
Profiling

P.Dagna, M.Cremonesi

May 2016

Introduction

A serial or parallel program is normally composed by a large

number of procedures.

To optimize and parallelize a complex code it is fundamental to

find out the parts where most of time is spent.

Moreover is very important to understand the graph of

computation and the dependencies and correlations between

the different sections of the code.

Introduction

For a good scalability in parallel programs, it’s necessary to have

a good load and communication balancing between

processes.

To discover the hotspots and the bottlenecks of a code and find

out the best optimization and parallelization strategy the

programmer can follow two common methods:

� Manual instumentation inserting timing and collecting

functions (not so easy)

� Automatic profiling using profilers (easier and very powerful)

Measuring execution time

Both C/C++ and Fortran programmers are used to instrument the
code with timing and printing functions to measure, collect or
visualize the time spent in critical or computationally intensive
code sections.

�Fortran77

�etime(),dtime()

�Fortran90

�cputime(), system_clock(), date_and_time()

� C/C++

� clock()

Measuring execution time

This kind of measurements are affected by:

� Intrusivity

�Granularity

�Reliability

�Overhead

Very difficult task for third party complex codes

Measuring execution time

C example:

#include <time.h>

clock_t time1, time2;

double dub_time;

…

time1 = clock();

for (i = 0; i < nn; i++)

for (k = 0; k < nn; k++)

for (j = 0; j < nn; j ++)

c[i][j] = c[i][j] + a[i][k]*b[k][j];

time2 = clock();

dub_time = (time2 - time1)/(double) CLOCKS_PER_SEC;

printf("Time -----------------> %lf \n", dub_time);

Measuring execution time

Fortran example:

real(my_kind), intent(out) :: t

integer :: time_array(8)

…

call date_and_time(values=time_array)

t1 = 3600.*time_array(5) + 60.*time_array(6) + &

& time_array(7) + time_array(8)/1000.

do j = 1,n

do k = 1,n

do i = 1,n

c(i,j) = c(i,j) + a(i,k)*b(k,j)

enddo

enddo

enddo

call date_and_time(values=time_array)

t2 = 3600.*time_array(5) + 60.*time_array(6) + &

& time_array(7) + time_array(8)/1000.

write(6,*) t2-t1

Profilers

There are many versions of commercial profilers, developed by manufacturers

of compilers and specialized software house. In addition there are free

profilers, as those resulting from the GNU, TAU or Scalasca project.

Tau Performance System

- University of Oregon

Scalasca

-Research Centre Juelich
PGPROF

Intel® VTune™ Amplifier

OPT
GNU gprof

PerfSuite

– National Center for Supercomputing Applications

Profilers

Profilers allow the programmer to obtain very useful information

on the various parts of a code with basically two levels of

profiling:

• Subroutine/Function level

• Construct/instruction/statement level

Profilers

• Subroutine/Function level

– Timing at routine/function level, graph of computation

flow

– less intrusive

– Near realistic execution time

• Construct/instruction/statement level

– capability to profile each instrumented statement

– more intrusive

– very accurate timing information

– longer profiling execution time

GNU Profiler

The GNU profiler “gprof” is an open-source tool that allows
profiling of serial and parallel codes.

Code is automatically instrumented by the compiler when using
the –pg flag, during the execution:

– the number of calls and the execution time of each
subroutine is collected

– a call graph containing dependences between
subroutines is implemented

– a binary file containing above information is generated
(gmon.out)

GNU Profiler

Using data contained in the file gmon.out, gprof is able to give
precise information about:

1. the number of calls of each routine

2. the execution time of a routine

3. the execution time of a routine and all the child routines
called by that routine

4. a call graph profile containing timing information and
relations between subroutines

GNU Profiler

GNU profiler how to:

• Recompile source code using compiler profiling flag:

gcc/g++ –pg source code

gfortran –pg source code

• Run the executable to allow the generation of the files

containing profiling information:

o At the end of the execution in the working directory will

be generated a specific file generally named “gmon.out”

containing all the analytic information for the profiler

• Produce analysis results:

gprof executable gmon.out

Example
#include<stdio.h>

double add3(double x) {
return x+3; }

double mysum(double *a, int n) {
double sum=0.0;
for(int i=0;i<n;i++)

sum+=a[i]+add3(a[i]);
return sum; }

double init(double *a,int n) {
double res;
for (int i=0;i<n;i++) a[i]=(double)i/(double)1000;
res=mysum(a,n);
return res; }

int main(){
double res,mysum;
int n=20000;
double a[n];

for (int i=0;i<n;i++){
res=init(a,n);

}
printf("Result %f\n",res);

return 0;}

Profiler output

Execute these commands to produce profiler output:

gcc -std=c99 -pg 0601-Gprof_example.c

time ./a.out

gprof a.out

Profiler output

The profiler gprof produces two kinds of statistical output: “flat

profile” and “call graph profile”.

According to previous example flat profile gives the following
information:

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

57.37 2.65 2.65 20000 132.52 227.75 init

33.16 4.18 1.53 20000 76.59 95.23 mysum

8.07 4.56 0.37 400000000 0.00 0.00 add3

Flat profile

The meaning of the columns displayed in the flat profile is:

• % time: percentage of the total execution time your program spent in this

function

• cumulative seconds: cumulative total number of seconds the computer

spent executing this functions, plus the time spent in all the functions

above this one in this table

• self seconds: number of seconds accounted for by this function alone.

• calls: total number of times the function was called

• self us/calls: represents the average number of microseconds spent in

this function per call

• total us/call: represents the average number of microseconds spent in

this function and its descendants per call if this function is profiled, else

blank

• name: name of the function

Call Graph
Call Graph Profile: gives more detailed timing and calling
sequence information through a dependency call graph.

Call graph (explanation follows)

granularity: each sample hit covers 2 byte(s) for 0.21% of 4.66 seconds

index % time self children called name

2.65 1.90 20000/20000 main [2]

[1] 97.8 2.65 1.90 20000 init [1]

1.53 0.37 20000/20000 mysum [3]

<spontaneous>

[2] 97.8 0.00 4.56 main [2]

2.65 1.90 20000/20000 init [1]

1.53 0.37 20000/20000 init [1]

[3] 40.9 1.53 0.37 20000 mysum [3]

0.37 0.00 400000000/400000000 add3 [4]

0.37 0.00 400000000/400000000 mysum [3]

[4] 8.0 0.37 0.00 400000000 add3 [4]

Line level profiling

If necessary it’s possible to profile single lines or blocks of code

with the “gcov” tool to see:

– lines that are most frequently accessed

– computationally critical statements or regions

NOTES:

- gcov is compatible only with code compiled with GNU

compilers

- use low level optimization flags.

Line level profiling

Line level profiling with gcov requires the following steps

– compile with -fprofile-arcs -ftest-coverage

At the end of compilation files *.gcno will be produced

– Run the executable. The execution will produce *.gcda

files

– Run gcov: gcov [options] sourcefiles

– At the end of execution a specific file with extension

*.gcov will be present in the working directory. It

contains all the analytic information for the profiler

Example
#include <stdlib.h>
#include <stdio.h>

int prime (int num);
int main() {

int i;
int cnt = 0;
for (i=2; i <= 1000000; i++)

if (prime(i)) {
cnt++;
if (cnt%9 == 0) {

printf("%5d\n",i);
cnt = 0;

} else
printf("%5d ", i);

}
putchar('\n');
if (i<2) printf("OK\n");
return 0; }

int prime (int num) {
int i;
for (i=2; i < num; i++)

if (num %i == 0) return 0;
return 1; }

Profiler output

Execute these commands to produce line level profiler output:

gcc -std=c99 -fprofile-arcs -ftest-coverage \

gprof_prime.c -lm

./a.out >& primes.log

gcov gprof_prime.c

more gprof_prime.c.gcov

Example
Routine level profiling produces the following information:

call-graph output:

How is time effectively spent in routine prime??

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call us/call name

100.99 109.74 109.74 999999 109.74 109.74 prime(int)

granularity: each sample hit covers 2 byte(s) for 0.01% of 109.74 seconds

index % time self children called name

[1] 100.0 0.00 109.74 main [1]

109.74 0.00 999999/999999 prime(int) [2]

109.74 0.00 999999/999999 main [1]

[2] 100.0 109.74 0.00 999999 prime(int) [2]

Example

-: 1:#include <stdlib.h>
-: 2:#include <stdio.h>
-: 3:
-: 4:int prime (int num);
-: 5:
1: 6:int main()
-: 7: {
-: 8: int i;
1: 9: int cnt = 0;

1000000: 10: for (i=2; i <= 1000000; i++)
999999: 11: if (prime(i)) {
78498: 12: cnt++;
78498: 13: if (cnt%9 == 0) {
8722: 14: printf("%5d\n",i);
8722: 15: cnt = 0;

-: 16: }
-: 17: else

69776: 18: printf("%5d ", i);
-: 19: }
1: 20: putchar('\n');
1: 21: if (i<2)

#####: 22: printf("OK\n");
1: 23: return 0;
-: 24: }
-: 25:

999999: 26:int prime (int num) {
-: 27: /* check to see if the number is a prime? */
-: 28: int i;

37567404990: 29: for (i=2; i < num; i++)
37567326492: 30: if (num %i == 0) return 0;

78498: 31: return 1;
-: 32: }

Example

Line level profiling shows that most of time is spent in the for
loop and in the if construct contained in the prime
function.

� Let’s check for a more efficient algorithm.

If a number “n” is not a prime, it can be factored into two
factors “a” and “b” : n = a*b

If both a and b were greater than the square root of n, a*b
would be greater than n.

At least one of the factors must be less or equal to the square
root of n, and to check if n is prime, we only need to test for
factors less than or equal to the square root.

Example

int prime (int num) {

/* check to see if the number is a prime? */

int i;

for (i=2; i <= faster(num); i++)

if (num %i == 0)

return 0;

return 1;

}

int faster (int num) {

return (int) sqrt((float) num);

}

Example
1: 7:int main(){
-: 8: int i;
1: 9: int colcnt = 0;

1000000: 10: for (i=2; i <= 1000000; i++)
999999: 11: if (prime(i)) {
78498: 12: colcnt++;
78498: 13: if (colcnt%9 == 0) {
8722: 14: printf("%5d\n",i);
8722: 15: colcnt = 0;

-: 16: }
-: 17: else

69776: 18: printf("%5d ", i);
-: 19: }
1: 20: putchar('\n');
1: 21: return 0;
-: 22: }
-: 23:

999999: 24: int prime (int num) {
-: 25: int i;

67818902: 26: for (i=2; i <= faster(num); i++)
67740404: 27: if (num %i == 0)

921501: 28: return 0;
78498: 29: return 1;

-: 30: }
-: 31:

67818902: 32: int faster (int num)
-: 33: {

67818902: 34: return (int) sqrt((float) num);
-: 35: }

Results

0.96 sec Vs 109.67 sec

10^7 operations VS 10^10 operations

gprof execution time impact

• Routine level and above all line level profiling can cause a overhead in

execution time:

• Travelling Salesman Problem (TSP):

g++ -pg –o tsp_prof tsp.cc

g++ -o tsp_no_prof tsp.cc

• Execution time

time ./TSP.noprof

10.260u 0.000s 0:10.26 100.0%

time ./TSP.prof

15.480u 0.020s 0:15.87 97.6%

• Be careful when you have to choose input dataset and configuration for

profiling

Real case Air Pollution Model

• Model structure and call graph

• Fluid dynamics equations are solved over a 3D grid

cgae
(main)

Setup

Comp (contains the

main loop over time steps

end calls computing and

I/O routines)

Minor computing

routines

Opspltae

Output

Units

Horizae

Horizae

Units

Ztrans

Phfact

Chemnew

Aero_iso

Loop 500 over

X-Y grid cells

Fin (finalization)

Loop over time steps (24

time steps in a day of

simulation)

Real case Air Pollution Model

• Profiling with GNU profiler (call graph)

• 5 days of simulation. Only the computationally intensive routines of the model are shown

• Dependency call graph of “opspltae” routine

Real case air pollution model
parallelization strategy

• Opspltae is called every time step by “comp” and calls

chemnew,horizae,ztrans,aero_iso,phfact and

units routines. In these routines is spent 92,6% of simulation

time.

• The rest of time is spent for initialization, finalization and I/O

operations which are not parallelizable or which parallelization

doesn’t make sense for.

Real case air pollution model
parallelization strategy

• Ideal speedup obtainable according to profiler output is:

N

P
P

NS

+−

=

)1(

1
)(14)(=NS

• Results

• Real speedup : 7.6 � Why?

Real case air pollution model
parallelization strategy

N

P
P

NS

+−

=

)1(

1
)(14)(=NS

• Results

• Real speedup : 7.6 �

0

2

4

6

8

10

12

14

16

S(N)

S(N)

Parallel codes profiling with gprof

GNU profiler can be used to profile parallel codes too but analysis is not

straightforward. To profile parallel codes the user must follow these steps:

• Set the environment variable GMON_OUT_PREFIX:

export GMON_OUT_PREFIX=“profile_data_file”

• Compile with “–p” flag:

mpic++/mpicc/mpif70/mpif90 –p filenames

• Run the executable: mpirun –np number executable

In the working directory at the end of simulation as many

profile_data_file.pid files will be present as many MPI or

OpenMP processes were used.

Each profiling file must be analyzed individually and the results have to be

matched together:

gprof ./executable profile_data_file.pid

SCalable performance Analysis of
LArge SCale Applications

SCALASCA is a toolset for performance analysis of

parallel applications on a large scale

It manages MPI, OpenMP, MPI+OpenMP programs

See an introduction at https://hpc-

forge.cineca.it/files/ScuolaCalcoloParallelo_WebDAV/pu

blic/anno-2014/23_summer_school/debug_prof.pdf.zip

