/* ! Final application of the Course "Parallel Computing using MPI and OpenMP" ! ! This program is meant to be used by course participants for demonstrating ! the abilities acquired in optimizing and parallelising programs. ! ! The techniques learnt at the course should be extensively used in order to ! improve the program response times as much as possible, while gaining ! the same or very closed results, i.e. the series of final produced images. ! ! The code implemented herewith has been written for teaching purposes only, ! therefore source code, algorithms and produced results must not be ! trusted nor used for anything different from their original purpose. ! ! Description of the program: ! in a squared grid a computed set of points is hit by a disturbing field whose ! distribution at an initial time can be theoretically estimated, i.e. it can ! be computed. The measured values for only a few points are known. ! After the initial "heating" effect, the perturbation evolves with a known law ! and results are computed for a few time steps. ! ! Would you please send comments to m.cremonesi@cineca.it ! ! Program outline: ! 1 - the program starts reading the measured values (InitGrid) ! 2 - the theoretical distribution of initial field values is computed (FieldDistribution) ! 3 - the set of struck points is computed (SensiblePoints) ! 4 - the distribution of values is estimated over the computed set of points (FieldInit) ! 5 - the evolution of the perturbation effects over time is computed (Cooling) */ #include #include #include #include #define index2D(i,j,LD1) i + ((j)*LD1) // element position in 2-D arrays #define index3D(i,j,k,LD1,LD2) i + ((j)*LD1) + ((k)*LD1*LD2) // element position in 3-D arrays #define Xdots 1400 // Plate grid resolution in 2 dimensions #define Ydots 1400 // May be changed to 1000x1000 // Parameters to compute point sensitiveness - values read from input file double Sreal, Simag, Rreal, Rimag; int MaxIters; int TimeSteps; // Evolution time steps double *MeasuredValues; // 2-D array - (NumInputValues,3) - Values read in input file int NumInputValues; // Number of values read in input file double *TheorSlope; // 2-D array - Theoretical value distribution int TSlopeLength; // TheorSlope grid dimensions int *FieldWeight; // 2-D array - (Xdots,Ydots) - Degree of sensitiveness to perturbing field double *FieldCoord; // 3-D array - X, Y coordinates in field double *FieldValues; // 3-D array - X, Y coordinates in field // functions prototypes void SetIntValue(int *a, int l, int v); void SetDoubleValue(double *a, int l, double v); int rowlen(char *riga); int readrow(char *rg, int nc, FILE *daleg); void InitGrid(char *InputFile); int LinEquSolve(double *a, int n, double *b); void EqsDef(double x0, double x1, double y0, double y1, int N, int LA, double *A, double *Rhs, double *Pts); double Solution(double x, double y); void FieldDistribution(); void GridDef(double x0, double x1, double y0, double y1, int N, double *Pts); double NearestValue(double xc, double yc, int ld, double *Values); void RealData2ppm(int s1, int s2, double *rdata, double *vmin, double *vmax, char* name); void Statistics(int s1, int s2, double *rdata, int s); double MaxIntVal(int s, int *a); double MinIntVal(int s, int *a); double MaxDoubleVal(int s, double *a); double MinDoubleVal(int s, double *a); void Cooling(int steps); void update(int xdots, int ydots, double *u1, double *u2); void SensiblePoints(double Ir,double Ii,double Sr,double Si,int MaxIt); void FieldPoints(double Diff); void FieldInit(); void InitGrid(char *InputFile) { /* Output: ! MeasuredValues(:,3) - values read from input file ! Initialization of FieldWeight(Xdots,Ydots) and ! FieldCoord(Xdots,Ydots,2) */ int valrows, st; char filerow[80]; FILE *inpunit; fprintf(stdout,"Initializing grid ...\n"); inpunit = fopen(InputFile,"r"); if ( ! inpunit ) { fprintf(stderr,"!!!! Error read access to file %s\n",InputFile); exit(-1); } // Now read measured values NumInputValues = 0; valrows = 0; while ( 1 ) { st = readrow(filerow, 80, inpunit); if ( filerow[0] == '#' ) continue; if ( NumInputValues <= 0 ) { if ( sscanf(filerow," %d",&NumInputValues) < 1 ) { if ( NumInputValues <= 0 ) { fprintf(stderr,"Error reading NumInputValues: %d\n",NumInputValues); exit(-1); } } else { MeasuredValues = (double*)malloc(sizeof((double)1.0)*NumInputValues*3); if ( MeasuredValues == NULL ) { fprintf(stderr,"Error allocating MeasuredValues[%d,3]\n", NumInputValues); exit(-1); } } } else { if ( sscanf(filerow,"%lf %lf %lf", &MeasuredValues[index2D(valrows,0,NumInputValues)], // X coord &MeasuredValues[index2D(valrows,1,NumInputValues)], // Y coord &MeasuredValues[index2D(valrows,2,NumInputValues)]) // Measured value < 3 ) { fprintf(stderr,"Error reading MeasuredValues(%d,*)",valrows); exit(-1); } valrows = valrows + 1; if ( valrows >= NumInputValues ) break; } } FieldWeight = (int*)malloc(sizeof((int)1)*Xdots*Ydots); if ( FieldWeight == NULL ) { fprintf(stderr,"Error allocating FieldWeight[%d,%d]\n", Xdots,Ydots); exit(-1); } SetIntValue(FieldWeight,Xdots*Ydots,0); FieldCoord = (double*)malloc(sizeof((double)1.0)*Xdots*Ydots*2); if ( FieldCoord == NULL ) { fprintf(stderr,"Error allocating FieldCoord[%d,%d,2]\n", Xdots,Ydots); exit(-1); } SetDoubleValue(FieldCoord,Xdots*Ydots*2,(double)0); /* Now read Sreal, Simag, Rreal, Rimag */ Sreal = Simag = Rreal = Rimag = 0.0; while ( 1 ) { if ( readrow(filerow, 80, inpunit) < 1 ) { fprintf(stderr,"Error reading Sreal from input file\n"); exit(-1); } if ( filerow[0] == '#' ) continue; if ( sscanf(filerow,"%lf",&Sreal) < 1 ) { fprintf(stderr,"Error reading Sreal from string\n"); exit(-1); } if ( fscanf(inpunit,"%lf",&Simag) < 1 ) { fprintf(stderr,"Error reading Simag from input file\n"); exit(-1); } if ( fscanf(inpunit,"%lf",&Rreal) < 1 ) { fprintf(stderr,"Error reading Rreal from input file\n"); exit(-1); } if ( fscanf(inpunit,"%lf",&Rimag) < 1 ) { fprintf(stderr,"Error reading Rimag from input file\n"); exit(-1); } break; } /* Now read MaxIters */ MaxIters = 0; while ( 1 ) { if ( readrow(filerow, 80, inpunit) < 1 ) { fprintf(stderr,"Error reading MaxIters from input file\n"); exit(-1); } if ( filerow[0] == '#' || rowlen(filerow) < 1 ) continue; if ( sscanf(filerow,"%d",&MaxIters) < 1 ) { fprintf(stderr,"Error reading MaxIters from string\n"); exit(-1); } break; } /* ! Now read TimeSteps */ TimeSteps = 0; while ( 1 ) { if ( readrow(filerow, 80, inpunit) < 1 ) { fprintf(stderr,"Error reading MaxIters from input file\n"); exit(-1); } if ( filerow[0] == '#' || rowlen(filerow) < 1 ) continue; if ( sscanf(filerow,"%d",&TimeSteps) < 1 ) { fprintf(stderr,"Error reading TimeSteps from string\n"); exit(-1); } break; } return; } // end InitGrid void FieldInit() { /* ! Initialize field values in the grid. Values are computed on the basis ! of the measured values read in subroutine InitGrid and the gross grid ! values computed in subroutine FieldDistribution. Moreover sensitiveness ! to field effects as computed in subroutine SensiblePoints are taken into ! account. ! ! Input: ! MeasuredValues(:,3) ! FieldWeight(Xdots,Ydots) ! Output: ! FieldValues(Xdots,Ydots,2) */ int rv; double xc, yc, ev, sv, sd, DiscrValue; double *DiffValues; fprintf(stdout,"Initializing entity of field effects ...\n"); FieldValues = (double*)malloc(sizeof((double)1.0)*Xdots*Ydots*2); if ( FieldValues == NULL ) { fprintf(stderr,"Error allocating FieldValues[%d,%d,2]\n",Xdots,Ydots); exit(-1); } SetDoubleValue(FieldValues,Xdots*Ydots*2,(double)0.0); DiffValues = (double*)malloc(sizeof((double)1.0)*NumInputValues); if ( DiffValues == NULL ) { fprintf(stderr,"Error allocating DiffValues[%d]\n",NumInputValues); exit(-1); } SetDoubleValue(DiffValues,NumInputValues,(double)0.0); // Compute discrepancy between Measured and Theoretical value DiscrValue = 0.0; for ( rv = 0; rv < NumInputValues; rv++ ) { xc = MeasuredValues[index2D(rv,0,NumInputValues)]; yc = MeasuredValues[index2D(rv,1,NumInputValues)]; // TheorSlope is computed on the basis of a coarser grid, so look for // the best values near xc, yc coordinates sv = NearestValue(xc,yc,TSlopeLength,TheorSlope); ev = MeasuredValues[index2D(rv,2,NumInputValues)]; DiffValues[rv] = ev - sv; DiscrValue += ev - sv; } DiscrValue = DiscrValue / (double)NumInputValues; // Compute statistics and best approximated value sd = 0.0; // Standard Deviation for ( rv = 0; rv < NumInputValues; rv++ ) { sd = sd + ( DiffValues[rv] - DiscrValue )*( DiffValues[rv] - DiscrValue ); } sd = sqrt(sd / (double)NumInputValues); // Print statistics fprintf(stdout,"... Number of Points, Mean value, Standard deviation = %d, %12.3e, %12.3e\n", NumInputValues, DiscrValue, sd); // Compute FieldValues stage 1 FieldPoints(DiscrValue); return; } // end FieldInit void FieldDistribution() { /* ! Compute theoretical value distribution of the perturbing field ! on a grid Mm1 x Nm1 where M = SQRT(DBLE(Xdots))-1 and ! N = SQRT(DBLE(Ydots)) ! Output: ! TheorSlope(TSlopeLength,3) - theoretical field distribution function ! ! Let's consider the 2D-square x0 < X < x1, y0 < Y < y1 ! Suppose we divide the square in N-1 x N-1 portions ! Given a function F(x,y) suppose we know that in every point: ! d2F(x,x)/dx2 + d2F(x,y)/dy2 = x+y ! Let's define a system of equation so that we can compute the value ! of F(x,y) in every point of the 2D-square ! */ double *CoeffMatrix, *B; double x0, y0, x1, y1; int M, Mm1, N, Nm1, LA; int i, rc; fprintf(stdout,"Computing theoretical perturbing field ...\n"); x0 = Sreal; y0 = Simag; x1 = x0+Rreal; y1 = y0+Rimag; // How many intervals? It should be safe to use SQRT(Xdots) M = sqrt((double)Xdots); N = sqrt((double)Ydots); Nm1 = N-1; // Grid points minus boundary Mm1 = M-1; LA = Mm1*Nm1; // unknown points TSlopeLength = LA; CoeffMatrix = (double*)malloc(sizeof((double)1.0)*LA*LA); if ( CoeffMatrix == NULL ) { fprintf(stderr,"Error allocating CoeffMatrix[%d,%d]\n",LA,LA); exit(-1); } TheorSlope = (double*)malloc(sizeof((double)1.0)*TSlopeLength*3); if ( TheorSlope == NULL ) { fprintf(stderr,"Error allocating TheorSlope[%d,3]\n",TSlopeLength); exit(-1); } B = (double*)malloc(sizeof((double)1.0)*LA); if ( B == NULL ) { fprintf(stderr,"Error allocating B[%d]\n",LA); exit(-1); } GridDef(x0,x1,y0,y1,N,TheorSlope); EqsDef(x0,x1,y0,y1,N,LA,CoeffMatrix,B,TheorSlope); rc = LinEquSolve(CoeffMatrix,LA,B); if ( rc != 0 ) exit(-1); for ( i = 0; i < LA; i++) TheorSlope[index2D(i,2,TSlopeLength)] = B[i]; return; } // end FieldDistribution double Solution(double x, double y) { double f; f = ((x*x*x)+(y*y*y))/(double)6.0; return(f); } // end Solution void GridDef(double x0, double x1, double y0, double y1, int N, double *Pts) { double x, y, dx, dy; int i, j, np, Mm1, Nm1; Mm1 = sqrt((double)Xdots) - 1; Nm1 = sqrt((double)Ydots) - 1; dx = (x1-x0)/(double)N; dy = (y1-y0)/(double)N; np = -1; for ( i = 0; i < Mm1; i++ ) { for ( j = 0; j < Nm1; j++ ) { np++; if ( np > Mm1*Nm1 ) { fprintf(stderr," Error: NP = %d > N*N = %d\n",np,Nm1*Nm1); exit(-1); } x = x0 + dx * (double)(i+1); y = y0 + dy * (double)(j+1); Pts[index2D(np,0,TSlopeLength)] = x; Pts[index2D(np,1,TSlopeLength)] = y; } } return; } // end GridDef void EqsDef(double x0, double x1, double y0, double y1, int N, int LA, double *A, double *Rhs, double *Pts) { // Pts(LA,3) - inner grid point Coordinates // Rhs(LA) - Linear equation Right Hand Side // A(LA,LA) - Linear equation matrix double x, y, Eps, dx, dy; int np, Nm1, pos; // Define A matrix and RHS Nm1 = N-1; dx = (x1-x0)/(double)N; dy = (y1-y0)/(double)N; for ( np = 0; np < 100; np++) { } SetDoubleValue(A,LA*LA,(double)0.0); SetDoubleValue(Rhs,LA,(double)0.0); for ( np = 0; np < LA; np++) { x = Pts[index2D(np,0,TSlopeLength)]; y = Pts[index2D(np,1,TSlopeLength)]; A[index2D(np,np,LA)] = -4.0; Rhs[np] = (x + y)*dx*dy; // define Eps function of grid dimensions Eps = (dx+dy)/20.0; // where is P(x-dx,y) ? if ( fabs((x-dx)-x0) < Eps ) { Rhs[np] = Rhs[np] - Solution(x0,y); } else { // Find pos = position of P(x-dx,y) pos = np - Nm1; if ( fabs(Pts[index2D(pos,0,TSlopeLength)]-(x-dx)) > Eps ) { fprintf(stderr," Error x-dx: pos, np, d = %d %d %lf\n",pos,np, fabs(Pts[index2D(pos,0,TSlopeLength)]-(x-dx))); exit(-1); } A[index2D(np,pos,LA)] = 1.0; } // where is P(x+dx,y) ? if ( fabs((x+dx)-x1) < Eps ) { Rhs[np] = Rhs[np] - Solution(x1,y); } else { // Find pos = position of P(x+dx,y) pos = np + Nm1; if ( fabs(Pts[index2D(pos,0,TSlopeLength)]-(x+dx)) > Eps ) { fprintf(stderr," Error x+dx: %lf\n", fabs(Pts[index2D(pos,0,TSlopeLength)]-(x+dx))); exit(-1); } A[index2D(np,pos,LA)] = 1.0; } // where is P(x,y-dy) ? if ( fabs((y-dy)-y0) < Eps ) { Rhs[np] = Rhs[np] - Solution(x,y0); } else { // Find pos = position of P(x,y-dy) pos = np - 1; if ( fabs(Pts[index2D(pos,1,TSlopeLength)]-(y-dy)) > Eps ) { fprintf(stderr," Error y-dy: %lf\n", fabs(Pts[index2D(pos,1,TSlopeLength)]-(y-dy))); exit(-1); } A[index2D(np,pos,LA)] = 1.0; } // where is P(x,y+dy) ? if ( fabs((y+dy)-y1) < Eps ) { Rhs[np] = Rhs[np] - Solution(x,y1); } else { // Find pos = position of P(x,y-dy) pos = np + 1; if ( fabs(Pts[index2D(pos,1,TSlopeLength)]-(y+dy)) > Eps ) { fprintf(stderr," Error y+dy: %lf\n", fabs(Pts[index2D(pos,1,TSlopeLength)]-(y+dy))); exit(-1); } A[index2D(np,pos,LA)] = 1.0; } } return; } // end EqsDef int LinEquSolve(double *a, int n, double *b) { /* ! Gauss-Jordan elimination algorithm ! Based on a code from "Numerical recipes in Fortran 77" ! */ int i,j,k,l,icol,irow; int *indcol, *indrow, *ipiv; double bigger, temp; indcol = (int*)malloc(sizeof((int)1)*n); if ( indcol == NULL ) { fprintf(stderr,"Error allocating indcol[%d]\n",n); return(-1); } indrow = (int*)malloc(sizeof((int)1)*n); if ( indrow == NULL ) { fprintf(stderr,"Error allocating indrow[%d]\n",n); return(-1); } ipiv = (int*)malloc(sizeof((int)1)*n); if ( ipiv == NULL ) { fprintf(stderr,"Error allocating ipiv[%d]\n",n); return(-1); } SetIntValue(ipiv,n,0); for ( i = 0; i < n; i++ ) { bigger = 0.0; for ( j = 0; j < n; j++ ) { if (ipiv[j] != 1) { for ( k = 0; k < n; k++ ) { if (ipiv[k] == 0 && bigger <= fabs(a[index2D(j,k,n)])) { bigger = fabs(a[index2D(j,k,n)]); irow = j; icol = k; } } } } ipiv[icol] = ipiv[icol] + 1; if (irow != icol) { for ( l = 0; l < n; l++ ) { temp = a[index2D(irow,l,n)]; a[index2D(irow,l,n)] = a[index2D(icol,l,n)]; a[index2D(icol,l,n)] = temp; } temp = b[irow]; b[irow] = b[icol]; b[icol] = temp; } indrow[i] = irow; indcol[i] = icol; if (a[index2D(icol,icol,n)] == 0.0) { fprintf(stderr,"In LinEquSolve a(%d,%d): singular matrix!", icol,icol); return(-2); } temp = (double)1.0/a[index2D(icol,icol,n)]; a[index2D(icol,icol,n)] = 1.0; for ( l = 0; l < n; l++ ) a[index2D(icol,l,n)] = a[index2D(icol,l,n)] * temp; b[icol] = b[icol] * temp; for ( l = 0; l < n; l++ ) { if (l != icol) { temp = a[index2D(l,icol,n)]; a[index2D(l,icol,n)] = 0.0; for ( k = 0; k < n; k++ ) { a[index2D(l,k,n)] = a[index2D(l,k,n)] - a[index2D(icol,k,n)] * temp; } b[l] = b[l]-b[icol] * temp; } } } for ( l = n-1; l >= 0; l-- ) { if (indrow[l] != indcol[l]) { for ( k = 0; k < n; k++ ) { temp = a[index2D(k,indrow[l],n)]; a[index2D(k,indrow[l],n)] = a[index2D(k,indcol[l],n)]; a[index2D(k,indcol[l],n)] = temp; } } } return(0); } // end LinEquSolve void FieldPoints(double Diff) { int ix, iy; double xc, yc, sv; double rmin, rmax; rmax = MaxIntVal(Xdots*Ydots,FieldWeight); rmin = MinIntVal(Xdots*Ydots,FieldWeight); for ( iy = 0; iy < Ydots; iy++) { for ( ix = 0; ix < Xdots; ix++) { xc = FieldCoord[index3D(ix,iy,0,Xdots,Ydots)]; yc = FieldCoord[index3D(ix,iy,1,Xdots,Ydots)]; // Compute effects of field in every point sv = NearestValue(xc,yc,TSlopeLength,TheorSlope); FieldValues[index3D(ix,iy,0,Xdots,Ydots)] = 293.16 + 80 * ( Diff + sv ) * (FieldWeight[index2D(ix,iy,Xdots)] - rmin) / (rmax - rmin); } } // Copy initial status for ( iy = 0; iy < Ydots; iy++) { for ( ix = 0; ix < Xdots; ix++) { FieldValues[index3D(ix,iy,1,Xdots,Ydots)] = FieldValues[index3D(ix,iy,0,Xdots,Ydots)]; } } return; } // end FieldPoints void SensiblePoints(double Ir,double Ii,double Sr,double Si,int MaxIt) { /* ! Compute "heated" points ! Output: ! FieldCoord(Xdots,Ydots,2) ! FieldWeight(Xdots,Ydots) */ int ix, iy, iz; double ca, cb, za, zb; double rad, zan, zbn; double Xinc, Yinc; fprintf(stdout,"Computing sensitivity to field effects ...\n"); Xinc = Sr / (double)Xdots; Yinc = Si / (double)Ydots; for ( iy = 0; iy < Ydots; iy++ ) { for ( ix = 0; ix < Xdots; ix++ ) { ca = Xinc * ix + Ir; cb = Yinc * iy + Ii; FieldCoord[index3D(ix,iy,0,Xdots,Ydots)] = ca; FieldCoord[index3D(ix,iy,1,Xdots,Ydots)] = cb; rad = ca * ca * ( (double)1.0 + (cb/ca)*(cb/ca) ); zan = 0.0; zbn = 0.0; for ( iz = 1; iz <= MaxIt; iz++ ) { if ( rad > (double)4.0 ) break; za = zan; zb = zbn; zan = ca + (za-zb)*(za+zb); zbn = 2.0 * ( za*zb + cb/2.0 ); rad = zan * zan * ( (double)1.0 + (zbn/zan)*(zbn/zan) ); } FieldWeight[index2D(ix,iy,Xdots)] = iz; } } return; } // end SensiblePoints void update(int xdots, int ydots, double *u1, double *u2) { /* Compute next step using matrices g1, g2 of dimension (nr,nc) */ int i, j; double CX, CY; double hx, dgx, hy, dgy, dd; dd=0.0000001; hx = 1.0/(double)xdots; hy = 1.0/(double)ydots; dgx = - 2.0 + hx*hx/(2*dd); dgy = - 2.0 + hy*hy/(2*dd); CX = dd/(hx*hx); CY = dd/(hy*hy); for ( j = 0; j < ydots-1; j++ ) { for ( i = 0; i < xdots-1; i++ ) { if ( i <= 0 || i >= xdots-1 ) { u2[index2D(i,j,xdots)] = u1[index2D(i,j,xdots)]; continue; } if ( j <= 0 || j >= ydots-1 ) { u2[index2D(i,j,xdots)] = u1[index2D(i,j,xdots)]; continue; } u2[index2D(i,j,xdots)] = CX * ( u1[index2D((i-1),j,xdots)] + u1[index2D((i+1),j,xdots)] + dgx*u1[index2D((i+1),j,xdots)] ) + CY * ( u1[index2D(i,(j-1),xdots)] + u1[index2D(i,(j+1),xdots)] + dgy*u1[index2D(i,j,xdots)] ); } } for ( j = 0; j < ydots-1; j++ ) { u2[index2D(0,j,xdots)] = u2[index2D(1,j,xdots)]; u2[index2D(Xdots-1,j,xdots)] = u2[index2D(Xdots-2,j,xdots)]; } for ( i = 0; i < xdots-1; i++ ) { u2[index2D(i,0,xdots)] = u2[index2D(i,1,xdots)]; u2[index2D(i,Ydots-1,xdots)] = u2[index2D(i,Ydots-2,xdots)]; } return; } void Cooling(int steps) { /* ! Compute evolution of the effects of the field ! Input/Output: ! FieldValues(Xdots,Ydots,2) */ int iz, it; char fname[80]; double vmin, vmax; fprintf(stdout,"Computing cooling of field effects ...\n"); fprintf(stdout,"... %d steps ...\n",steps); sprintf(fname,"FieldValues0000"); vmin = vmax = 0.0; RealData2ppm(Xdots,Ydots, &FieldValues[index3D(0,0,0,Xdots,Ydots)],&vmin,&vmax,fname); Statistics(Xdots,Ydots, &FieldValues[index3D(0,0,0,Xdots,Ydots)],0); iz=1; for ( it = 1; it <= steps; it++) { // Update the value of grid points update(Xdots,Ydots,&FieldValues[index3D(0,0,iz-1,Xdots,Ydots)], &FieldValues[index3D(0,0,2-iz,Xdots,Ydots)]); iz=3-iz; // Print and show results sprintf(fname,"FieldValues%4.4d",it); if ( it%4 == 0 ) RealData2ppm(Xdots,Ydots, &FieldValues[index3D(0,0,iz-1,Xdots,Ydots)],&vmin,&vmax,fname); Statistics(Xdots,Ydots, &FieldValues[index3D(0,0,iz-1,Xdots,Ydots)],it); } return; } // end cooling // Auxiliary functions // double MinIntVal(int s, int *a) { int v; int e; v = a[0]; for ( e = 0; e < s; e++ ) { if ( v > a[e] ) v = a[e]; } return(v); } double MaxIntVal(int s, int *a) { int v; int e; v = a[0]; for ( e = 0; e < s; e++ ) { if ( v < a[e] ) v = a[e]; } return(v); } double MinDoubleVal(int s, double *a) { double v; int e; v = a[0]; for ( e = 0; e < s; e++ ) { if ( v > a[e] ) v = a[e]; } return(v); } double MaxDoubleVal(int s, double *a) { double v; int e; v = a[0]; for ( e = 0; e < s; e++ ) { if ( v < a[e] ) v = a[e]; } return(v); } void SetIntValue(int *a, int l, int v) { int i; for ( i = 0; i < l; i++ ) a[i] = v; return; } void SetDoubleValue(double *a, int l, double v) { int i; for ( i = 0; i < l; i++ ) a[i] = v; return; } int rowlen(char *riga) { int lungh; char c; lungh = strlen(riga); while (lungh > 0) { lungh--; c = *(riga+lungh); if (c == '\0') continue; if (c == '\40') continue; /* carattere spazio */ if (c == '\b') continue; if (c == '\f') continue; if (c == '\r') continue; if (c == '\v') continue; if (c == '\n') continue; if (c == '\t') continue; return(lungh+1); } return(0); } int readrow(char *rg, int nc, FILE *daleg) { int rowlen(), lrg; if (fgets(rg,nc,daleg) == NULL) return(0); lrg = rowlen(rg); if (lrg < nc) { rg[lrg] = '\0'; lrg++; } return(lrg); } void Statistics(int s1, int s2, double *rdata, int step) { double mnv, mv, mxv, sd; int i, j; // Compute statistics mv = 0.0; // Mean value mnv = mxv = rdata[0]; for ( i = 0; i < s1; i++ ) { for ( j = 0; j < s2; j++ ) { mv = mv + rdata[i+(j*s1)]; if ( mnv > rdata[i+(j*s1)] ) mnv = rdata[i+(j*s1)]; if ( mxv < rdata[i+(j*s1)] ) mxv = rdata[i+(j*s1)]; } } mv = mv / (double)(s1*s2); sd = 0.0; // Standard Deviation for ( i = 0; i < s1; i++ ) { for ( j = 0; j < s2; j++ ) { sd = sd + ( rdata[i+(j*s1)] - mv ) * ( rdata[i+(j*s1)] - mv ); } } sd = sqrt(sd / (double)(s1*s2)); fprintf(stdout,"Step %4d: min, mean, max, std.dev. = %12.3e, %12.3e, %12.3e, %12.3e\n",step,mnv,mv,mxv,sd); return; } // Statistics void RealData2ppm(int s1, int s2, double *rdata, double *vmin, double *vmax, char* name) { /* Simple subroutine to dump integer data in a PGM format */ int cm[3][256]; /* R,G,B, Colour Map */ FILE *ouni, *ColMap; int i, j, rc, vp, vs; double rmin, rmax; char fname[80], jname[80], command[80]; /* Define color map: 256 colours */ ColMap = fopen("ColorMap.txt","r"); if (ColMap == NULL ) { fprintf(stderr,"Error read opening file ColorMap.txt\n"); exit(-1); } for (i=0; i < 256; i++) { if ( fscanf(ColMap," %3d %3d %3d", &cm[0][i], &cm[1][i], &cm[2][i]) < 3 ) { fprintf(stderr,"Error reading colour map at line %d: r, g, b =",(i+1)); fprintf(stderr," %3.3d %3.3d %3.3d\n",cm[0][i], cm[1][i], cm[2][i]); exit(1); } } /* Write on unit 700 with PPM format */ strcpy(fname,name); strcat(fname,".ppm\0"); ouni = fopen(fname,"w"); if ( ! ouni ) { fprintf(stderr,"!!!! Error write access to file %s\n",fname); } /* Magic code */ fprintf(ouni,"P3\n"); /* Dimensions */ fprintf(ouni,"%d %d\n",s1, s2); /* Maximum value */ fprintf(ouni,"255\n"); /* Values from 0 to 255 */ rmin = MinDoubleVal(s1*s2,rdata); rmax = MaxDoubleVal(s1*s2,rdata); if ( (*vmin == *vmax) && (*vmin == (double)0.0) ) { *vmin = rmin; *vmax = rmax; } else { rmin = *vmin; rmax = *vmax; } vs = 0; for ( i = 0; i < s1; i++ ) { for ( j = 0; j < s2; j++ ) { vp = (int) ( (rdata[i+(j*s1)] - rmin) * 255.0 / (rmax - rmin) ); if ( vp < 0 ) vp=0; if ( vp > 255 ) vp=255; vs++; fprintf(ouni," %3.3d %3.3d %3.3d", cm[0][vp], cm[1][vp], cm[2][vp]); if ( vs >= 10 ) { fprintf(ouni," \n"); vs = 0; } } fprintf(ouni," "); vs = 0; } fclose(ouni); // the following instructions require ImageMagick tool: comment out if not // available strcpy(jname,name); strcat(jname,".jpg\0"); sprintf(command,"convert %s %s",fname,jname); rc=system(command); return; } double NearestValue(double xc, double yc, int ld, double *Values) { // look for the best values near xc, yc coordinates double v; double d, md; // minimum distance int np; // number of nearest points int i; md = ( (xc-Values[index2D(0,0,ld)] )*( xc - Values[index2D(0,0,ld)]) ) + ( (yc-Values[index2D(0,1,ld)] )*( yc-Values[index2D(0,1,ld)]) ); // Compute lowest distance for ( i = 0; i < ld; i++ ) { d = ( (xc-Values[index2D(i,0,ld)] )*( xc-Values[index2D(i,0,ld)]) ) + ( (yc-Values[index2D(i,1,ld)] )*( yc-Values[index2D(i,1,ld)]) ); if ( md > d ) { md = d; } } np = 0; v = 0.0; // Compute nearest value for ( i = 0; i < ld; i++ ) { d = ( (xc-Values[index2D(i,0,ld)] )*( xc-Values[index2D(i,0,ld)]) ) + ( (yc-Values[index2D(i,1,ld)] )*( yc-Values[index2D(i,1,ld)]) ); if ( md == d ) { // add contributed value np = np + 1; v = v + Values[index2D(i,2,ld)]; } } // mean value v = v / (double)np; return(v); } // end NearestValue int main( int argc, char *argv[]) /* Cooling_grid */ { #include time_t t0, t1; time(&t0); fprintf(stdout,"Starting at: %s", asctime(localtime(&t0))); InitGrid("Cooling.inp"); // TheorSlope(TSlopeLength,3) FieldDistribution(); // FieldCoord(Xdots,Ydots,2), FieldWeight(Xdots,Ydots) SensiblePoints(Sreal,Simag,Rreal,Rimag,MaxIters); // MeasuredValues(:,3), FieldWeight(Xdots,Ydots) -> FieldValues(Xdots,Ydots,2) FieldInit(); // FieldValues(Xdots,Ydots,2) Cooling(TimeSteps); time(&t1); fprintf(stdout,"Ending at: %s", asctime(localtime(&t1))); fprintf(stdout,"Computations ended in %lf seconds\n",difftime(t1,t0)); fprintf(stdout,"End of program!\n"); return(0); } // end Cooling_grid