! ! Final application of the Course "Parallel Computing using MPI and OpenMP" ! ! This program is meant to be used by course participants for demonstrating ! the abilities acquired in optimizing and parallelising programs. ! ! The techniques learnt at the course should be extensively used in order to ! improve the program response times as much as possible, while gaining ! the same or very closed results, i.e. the series of final produced images. ! ! The code implemented herewith has been written for teaching purposes only, ! therefore source code, algorithms and produced results must not be ! trusted nor used for anything different from their original purpose. ! ! Description of the program: ! in a squared grid a computed set of points is hit by a disturbing field whose ! distribution at an initial time can be theoretically estimated, i.e. it can ! be computed. The measured values for only a few points are known. ! After the initial "heating" effect, the perturbation evolves with a known law ! and results are computed for a few time steps. ! ! Would you please send comments to assistenze_hpc@cilea.it ! ! Program outline: ! 1 - the program starts reading the measured values (InitGrid) ! 2 - the theoretical distribution of initial field values is computed (FieldDistribution) ! 3 - the set of struck points is computed (SensiblePoints) ! 4 - the distribution of values is estimated over the computed set of points (FieldInit) ! 5 - the evolution of the perturbation effects over time is computed (Cooling) ! MODULE Environment IMPLICIT NONE INTEGER :: Xdots=1400, Ydots=1400 ! Plate grid resolution in 2 dimensions ! May be changed to 1000x1000 ! Parameters to compute point sensitiveness - values read from input file REAL(8):: Sreal, Simag, Rreal, Rimag INTEGER :: MaxIters ! Evolution time steps INTEGER :: TimeSteps ! REAL(8), ALLOCATABLE, DIMENSION(:,:) :: MeasuredValues ! Values read in input file INTEGER :: NumInputValues ! Number of values read in input file REAL(8), ALLOCATABLE, DIMENSION(:,:) :: TheorSlope ! Theoretical value distribution INTEGER :: TSlopeLength ! TheorSlope grid dimensions INTEGER, ALLOCATABLE, DIMENSION(:,:) :: FieldWeight ! Degree of sensitiveness to perturbing field REAL(8), ALLOCATABLE, DIMENSION(:,:,:) :: FieldCoord ! X, Y coordinates in field REAL(8), ALLOCATABLE, DIMENSION(:,:,:) :: FieldValues ! X, Y values in field CONTAINS ! Main functions SUBROUTINE InitGrid(InputFile) ! Output: ! MeasuredValues(:,3) - values read from input file ! Initialization of FieldWeight(Xdots,Ydots) and ! FieldCoord(Xdots,Ydots,2) IMPLICIT NONE CHARACTER(*), INTENT(IN) :: InputFile INTEGER :: st, valrows CHARACTER(80) :: filerow WRITE(*,*) "Initializing grid ..." OPEN(11,FILE=InputFile,ACTION="READ",STATUS="OLD",IOSTAT=st) IF ( st /= 0 ) THEN WRITE(*,*) "Error accessing file ",TRIM(InputFile),": Iostat = ",st STOP END IF ! Now read measured values NumInputValues = 0 valrows = 0 DO READ(11,"(A)",IOSTAT=st) filerow IF ( st /= 0 ) EXIT IF ( filerow(1:1) == "#" ) CYCLE BACKSPACE(11) IF ( NumInputValues <= 0 ) THEN READ(11,*,IOSTAT=st) NumInputValues IF ( st /= 0 .OR. NumInputValues <= 0 ) THEN WRITE(*,*) "Error reading NumInputValues: ",NumInputValues STOP ELSE ALLOCATE(MeasuredValues(NumInputValues,3), STAT=st) IF ( st /= 0 ) THEN WRITE(*,*) "Error allocating FieldWeight(",Xdots,",",Ydots,")" STOP END IF END IF ELSE valrows = valrows + 1 IF ( valrows > NumInputValues ) EXIT READ(11,*,IOSTAT=st) MeasuredValues(valrows,1), & ! X coord & MeasuredValues(valrows,2), & ! Y coord & MeasuredValues(valrows,3) ! Measured value IF ( st /= 0 ) THEN WRITE(*,*) "Error reading MeasuredValues(",valrows,",*)" STOP END IF END IF END DO ALLOCATE(FieldWeight(Xdots,Ydots), STAT=st) IF ( st /= 0 ) THEN WRITE(*,*) "Error allocating FieldWeight(",Xdots,",",Ydots,")" STOP END IF FieldWeight = 0 ALLOCATE(FieldCoord(Xdots,Ydots,2), STAT=st) IF ( st /= 0 ) THEN WRITE(*,*) "Error allocating FieldCoord(",Xdots,",",Ydots,",2)" STOP END IF FieldCoord = 0.0D0 ! ! Now read Sreal, Simag, Rreal, Rimag Sreal = 0.0D0; Simag = 0.0D0; Rreal = 0.0D0; Rimag = 0.0D0 DO READ(11,"(A)",IOSTAT=st) filerow IF ( st /= 0 ) EXIT IF ( filerow(1:1) == "#" ) CYCLE BACKSPACE(11) READ(11,*,IOSTAT=st) Sreal IF ( st /= 0) THEN WRITE(*,*) "Error reading Sreal: IOSTAT = ",st STOP END IF READ(11,*,IOSTAT=st) Simag IF ( st /= 0) THEN WRITE(*,*) "Error reading Simag: IOSTAT = ",st STOP END IF READ(11,*,IOSTAT=st) Rreal IF ( st /= 0) THEN WRITE(*,*) "Error reading Rreal: IOSTAT = ",st STOP END IF READ(11,*,IOSTAT=st) Rimag IF ( st /= 0) THEN WRITE(*,*) "Error reading Rimag: IOSTAT = ",st STOP END IF EXIT END DO ! ! Now read MaxIters MaxIters = 0 DO READ(11,"(A)",IOSTAT=st) filerow IF ( st /= 0 ) EXIT IF ( filerow(1:1) == "#" ) CYCLE BACKSPACE(11) READ(11,*,IOSTAT=st) MaxIters IF ( st /= 0) THEN WRITE(*,*) "Error reading MaxIters: IOSTAT = ",st STOP END IF EXIT END DO ! ! Now read TimeSteps TimeSteps = 0 DO READ(11,"(A)",IOSTAT=st) filerow IF ( st /= 0 ) EXIT IF ( filerow(1:1) == "#" ) CYCLE BACKSPACE(11) READ(11,*,IOSTAT=st) TimeSteps IF ( st /= 0) THEN WRITE(*,*) "Error reading TimeSteps: IOSTAT = ",st STOP END IF EXIT END DO RETURN END SUBROUTINE InitGrid SUBROUTINE FieldInit() IMPLICIT NONE ! Initialize field values in the grid. Values are computed on the basis ! of the measured values read in subroutine InitGrid and the gross grid ! values computed in subroutine FieldDistribution. Moreover sensitiveness ! to field effects as computed in subroutine SensiblePoints are taken into ! account. ! ! Input: ! MeasuredValues(:,3) ! FieldWeight(Xdots,Ydots) ! Output: ! FieldValues(Xdots,Ydots,2) INTEGER :: rv, st REAL(8) :: xc, yc, ev, sv, sd, DiscrValue REAL(8), DIMENSION(:), ALLOCATABLE :: DiffValues WRITE(*,*) "Initializing entity of field effects ..." ALLOCATE(FieldValues(Xdots,Ydots,2),STAT=st) IF ( st /= 0 ) THEN WRITE(*,*) "Error allocating FieldValues(",Xdots,",",Ydots,",2)" STOP END IF ALLOCATE(DiffValues(NumInputValues),STAT=st) IF ( st /= 0 ) THEN WRITE(*,*) "Error allocating DiscrValues(",NumInputValues,")" STOP END IF ! Compute discrepancy between Measured and Theoretical value DiffValues = 0.0D0 DiscrValue = 0.0D0 DO rv = 1, NumInputValues xc = MeasuredValues(rv,1) yc = MeasuredValues(rv,2) ! TheorSlope is computed on the basis of a coarser grid, so look for ! the best values near xc, yc coordinates sv = NearestValue(xc,yc,TSlopeLength,TheorSlope) ev = MeasuredValues(rv,3) DiffValues(rv) = ev - sv DiscrValue = DiscrValue + ev - sv END DO DiscrValue = DiscrValue / DBLE(NumInputValues) ! Compute statistics and best approximated value sd = 0.0D0 ! Standard Deviation DO rv = 1, NumInputValues sd = sd + ( DiffValues(rv) - DiscrValue )*( DiffValues(rv) - DiscrValue ) END DO sd = SQRT(sd / DBLE(NumInputValues)) ! Print statistics WRITE(*,*) WRITE(*,"(A,I4,2(1X,F8.3))") "... Number of Points, Mean value, Standard deviation = ", & & NumInputValues, DiscrValue, sd ! Compute FieldValues stage 1 CALL FieldPoints(DiscrValue) RETURN END SUBROUTINE FieldInit SUBROUTINE FieldDistribution ! Compute theoretical value distribution of the perturbing field ! on a grid Mm1 x Nm1 where M = SQRT(DBLE(Xdots))-1 and ! N = SQRT(DBLE(Ydots)) ! Output: ! TheorSlope(TSlopeLength,3) - theoretical field distribution function IMPLICIT NONE ! ! Let's consider the 2D-square x0 < X < x1, y0 < Y < y1 ! Suppose we divide the square in N-1 x N-1 portions ! Given a function F(x,y) suppose we know that in every point: ! d2F(x,x)/dx2 + d2F(x,y)/dy2 = x+y ! Let's define a system of equation so that we can compute the value ! of F(x,y) in every point of the 2D-square ! REAL(8), ALLOCATABLE, DIMENSION(:,:) :: CoeffMatrix REAL(8), ALLOCATABLE, DIMENSION(:) :: B REAL(8) :: x, y, Eps REAL(8) :: x0, y0, x1, y1 INTEGER :: M, Mp1, Mm1, N, Np1, Nm1, LA, pos INTEGER :: i, j, rc WRITE(*,*) "Computing theoretical perturbing field ..." x0 = Sreal; y0 = Simag; x1 = x0+Rreal; y1 = y0+Rimag ! How many intervals? It should be safe to use SQRT(Xdots) M = SQRT(DBLE(Xdots)) N = SQRT(DBLE(Ydots)) Np1 = N+1 ! Grid points per side Nm1 = N-1 ! Grid points minus boundary Mp1 = M+1 Mm1 = M-1 LA = Mm1*Nm1 ! unknown points TSlopeLength = LA ALLOCATE(CoeffMatrix(LA,LA), TheorSlope(TSlopeLength,3),STAT=rc) IF ( rc /= 0 ) THEN WRITE(*,*) "Error allocating A matrix" STOP END IF ALLOCATE(B(LA), STAT=rc) ! Unknown and RHS vectors IF ( rc /= 0 ) THEN WRITE(*,*) "Error allocating B, X vectors" STOP END IF CALL GridDef(x0,x1,y0,y1,N,TheorSlope) CALL EqsDef(x0,x1,y0,y1,N,LA,CoeffMatrix,B,TheorSlope,rc) CALL LinEquSolve(CoeffMatrix,LA,B,rc) IF ( rc /= 0 ) THEN STOP END IF TheorSlope(:,3) = B(:) RETURN CONTAINS FUNCTION Solution(x,y) RESULT (f) IMPLICIT NONE REAL(8), INTENT(IN) :: x, y ! Point coordinates REAL(8) :: f f = (x*x*x+y*y*y)/6.0D0 RETURN END FUNCTION Solution SUBROUTINE GridDef(x0,x1,y0,y1,N,Pts) IMPLICIT NONE REAL(8), INTENT(IN) :: x0,x1,y0,y1 ! Define grid INTEGER, INTENT(IN) :: N REAL(8), DIMENSION((N-1)*(N-1),2), INTENT(OUT) :: Pts ! inner grid point Coordinates ! REAL(8) :: dx, dy INTEGER :: np, Nm1 Nm1 = N-1 dx = (x1-x0)/DBLE(N); dy = (y1-y0)/DBLE(N) np = 0 DO i = 1, Mm1 DO j = 1, Nm1 np = np + 1 IF ( np > Mm1*Nm1 ) THEN WRITE(*,*) " Error: NP = ",np," > N*N = ",Nm1*Nm1 STOP END IF x = x0 + dx * DBLE(i) y = y0 + dy * DBLE(j) Pts(np,1) = x Pts(np,2) = y END DO END DO RETURN END SUBROUTINE GridDef SUBROUTINE EqsDef(x0,x1,y0,y1,N,LA,A,Rhs,Pts,Info) IMPLICIT NONE REAL(8), INTENT(IN) :: x0,x1,y0,y1 ! Define grid INTEGER, INTENT(IN) :: N, LA ! Extent of grid side and number of grid points REAL(8), DIMENSION(LA), INTENT(OUT) :: Rhs ! Linear equation RHS REAL(8), DIMENSION(LA,LA), INTENT(OUT) :: A ! Linear equation matrix REAL(8), DIMENSION(TSlopeLength,3), INTENT(IN) :: Pts INTEGER, INTENT(OUT) :: Info ! Info < 0 if errors occur ! REAL(8) :: dx, dy INTEGER :: np, Nm1 ! ! Define A matrix and RHS ! Nm1 = N-1 dx = (x1-x0)/DBLE(N); dy = (y1-y0)/DBLE(N) A = 0.0D0; Rhs = 0.0D0 Info = 0 DO np = 1, LA x = Pts(np,1) y = Pts(np,2) A(np,np) = -4.0D0 Rhs(np) = (x + y)*dx*dy ! define Eps function of grid dimensions Eps = (dx+dy)/20.0D0 ! where is P(x-dx,y) ? IF ( ABS((x-dx)-x0) < Eps ) THEN Rhs(np) = Rhs(np) - Solution(x0,y) ELSE ! Find pos = position of P(x-dx,y) pos = np - Nm1 IF ( ABS(Pts(pos,1)-(x-dx)) > Eps ) THEN WRITE(*,*) " Error x-dx: ",ABS(Pts(pos,1)-(x-dx)) END IF A(np,pos) = 1.0D0 END IF ! where is P(x+dx,y) ? IF ( ABS((x+dx)-x1) < Eps ) THEN Rhs(np) = Rhs(np) - Solution(x1,y) ELSE ! Find pos = position of P(x+dx,y) pos = np + Nm1 IF ( ABS(Pts(pos,1)-(x+dx)) > Eps ) THEN WRITE(*,*) " Error x+dx: ",ABS(Pts(pos,1)-(x+dx)) END IF A(np,pos) = 1.0D0 END IF ! where is P(x,y-dy) ? IF ( ABS((y-dy)-y0) < Eps ) THEN Rhs(np) = Rhs(np) - Solution(x,y0) ELSE ! Find pos = position of P(x,y-dy) pos = np - 1 IF ( ABS(Pts(pos,2)-(y-dy)) > Eps ) THEN WRITE(*,*) " Error y-dy: ",ABS(Pts(pos,2)-(y-dy)) Info = -1 END IF A(np,pos) = 1.0D0 END IF ! where is P(x,y+dy) ? IF ( ABS((y+dy)-y1) < Eps ) THEN Rhs(np) = Rhs(np) - Solution(x,y1) ELSE ! Find pos = position of P(x,y+dy) pos = np + 1 IF ( ABS(Pts(pos,2)-(y+dy)) > Eps ) THEN WRITE(*,*) " Error y+dy: ",ABS(Pts(pos,2)-(y+dy)) Info = -1 END IF A(np,pos) = 1.0D0 END IF END DO RETURN END SUBROUTINE EqsDef END SUBROUTINE FieldDistribution SUBROUTINE LinEquSolve(a,n,b,errcode) ! Gauss-Jordan elimination algorithm ! Based on a code from "Numerical recipes in Fortran 77" ! IMPLICIT NONE INTEGER, INTENT(IN) :: n REAL(8), DIMENSION(n,n), INTENT(IN OUT) :: a ! Coefficient matrix and REAL(8), DIMENSION(n), INTENT(IN OUT) :: b ! RHS and solution INTEGER :: i,j,k,l,icol,irow INTEGER, ALLOCATABLE, DIMENSION(:) :: indcol, indrow, ipiv INTEGER :: rc, errcode REAL(8) :: bigger,temp errcode = 0 ALLOCATE(indcol(n), STAT=rc) IF ( rc /= 0 ) THEN WRITE(*,*) "In LinEquSolve error allocating INDCOL(",n,")." errcode = -1 RETURN END IF ALLOCATE(indrow(n), STAT=rc) IF ( rc /= 0 ) THEN WRITE(*,*) "In LinEquSolve error allocating INDROW(",n,")." errcode = -1 RETURN END IF ALLOCATE(ipiv(n), STAT=rc) IF ( rc /= 0 ) THEN WRITE(*,*) "In LinEquSolve error allocating IPIV(",n,")." errcode = -1 RETURN END IF ipiv = 0 DO i = 1, n bigger = 0.0D0 DO j = 1, n IF (ipiv(j) /= 1) THEN DO k = 1, n IF (ipiv(k) == 0 .AND. bigger <= abs(a(j,k))) THEN bigger = abs(a(j,k)) irow = j icol = k ENDIF END DO ENDIF END DO ipiv(icol) = ipiv(icol) + 1 IF (irow /= icol) THEN DO l = 1,n temp = a(irow,l) a(irow,l) = a(icol,l) a(icol,l) = temp END DO temp = b(irow) b(irow) = b(icol) b(icol) = temp ENDIF indrow(i) = irow indcol(i) = icol IF (a(icol,icol) == 0.0D0) THEN WRITE(*,*) "In LinEquSolve a(",icol,",",icol,"): singular matrix!" errcode = -2 return end IF temp = 1.0D0/a(icol,icol) a(icol,icol) = 1.0D0 a(icol,:) = a(icol,:) * temp b(icol) = b(icol) * temp DO l = 1,n IF (l /= icol) THEN temp = a(l,icol) a(l,icol) = 0. a(l,:) = a(l,:)-a(icol,:) * temp b(l) = b(l)-b(icol) * temp ENDIF END DO END DO DO l = n,1,-1 IF (indrow(l) /= indcol(l)) THEN DO k = 1,n temp = a(k,indrow(l)) a(k,indrow(l)) = a(k,indcol(l)) a(k,indcol(l)) = temp END DO ENDIF END DO RETURN END SUBROUTINE LinEquSolve SUBROUTINE FieldPoints(Diff) IMPLICIT NONE REAL(8), INTENT(IN) :: Diff INTEGER :: ix, iy REAL(8) :: xc, yc, sv REAL(8) :: rmin, rmax rmax = MAXVAL(FieldWeight) rmin = MINVAL(FieldWeight) DO iy = 1, Ydots DO ix = 1, Xdots xc = FieldCoord(ix,iy,1) yc = FieldCoord(ix,iy,2) ! Compute effects of field in every point sv = NearestValue(xc,yc,TSlopeLength,TheorSlope) FieldValues(ix,iy,1) = 293.16 + 80 * ( Diff + sv ) * & & (FieldWeight(ix,iy) - rmin) / (rmax - rmin) END DO END DO ! Copy initial status FieldValues(:,:,2) = FieldValues(:,:,1) RETURN END SUBROUTINE FieldPoints SUBROUTINE SensiblePoints(Ir,Ii,Sr,Si,MaxIt) ! Compute "heated" points ! Output: ! FieldCoord(Xdots,Ydots,2) ! FieldWeight(Xdots,Ydots) IMPLICIT NONE REAL(8), INTENT(IN) :: Ir,Ii,Sr,Si INTEGER, INTENT(IN) :: MaxIt INTEGER :: ix, iy, iz REAL(8) :: ca, cb, za, zb REAL(8) :: rad, zan, zbn REAL(8) :: Xinc, Yinc WRITE(*,*) "Computing sensitivity to field effects ..." Xinc = Sr / DBLE(Xdots) Yinc = Si / DBLE(Ydots) FieldWeight = 0 DO iy = 0, Ydots-1 DO ix = 0, Xdots-1 ca = Xinc * ix + Ir cb = Yinc * iy + Ii FieldCoord(ix+1,iy+1,1) = ca FieldCoord(ix+1,iy+1,2) = cb rad = abs(ca * SQRT( 1.0D0 + (cb/ca)**2 )) zan = 0.0 zbn = 0.0 DO iz = 1, MaxIt IF ( rad > 2.0D0 ) EXIT za = zan zb = zbn zan = ca + (za-zb)*(za+zb) zbn = 2.0d0 * ( za*zb + cb/2.0d0 ) rad = abs(zan * SQRT( 1.0D0 + (zbn/zan)**2 )) END DO FieldWeight(ix+1,iy+1) = iz END DO END DO RETURN END SUBROUTINE SensiblePoints subroutine update (xdots, ydots, u1, u2) implicit none integer, intent(in) :: xdots, ydots real(8), dimension(xdots,ydots), intent(in) :: u1 real(8), dimension(xdots,ydots), intent(out) :: u2 integer :: ix, iy real(8) :: CX, CY, dd, dx, dy, dgx, dgy dd=0.0000001; dx = 1.0/dble(xdots); dy = 1.0/dble(ydots); dgx = - 2.0 + dx*dx/(2*dd); dgy = - 2.0 + dy*dy/(2*dd); CX = dd/(dx*dx); CY = dd/(dy*dy); do iy=2, Ydots-1 do ix=2, Xdots-1 if ( ix <= 1 .OR. ix >= Xdots .OR. iy <= 1 .OR. iy >= Ydots ) then u2(ix,iy) = u1(ix,iy) cycle endif u2(ix,iy) = CX * ( u1(ix-1,iy) + u1(ix+1,iy) + dgx*u1(ix,iy) ) & & + CY * ( u1(ix,iy-1) + u1(ix,iy+1) + dgy*u1(ix,iy) ) end do end do u2(1,:) = u2(2,:) u2(Xdots,:) = u2(Xdots-1,:) u2(:,1) = u2(:,2) u2(:,Ydots) = u2(:,Ydots-1) return end subroutine update subroutine Cooling(steps) ! Compute evolution of the effects of the field ! Input/Output: ! FieldValues(Xdots,Ydots,2) IMPLICIT NONE INTEGER, INTENT(IN) :: steps REAL(8) :: vmin, vmax INTEGER :: iz, it CHARACTER(80) :: fname WRITE(*,*) "Computing cooling of field effects ..." WRITE(*,*) "... ",STEPS," steps ..." ! Print and show initial state fname = "FieldValuesf0000" vmin=0.0; vmax=0.0 call RealVal2ppm(Xdots,Ydots,FieldValues(1,1,1),vmin,vmax,fname) call Statistics(Xdots,Ydots,FieldValues(1,1,1),0) iz=1 do it=1, STEPS ! Update the value of grid points call update(Xdots,Ydots,FieldValues(1,1,iz),FieldValues(1,1,3-iz)) iz=3-iz ! Print and show results WRITE(fname,"(A,I4.4)") "FieldValuesf",it if ( mod(it,4) == 0 ) call RealVal2ppm(Xdots,Ydots,FieldValues(1,1,iz),vmin,vmax,fname) call Statistics(Xdots,Ydots,FieldValues(1,1,iz),it) end do return end subroutine cooling ! Auxiliary functions FUNCTION NearestValue(xc,yc,ld,Values) RESULT(v) IMPLICIT NONE ! look for the best values near xc, yc coordinates REAL(8), INTENT(IN) :: xc, yc INTEGER, INTENT(IN) :: ld REAL(8), DIMENSION(ld,3), INTENT(IN) :: Values REAL(8) :: v ! REAL(8) :: d, md ! minimum distance INTEGER :: np ! number of nearest points INTEGER :: i md = (xc-Values(1,1))**2 + (yc-Values(1,2))**2 ! Compute lowest distance DO i = 1, ld d = (xc-Values(i,1))**2 + (yc-Values(i,2))**2 IF ( md > d ) then md = d END IF END DO np = 0 v = 0.0D0 ! Compute nearest value DO i = 1, ld d = (xc-Values(i,1))**2 + (yc-Values(i,2))**2 IF ( md == d ) THEN ! add contributed value np = np + 1 v = v + Values(i,3) END IF END DO ! mean value v = v / DBLE(np) RETURN END FUNCTION NearestValue SUBROUTINE get_date(time_date,time) IMPLICIT NONE CHARACTER(*), INTENT(IN OUT) :: time_date REAL(8), INTENT(OUT) :: time INTEGER, DIMENSION(8) :: time_data ! year, month, day, UTC diff, hh, mm, ss, msec CALL DATE_AND_TIME(VALUES=time_data) WRITE(time_date,"(2(I2.2,':'),I2.2,' - ',2(I2.2,'/'),I4.4)") time_data(5), & & time_data(6),time_data(7), & & time_data(3), time_data(2),time_data(1) time = time_data(8)/1000.0D0 + time_data(7) + time_data(6)*60.0D0 + time_data(5)*3600.0D0 END SUBROUTINE get_date SUBROUTINE RealVal2ppm(s1, s2, rdata, vmin, vmax, name) IMPLICIT NONE INTEGER, INTENT(IN) :: s1, s2 REAL(8), DIMENSION(s1,s2), INTENT(IN) :: rdata REAL(8), INTENT(IN OUT) :: vmin, vmax CHARACTER(*), INTENT(IN) :: name ! ! Simple subroutine to dump double data with fixed min & max values ! in a PPM format ! INTEGER :: i, j, st INTEGER, DIMENSION(3,256) :: cm ! R,G,B, Colour Map INTEGER, PARAMETER :: ouni=33, ColMap=44 INTEGER :: vp, vs REAL(8) :: rmin, rmax, value CHARACTER(80) :: fname, jname, command ! ! Define color map: 256 colours ! OPEN(ColMap, FILE="ColorMap.txt", STATUS="OLD",IOSTAT=st) if ( st /= 0 ) THEN WRITE(*,'("Error read opening file ColorMap.txt")') STOP ENDIF DO i = 1, 256 READ(ColMap,*, IOSTAT=st) cm(:,i) IF ( st /= 0 ) THEN WRITE(*,'("Error reading colour map at line ",I3,": r, g, b =")',ADVANCE="NO") i WRITE(*,'(3(1X,I3))') cm(:,i) STOP ENDIF ENDDO CLOSE(ColMap) ! ! Write on unit ouni with PPM format ! fname = TRIM(name)//".ppm" OPEN(ouni, FILE=TRIM(fname), STATUS="UNKNOWN",IOSTAT=st) if ( st /= 0 ) THEN WRITE(*,'("!!!! Error write access to file ",A)') TRIM(fname) STOP ENDIF ! Magic code WRITE(ouni,'("P3")') ! Dimensions WRITE(ouni,'(2(I6,1X))') s1, s2 ! Maximum value WRITE(ouni,'("255")') ! Values from 0 to 255 rmin = MINVAL(rdata); rmax = MAXVAL(rdata) if ( (vmin == vmax) .AND. (vmin == 0.0D0) ) THEN vmin = rmin; vmax = rmax ELSE rmin = vmin; rmax = vmax ENDIF vs = 0 DO i = 1, s1 DO j = 1, s2 value = rdata(i,j) if ( value < rmin ) value = rmin if ( value > rmax ) value = rmax vp = 1 + ( DBLE(value - rmin) * 255.0D0 / DBLE(rmax - rmin) ) vp = max(1,vp); vp = min(256,vp) vs = vs + 1 WRITE(ouni,'(3(1X,I3))', ADVANCE="NO") cm(:,vp) if ( vs >= 10 ) THEN WRITE(ouni,'(1X)') vs = 0 ENDIF ENDDO WRITE(ouni,'(1X)') vs = 0 ENDDO CLOSE(ouni) ! the following instructions require ImageMagick tool: comment out if not ! available jname = TRIM(name)//".jpg" command = "convert "//TRIM(fname)//" "//TRIM(jname) CALL system(command) END SUBROUTINE RealVal2ppm SUBROUTINE Statistics(s1, s2, rdata, step) IMPLICIT NONE INTEGER, INTENT(IN) :: s1, s2, step REAL(8), DIMENSION(s1,s2), INTENT(IN) :: rdata REAL(8) :: mnv, mv, mxv, sd INTEGER :: i, j ! Compute statistics mv = 0.0; ! Min, mean, max value mnv = rdata(1,1) mxv = rdata(1,1) DO i = 1, s1 DO j = 1, s2 mv = mv + rdata(i,j) if ( mnv > rdata(i,j) ) mnv = rdata(i,j) if ( mxv < rdata(i,j) ) mxv = rdata(i,j) ENDDO ENDDO mv = mv / DBLE(s1*s2) sd = 0.0; ! Standard Deviation DO i = 1, s1 DO j = 1, s2 sd = sd + ( rdata(i,j) - mv ) * ( rdata(i,j) - mv ) ENDDO ENDDO sd = SQRT( sd / DBLE(s1*s2) ) WRITE(*,"('Step ',I4,': min, mean, max, std.dev. =',4(1X,F8.3))") step,mnv,mv,mxv,sd END SUBROUTINE Statistics END MODULE Environment PROGRAM Cooling_grid USE Environment IMPLICIT NONE CHARACTER(80) :: asctime REAL(8) :: time0, time1 CALL get_date(asctime,time0) WRITE(*,'("Starting at: ",a)') TRIM(asctime) CALL InitGrid("Cooling.inp") CALL FieldDistribution() CALL SensiblePoints(Sreal,Simag,Rreal,Rimag,MaxIters) CALL FieldInit() CALL Cooling(TimeSteps) CALL get_date(asctime,time1) WRITE(*,'("Ending at: ",a)') TRIM(asctime) WRITE(*,'("Computations ended in ",F10.6," seconds")') time1-time0 WRITE(*,'("End of program!")') STOP END PROGRAM Cooling_grid