paths possible, e.g.: ~axSSE2, AVX It also generates a baseline code path for the
default case.

ey SC AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovation

https://software.intel.com/en-us/node/522798
https://software.intel.com/en-us/node/522798
https://software.intel.com/en-us/node/522845
https://software.intel.com/en-us/node/522845
https://software.intel.com/en-us/node/522845
https://software.intel.com/en-us/node/522846
https://software.intel.com/en-us/node/522846
https://software.intel.com/en-us/node/522823
https://software.intel.com/en-us/node/522823
https://software.intel.com/en-us/node/522823

Auto vectorization: not all loops will vectorize

Data dependencies between iterations
— Proven Read-after-Write data (i.e., loop carried) dependencies
— Assumed data dependencies
* Aggressive optimizations (e.g., IPO) might help
Vectorization won’t be efficient
— Compiler estimates how better the vectorized version will be
— Affected by data alighment, data layout, etc.
Unsupported loop structure
— While-loop, for-loop with unknown number of iterations
— Complex loops, unsupported data types, etc.
— (Some) function calls within loop bodies
* Not the case for SVML functions

RaW dependency

for (int 1 = 0; 1 < N; i++)
ali] ali-1] + bli];

Inefficient vectorization

for (int i = 0; i < N; i++)
alc[i]] b[d[i]];

Function call within loop body

for (int 1 = 0; 1 < N; i++)
ali] foo(b[1i]) s

et sc AI SuperComputing Applications and Innovation

74

Auto vectorization on Intel® compilers

Vectorization breakdown for loop candidates in Polyhedron benchmark suite

R EEEEEEEEEEEEEEE N B
£ o | = - | B | = == i 4.5x
@
= 80% || L | . B = | L — | N EEE L 4.0%
5 70% 3.5x
® 60% 3,0x
wn
g 50% 2 5%
=]
o 40% 2,0x
o
D 30% 1,5%
=)
§ 20% 1,0%
T 10% 0,5x
> 0% 0,0%
f]
e g5 ; : O : 5 & a2 - 4 "
E {\{\\' 1\)@{}5- @.@:‘0 (é\i} h@:}'&\ bo{} -&;“{} Q'bd‘:@ & & o .5\&0 QS\Q & bﬁé} bq\
& @ B 9 o L A & 8 5
E o ! & o & o
0o (Q\Q/
mmm \/ectorized loops (including memset/memcpy) m Outer loop not vectorizable {inner loop already was)
Vector dependence prevents vectorization # Mon-standard, non-canonical, ortoo complex loop
= Vectorization possible but seems inefficient mm Other
—] Runtime speedup vs. non vectorized version

'-:':'_'.“f sL /A | SuperComputing Applications and Innovation

SuperComputing Applications and Innovation

Speedup vs. non vectorized version (higher is better)

75

http://www.polyhedron.com/fortran-compiler-comparisons/polyhedron-benchmark-suite
http://www.polyhedron.com/fortran-compiler-comparisons/polyhedron-benchmark-suite

Validating vectorization success

Generate compiler report about optimizations

—gopt-report [=n]
-qopt-report-file=<fname>

—gopt-report-phase=<phase>

remark #15300:
remark #15448:
remark #15450:
remark #15475:
remark #15476:
remark #15477:
remark #15478:
remark #15479:
remark #15481:
remark #15488:
remark #25456:
remark #25015:
LOOP END

LOOP BEGIN at gas dyn2.£f90(193,11) inlined into
gas_dyn2.£90 (4326, 31)

LOOP WAS VECTORIZED

unmasked aligned unit stride loads: 1
unmasked unaligned unit stride loads: 1
--- begin vector loop cost summary ---
scalar loop cost: 53

vector loop cost: 14.870

estimated potential speedup: 2.520
lightweight vector operations: 19
heavy-overhead vector operations: 1

—-—- end vector loop cost summary ---
Number of Array Refs Scalar Replaced In Loop:
Estimate of max trip count of loop=4

1

Generate report (level [1..5], default 2)
Optimization report file (stderr, stdout also valid)
Info about opt. phase:

loop Loop nest optimizations

par Auto-parallelization

vec Vectorization

openmpOpenMP

offload Offload

ipo Interprocedural optimizations

pgo Profile Guided optimizations

cg Code generation optimizations
tcollect Trace analyzer (MPI) collection
all All optimizations (default)

Vectorized loop

remark #15344:

remark #15346:
354

remark #25015:

LOOP BEGIN at gas_dyn2.f90(2346,15)
loop was not vectorized: vector dependence prevents vectorization
vector dependence: assumed OUTPUT dependence between IOLD line 376 and IOLD line

Estimate of max trip count of loop=3000001

Non-vectorized loop

ey SC AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovation

76

Guided vectorization: disambiguation hints

Get rid of assumed vector dependencies

Assume function arguments won’t be aliased
— C/C++: Compile with -fargument-noalias

C99 “restrict” keyword for pointers

— Compile with —restrict otherwise

lgnore assumed vector dependencies (compiler directive)

void v_add(float *restrict c,
float *restrict a,
float *restrict b)
for 0; 1 < N; 1i++)
1

(int 1
cEN=] + bli];

al

CINEC.

void v_add(float *c, float *a, float *Db)
— C/C++: #pragma ivdep {
.]] fpragma ivdep
— Fortran: !'dir$ ivdep For (int 1 = 0; i < N: i+4)
c[i] = al[i] + b[il;
}
3 SCAI SuperComputing Applications and Innovation 47

SuperCompu

Some Intel® compiler directives

Directive

distribute, distribute point

inline

ivdep

loop count
optimization level

parallel/noparallel

[no]Junroll

[no]lunroll and jam

unused

[no]lvector

CINECA
-F wE ' [p= (]

SuperComputing Applications and Innovation

Instructs the compiler to prefer loop distribution at the location indicated.

Instructs the compiler to inline the calls in question.

Instructs the compiler to ignore assumed vector dependencies.
Indicates the loop count is likely to be an integer.

Enables control of optimization for a specific function.

Facilitates auto-parallelization of an immediately following loop; using
keyword always forces the compiler to auto-parallelize; noparallel pragma
prevents auto-parallelization.

Instructs the compiler the number of times to unroll/not to unroll a loop

Prevents or instructs the compiler to partially unroll higher loops and jam the
resulting loops back together.

Describes variables that are unused (warnings not generated).

Specifies whether the loop should be vectorised. In case of forcing

vectorization that should be according to the given clauses.
78

https://software.intel.com/en-us/node/524559

Guided vectorization: #pragma simd

Force loop vectorization ignoring all dependencies
— Additional clauses for specify reductions, etc.

SIMD loop SIMD function

void v _add(float *c, float *a, float *b)
{

___declspec (vector)

void v_add(float ¢, float a, float b)
#pragma simd {
for (int i = 0; 1 < N; 1i++) c =a + b;
cl[i] = af[i] + bli];

}
}

for (int i

= < N; i++)
v_add(C[i

0; i
1, A[i], B[i]);

ey SC AI SuperComputing Applications and Innovation

79

https://software.intel.com/en-us/node/524555

Guided vectorization: #pragma simd

Also supported in OpenMP

— Almost same functionality/syntax
* Use #pragma omp simd [clauses] for SIMD IOOpS

¢ Use #fpragma omp declare simd [clauses] for SIMD functions
— See OpenMP 4.0 specification for more information

et SCAI SuperComputing Applications and Innovation

80

http://openmp.org/wp/openmp-specifications/

Explicit vectorization with array notation

Express high-level vector parallel array operations

— Valid notation in Fortran since Fortran 90

— Supported in C/C++ by Intel® compiler (Cilk™ Plus) and GCC 4.9

* Enabled by default on Intel® compiler, use -fcilkplus option on GCC

— No additional modifications to source code

— Most arithmetic and logic operations already overloaded

— Also built-in reducers for array sections
Vectorization becomes explicit

— C/C++ syntax: array-expression[lower-bound:length[:stride]]

SIMD function invoked with array notation

Sanwples ___declspec (vector)
al:] // All elements void v_add(float ¢, float a, float b)
al2:6] // Elements 2 to 7 {
al:]11[5] // Column 5 c=a + b;
al0:3:2] // Elements 0,2,4 }
v_add(C[:], A[:], B[:]);

et SC AI SuperComputing Applications and Innovation

SuperC omputing Applications and Innovation

81

https://www.cilkplus.org/tutorial-array-notation
https://www.cilkplus.org/tutorial-array-notation
https://www.cilkplus.org/tutorial-array-notation

Improving vectorization: data layout

Vectorization more efficient with unit strides
— Non-unit strides will generate gather/scatter
— Unit strides also better for data locality
— Compiler might refuse to vectorize

AoS vs SOA

— Layout your data as Structure of Arrays (SoA)
Traverse matrices in the right direction

— C/C++:a[i][:],Fortran:a(:, 1)

— Loop interchange might help

* Usually the compiler is smart enough to
apply it
* Check compiler optimization report

Array of Structures vs Structure of Arrays

// Array of Structures (AoS)
struct coordinate {

float x, y, z;
} crd[N];

for (int i = 0; i < N; i++)
wo = .. f(crdli].x, crd[il,y, crd[il.z);

Consecutive elementsinmemory __

x0 y0 z0 x1 y1 z1 ...x(n-1) y(n-1) z(n-1)

// Structure of Arrays (SoA)
struct coordinate {

float x[N], y[N], z[N];
} crd;

for (int i = 0; i < N; i++)
we = .. f(crd.x[1i], crd.y[i], crd.z[i]);

Consecutive elements in memory ——»

et SC AI SuperComputing Applications and Innovation

x0 x1 ...x(n-1) yO y1 ...y(n-1) z0 z1 ...z(n-1) —
82

Improving vectorization: data alighment

Unaligned accesses might cause significant performance degradation
— Two instructions on current Intel® Xeon Phi™ coprocessor
— Might cause “false sharing” problems
» Consumer/producer thread on the same cache line
Alignment is generally unknown at compile time
— Every vector access is potentially an unaligned access

Aligned Unit-stride

v

» Vector access size = cache line size (64-byte) ‘Adm T
— Compiler might “peel” a few loop iterations
* In general, only one array can be aligned, though Misaligned Unit-stride
When possible, we have to
— Align our data P N

— Tell the compiler data is aligned | saar o s17e 1=

* Might not be always the case

e s SC AI SuperComputing Applications and Innovation 83

SuperC omputing Applications and Innovation

Improving vectorization: data alignment

Language Syntax
C/C++ void* mm malloc(int size, int n)
C/C++ int posix memalign
(void **p, size t n, size t size)
C/C++ __declspec(align(n)) array
.--align Fortran (not in
data common !dir$ attributes align:n::array
section)
Fortran
(compiler -alignnbyte
option)
C/C++ #pragma vector aligned
-..tell the Fortran 'dir$ vector aligned
compiler
about it C/C++ __assume_aligned(array, n)
Fortran !dir$ assume aligned array:n

Clhmica sc AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovation

Semantics

Allocate memory on heap aligned to n
byte boundary.

Alignment for variable declarations.

Vectorize assuming all array data
accessed are aligned (may cause fault
otherwise).

Compiler may assume array is aligned
to n byte boundary.

84

Vectorization with multi-version loops

LOOP BEGIN at gas dyn2.£f90(2330,26)
<Peeled>
remark #15389: vectorization support: reference AMAC1U has unaligned access
remark #15381: vectorization support: unaligned access used inside loop
body
remark #15301: PEEL LOOP WAS VECTORIZED
Alignment purposes LOOP END

. . LOOP BEGIN at gas dyn2.£90(2330,26)
Mlght be vectorized remark #25084: Preprocess Loopnests: Moving Out Store

remark #15388: vectorization support: reference AMAC1U has aligned access
remark #15399: vectorization support: unroll factor set to 2
remark #15300: LOOP WAS VECTORIZED

Peel loop

. remark #15475: --- begin vector loop cost summary ---
Maln |Oop remark #15476: scalar loop cost: 8
. remark #15477: vector loop cost: 0.620
VeCtOI’Ized remark #15478: estimated potential speedup: 15.890
remark #15479: lightweight vector operations: 5
UnrO”ed by X2 or remark #15488: --- end vector loop cost summary —---
X4 remark #25018: Total number of lines prefetched=4

remark #25019: Number of spatial prefetches=4, dist=8
remark #25021: Number of initial-value prefetches=6

LOOP END
LOOP BEGIN at gas dyn2.£90(2330,26)
. <Remainder>
Remalnder |00p remark #15388: vectorization support: reference AMACLU has aligned access
Remainder iterations remark #15388: vectorization support: reference AMAC1U has aligned access
. . remark #15301: REMAINDER LOOP WAS VECTORIZED
Might be vectorized LOOP END

Clhmica sc AI SuperComputing Applications and Innovation

SuperComputing Applications and Innovation

Other considerations

Loop tiling/blocking to improve data locality
— Square tiles so elements can be reused

Use streaming loads/stores to save bandwidth
® ifpragma vector [non]temporal (list)
® -—gopt-streaming-stores=[always|never|auto]
® -—-gopt-streaming-cache-evict[=n] (Intel® MIC only)

Tune software prefetcher

® -—qgopt-prefetch[=n]
e -—gprefetch-distance=nl[,n2] (Intel® MIC only)
® i#pragma [no]prefetch [clauses] (Intel® MIC only)

ey SC AI SuperComputing Applications and Innovation

SuperC omputing A

ions and Innovation

86

Low level (explicit) vectorization

A.k.a “ninja programming”

Vectorization relies on the SIMD C++ class Assembly

programmer W|th some #include <fvec.h> #include <xmmintrin.h> ~ ml28 a,b,c;
. __asm {
help from the Compller F32vecd a,b,c; ~ ml28 a,b,c; movaps xmmO,b
a=D>b + c; a = mm_add ps(b,c); movaps xmml,c
addps xmm0, xmml
movaps a, xmmO

Might be convenient for low ;
level performance
tuning of critical

(intel Intrinsics Guide The Intel Intrinsics Guide is an interactive reference tool for Intel intrinsic instructions, which are C style functions that provide access to %
many Intel instructions - including Intel® SSE, AVX, AVX-512, and more - without the need to write assembly code.

h Technologies
Otspots MMX sqrt x)?
SSE
g __m512d _mm512_mask_rsqrt14_pd (__m512d src, __mmask8 k, __m512d a)
= ‘:E; __m512d _mm512_maskz_rsqrt14_pd (__mmask8 k, __m512d a)

__m512d _mm512_rsqrt14_pd (__m512d a)

Not portable among el b
- AVX __m512d _mm512_rsqrt14_pd (__m512d a)
EF #include " intrin.h"
different SIMD EER— e
o [SeEMA CPUTD Flags: AVXS12F
architectures e
iSVML— Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst. The

maximum relative error for this approximation is less than 27-14.

Other
Operation
Categories FOR j :=0 to 7
Application-Targeted 1 0 TR e
= ena o dst[i#63:1] := APPROXIMATE(1.0 / SQRT(ali+63:11))
Bit Manipulation dst[MAX:512] := 0
Cast
Eompare __m512 _mm512_mask_rsqrtl4_ps (__m512 src, __mmask1lé k, __m512 a)
onvert
= __m512 _mm512_maskz_rsqrt14_ps (__mmask1é k, __m512 a)
ryptography

__m512 _mm512_rsqrtl4_ps (__m512 a)

o & A supercomputing Applications and Innovation

SuperComputing Applications and Innovation

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

How to get ready for Intel® AVX-5127

BKM: Start optimizing your application today for current generation
of Intel® Xeon® processors and Intel® Xeon™ Phi coprocessors

Tune your AVX-512 kernels on non-existing silicon
— Compile with latest compiler toolchains
* Intel® compiler (v15.0): —-xCOMMON-AVX512, —xMIC-AVX512, -xCORE-AVX512
* GNU compiler (v4.9): -mavx512f, -mavx512cd, -mavx5l2er, -mavx512pf
— Run Intel® Software Development emulator (SDE)
* Emulate (future) Intel® Architecture Instruction Set Extensions (e.g. Intel® MPX, ...)
* Tools available for detailed analysis
— Instruction type histogram
— Pointer/misalignment checker
* Also possible to debug the application while emulated

et 5CAI SuperComputing Applications and Innovation

https://software.intel.com/en-us/articles/intel-software-development-emulator

Summary

Programmers are mostly responsible of exposing DLP (SIMD) parallelism
Intel® compilers provide sophisticated/flexible support for vectorization
— Auto, guided (assisted), and low-level (explicit) vectorization
— Based on OpenMP standards and specific directives
— Easily portable across different Intel® SIMD architectures
Fine-tuning of generated code is key to achieve the best performance
— Check whether code is actually vectorized
— Data layout, alignment, remainder loops, etc.

Get ready for Intel® AVX-512 by optimizing your application today on current generation of Intel® Xeon®
processors and Intel® Xeon™ Phi coprocessors

et 5CAI SuperComputing Applications and Innovation

Online resources

Intel® Xeon Phi™

— Developer portal Programming guides, tools, trainings, case studies, etc.

— Solutions catalog Existing Intel® Xeon Phi™ solutions for known codes

Intel® software development tools, performance tuning, etc.

— Documentation library All available documentation about Intel software

— Learning lab Learning material with Intel® Parallel Studio XE

— Performance Resources about performance tuning on Intel hardware
— Forums Public discussions about Intel SIMD, threading, ISAs, etc.

Other resources (white papers, benchmarks, case studies, etc.)

— Go parallel BKMs for Intel multi- and many-core architectures
— Colfax research Publications and material on parallel programming
— Bayncore labs Research and development activities (WIP)

CINECA - 5 = c
sc AI SuperComputing Applications and Innovation 90

https://software.intel.com/mic-developer
https://software.intel.com/mic-developer
https://software.intel.com/mic-developer
https://software.intel.com/mic-developer
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-applications-and-solutions-catalog
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-applications-and-solutions-catalog
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-applications-and-solutions-catalog
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-applications-and-solutions-catalog
https://software.intel.com/en-us/intel-software-technical-documentation
https://software.intel.com/en-us/intel-software-technical-documentation
https://software.intel.com/en-us/intel-software-technical-documentation
https://software.intel.com/en-us/intel-software-technical-documentation
https://software.intel.com/en-us/intel-learning-lab
https://software.intel.com/en-us/intel-learning-lab
https://software.intel.com/en-us/intel-learning-lab
https://software.intel.com/en-us/intel-learning-lab
https://software.intel.com/en-us/intel-learning-lab
https://software.intel.com/en-us/performance
https://software.intel.com/en-us/performance
https://software.intel.com/en-us/performance
https://software.intel.com/en-us/performance
https://software.intel.com/en-us/performance
https://software.intel.com/en-us/forum
https://software.intel.com/en-us/forum
https://software.intel.com/en-us/forum
https://software.intel.com/en-us/forum
https://software.intel.com/en-us/forum
https://software.intel.com/en-us/forum
http://goparallel.sourceforge.net/
http://goparallel.sourceforge.net/
http://goparallel.sourceforge.net/
http://goparallel.sourceforge.net/
http://goparallel.sourceforge.net/
http://research.colfaxinternational.com/
http://research.colfaxinternational.com/
http://research.colfaxinternational.com/
http://research.colfaxinternational.com/
http://research.colfaxinternational.com/
http://www.bayncore.com/bayncore-labs/
http://www.bayncore.com/bayncore-labs/
http://www.bayncore.com/bayncore-labs/
http://www.bayncore.com/bayncore-labs/
http://www.bayncore.com/bayncore-labs/
http://www.bayncore.com/bayncore-labs/
http://www.bayncore.com/bayncore-labs/

Recommended books

G el High performance parallelism pearls: Intel® Xeon Phi™

cessor

CICIL B 1) (//ti-core and many-core approaches, by C

James Reinders and Jim Jeffers, Morgan

Kaufmann, 2014 Intel® Xeon Phi™ coprocessor

high-performance programming,
by Jim Jeffers and James

e Reinders, Morgan Kaufmann,
Optimizing HPC 201
Applications with 013
WCRABINCRIER O timizing HPC applications
with Intel® cluster tools, by

The Software Vectorization
Alexander Supalov et al, Apress, Handbook

2014

The software optimization
handbook, by Aart Bik, Intel® press,
2004

Parallel
Programming

with Intel Parallel Studio XE

Parallel programming with Intel® Parallel Studio XE, by
Stephen Blair-Chappell and Andrew Stokes, Wrox press,
s 2012

SuperComputing Applications and Innovation

CINECA 5

SuperCo

Introduction to the hands-on

““““““ SC AI SuperComputing Applications and Innovation

SuperC ompu! Application

General layout of a HPC cluster

SSH [

—

VNC,

= (v)

login01]

[ooz)

—

/

/

Compute nodes

J

1/O

"""" SC AI SuperComputing Applications and Innovation

SuperC ompu!

Job scheduler

In order to permit to all users to work, a job scheduler is in
charge to define the execution of the jobs.

On the Cineca HPC clusters, the job scheduler is PBS.
PBS can work

- with the submission of a script
- orin an interactive session

fffff 5CAI SuperComputing Applications and Innovation

gsub

[faffinit@reeeu18le2 ~]% gsub -I -A cin _priorit -1 select=1:ncpus=36:mpiprocs=36 -1 walltime=15:00
gsub: waiting for job 62238.r900ul7181 to start
gsub: job 62238.re@00ul7101 ready

[faffinit@ro41co3sez ~15 |}

[faffinit@reeeu18le2 ausurf]S$ cat job.marconi
#! /bin/bash

#PBS -1 walltime=6:00:00

#PBS -1 select=2:ncpus=16:mpiprocs=8

#PBS -0 job.out

#PBS -e job.err

#PBS -A cin_staff

Interactive cd $PBS 0 WORKDIR

export OMP NUM THREADS=1

module load profile/phys autoload gqe
batch |:> mpirun -np 16 SQE_HOME/bin/pw.x -input input > log

#module load autoload openmpi
#module load profile/advanced

CINECA

Supe

i

#module load fftw/3.3.4--openmpi--1-10.3--gnu--6.1.0
SCAI SuperComputing Applications and Inm[fafﬁmt@rﬂﬂﬂulslﬂz ausurf]$ qsub job.marconi Jj

oL nd Innovation

Workbench: Poisson

We will use as a workbench to test the Intel software tools a

small program that simulate the solution of the Poisson
equation on a grid.

Exercise: familiarize with the code, understanding (just a little
bit) what is it doing, what are the computational kernels, etc.

Exercise: compile the code and run on one single node. Check

the execution times changing the number of MPI processes,
OpenMP threads, etc

fffff SCAl SuperComputing Applications and Innovation

Graphic sessions

In order to work with Intel tools, it can be necessary to work
with a graphic session rather than text-only ssh.

A tool is avalaible from Cineca to work with a VNC session: RCM

You can download RCM from:
http://www.hpc.cineca.it/software/rcm

fffff 5CAI SuperComputing Applications and Innovation

Credentials etc.

GALILEO login: login.galileo.cineca.it
usernames: a08traXX where XX=21..24
account _no =train_cintell6

fffff 5CAI SuperComputing Applications and Innovation

