Numerical libraries

Exercises
M.Cremonesi

May 2016

SuperComputing Applications and Innovation

Library installation

As a beginning effort try download and install LAPACK from NETLIB:

- Download from http://www.netlib.org/lapack/lapack3.5.0.tgz
- Configure make.inc (just copy make.inc.example for GNU compilers)
- cd SRC
- Run make
- cd ../lapacke
- Run make
- cd ../BLAS/SRC
- Run make

E1 - exercise - Matrix Multiply

It should be straightforward, although usually rather inefficient to implement a matrix multiplication routine. Try doing it and later add an alternative implementation that uses the BLAS routine:

FUNCTION DDOT(N,X,INCX,Y,INCY) RESULT(XtY)

```
REAL(8) :: XtY ! Y transpose
INTEGER, INTENT(IN) :: N, INCX, INCY
REAL(8), DIMENSION(:), INTENT(IN) :: X,Y
```

END FUNCTION DDOT

Source code: MatrMult

E2 - example - Rotation

Wallace Givens was a researcher at Argonne National Laboratory when he introduced the so called Givens rotation algorithm, a rotation in the plane that is useful for transforming matrices in linear algebra computations.

The BLAS library contains routines to compute plane rotations and we could use them with the goal of rotating geometrical figures.
As an example, given a matrix PLANE(:,:) that represents a rectangle in a bidimensional plane and a set of points within the rectangle that defines a figure, at first we compute the angular parameters of the rotation, given by c $=\cos (\theta)$ and $s=\sin (\theta)$, then we calculate the result of the rotation applied to the figure.

The routine IntData2pgm() will help to visualize the rotated figure.

Source code: Rotation

SuperComputing Applications and Innovation

Matrix norms

Consider \mathcal{F} to be the space of Real or Complex numbers and $\mathcal{F}_{\mathrm{m}, \mathrm{n}}$ the space of matrices with MxN elements belonging to \mathcal{F}. A matrix norm is a function $\|\|:. \mathscr{F}_{\mathrm{m}, \mathrm{n}}->\mathcal{F}$ with the following properties:

- $\|A\|=0$ iff $A=0$
- $\|A\|>=0$
- $\| x \cdot A| |=|x| \cdot| | A| |$
- $\|A+B\|<=\|A\|+\|B\|$

With: $\mathrm{A}, \mathrm{B} \in \mathcal{F}_{\mathrm{m}, \mathrm{n}} ; \mathrm{X} \in \mathcal{F}$

Matrix norms

It follows that $\left(A, B \in \mathcal{F}_{\mathrm{m}, \mathrm{n}} ; \mathrm{x}, \mathrm{y} \in \mathcal{F}\right)$:

- $|x| \cdot||A||^{\prime}<=|x| \cdot| | A| |^{\prime \prime}<=|y| .||A||^{\prime} \quad$ [equivalence of matrix norm]
- $\|\|:. \mathscr{F}_{\mathrm{m}, \mathrm{n}}->\mathcal{F}$ is a continuous function

Relevant norms:
$\|A\|_{1}=\operatorname{Max}_{1<=j<=N} \operatorname{Sum}_{1<=\mathrm{i}<=\mathrm{M}}\left|\mathrm{A}_{\mathrm{i}, \mathrm{j}}\right|$ [max abs sum col elements]
$\|\left. A\right|_{\infty}=$ Max $_{1<=i<=M} S_{1<=j<=N}\left|A_{i, j}\right|$ [max abs sum row elements]
$\|A\|_{2}=\operatorname{SQRT}\left(\right.$ Sum $\left._{1<=i<=M, 1<=j<=N}\left|A_{i, j}^{2}\right|\right)$ [sqrt(sum squares)]

Condition number

A system of linear equations is solved when a vector $x \in \mathscr{F}_{n}$ is found such that $A \cdot x=b$ for given $A \in \mathscr{F}_{n, n}$ and $b \in \mathscr{F}_{n}$.

Suppose that $A \cdot y=b+e$ for a given $\mathrm{e}:\|e\| \ll\|b\|$

It follows that $\|y-x\|=\left\|A^{-1} \cdot \mathrm{e}\right\|$ and

$$
\underline{\|y-x\| /\|x\|}=\underline{\left\|A^{-1} \cdot e\right\| /\left\|A^{-1} \cdot b\right\|}=\left\|A^{-1}\right\| \cdot\|A\|=K(A)
$$

$$
\|e\| /\|b\| \quad\|e\| /\|b\|
$$

Condition number

$K(A)$ is the condition number with respect to the inversion of the matrix A or simply the condition number of A.

The value of the condition number depends on the used norm but, since matrix norms are equivalent, the order of magnitude of the condition numbers are similar.

The condition number gives a hint of how accurate is the solution of a linear system or how fast the solution varies as rhs values change.

E3 - exercise - Condition number

It can be demonstrated that $1<=\mathrm{K}(\mathrm{A})<=\infty$
The nearest $K(A)$ is to 1 the more precise is the solution.
As an exercise a program could be written that calculates the condition number of a real NxN matrix A .

To do this the function DGECON of the LAPACK library can be used. Other useful functions are: DGETRF (LAPACK), DASUM (BLAS)

Example code: CondNumber

E3 - exercise - Condition number

FUNCTION DASUM(N, X, INCX) RESULT(S)
! Sum of absolute values of a vector INTEGER, INTENT(IN) :: N, INCX REAL(8), DIMENSION(N), INTENT(IN) :: X REAL(8) :: S

END FUNCTION DASUM

E3 - exercise - Condition number

SUBROUTINE DGETRF (M, N, A, LDA, IPIV, INFO)
! Matrix factorization
INTEGER, INTENT(IN) :: M, N, LDA
REAL(8), dimension(LDA, N), INTENT(IN OUT) :: A
INTEGER, dimension(*), INTENT(OUT) ::IPIV
INTEGER, INTENT(OUT) :: INFO
END SUBROUTINE DGETRF

E3 - exercise - Condition number

SUBROUTINE DGECON (NORM, N, A, LDA, ANORM, RCOND, WORK, \&
\& IWORK, INFO)
! Reciprocal of the condition number of a general real matrix A CHARACTER(1), INTENT(IN) :: NORM ! May be " 1 " or "I" INTEGER, INTENT(IN) :: LDA, N

REAL(8), DIMENSION(LDA, N), INTENT(IN) :: A
REAL(8), INTENT(IN) :: ANORM
REAL(8), INTENT(OUT) :: RCOND
REAL(8), DIMENSION(4*N), INTENT(IN OUT) :: WORK
INTEGER, DIMENSION(N), INTENT(IN OUT) :: IWORK
INTEGER, INTENT(OUT) :: INFO
END SUBROUTINE DGECON

E4 - example - Linear equation

Let us take into consideration the following equation in the $[(1,1),(1,2),(2,2),(2,1)] 2 D-s q u a r e:$

$$
\partial^{2} F(x, y) / \partial x^{2}+\partial^{2} F(x, y) / \partial y^{2}=x+y
$$

The exact solution is $F(x, y)=\left(x^{3}+y^{3}\right) / 6$
Let us pretend we do not know the exact solution but we know the values of the function on the perimeter of the square only and we are interested in computing the value of the function in a sufficient number of points within the square.

A finite difference approach could be easily implemented.

SuperComputing Applications and Innovation

E4 - example - Linear equation

$\partial^{2} \mathrm{~F}(\mathrm{x}, \mathrm{y}) / \partial \mathrm{x}^{2}$ approximated by $[\mathrm{F}(\mathrm{x}+\mathrm{dx}, \mathrm{y})+\mathrm{F}(\mathrm{x}-\mathrm{dx}, \mathrm{y})-2 * \mathrm{~F}(\mathrm{x}, \mathrm{y})] / \mathrm{dx} \mathrm{x}^{2}$

$$
\begin{aligned}
\partial^{2} F(x, y) / \partial x^{2}+\partial^{2} F(x, y) / \partial y^{2}=>[F(x+d x, y) & +F(x-d x, y)+F(x, y+d y)+ \\
& \left.+F(x, y-d y)-4^{*} F(x, y)\right] / d x^{2}
\end{aligned}
$$

SuperComputing Applications and Innovation

E4 - example - Linear equation

- Divide the square in NxN grid cells
- Inner points represent the unknown values. $\mathrm{LA}=(\mathrm{N}-1)^{*}(\mathrm{~N}-1)$
- $A(L A, L A)$ matrix (finite difference coefficients) and B(LA) RHS vector (rhs $x+y$ value and peripheral values) can be generated.

E4 - example - Linear equation

- The program could be designed as follow:
- Memorize inner point coords in Points(LA,2) vector
- Build A(LA,LA) matrix
- Build $B(L A)=(x+y) /\left(d x^{*} d y\right)-p ; p=s u m$ values peripheral points
- Factorize matrix: A => L•U
- Solve the system
- Compare computed solution to exact known solution
- Source code: LinearEquation

E5 - exercise - Band matrix

In the previous example a matrix has been generated to solve a PDE equation in a 2D-square. Grid points that are related each other may be a dimension length far each other
$=>A$ is a band matrix

SuperComputing Applications and Innovation

E5 - exercise - Band matrix

- Matrix $A(L A, L A), L A=(N-1) *(N-1)$ of former example should have lower and upper bands with length N .
- Try modifying the source code in order to use Lapack routines DGBTRF and DGBTRS for band matrices.
- Source code: BandMatrix

E5 - exercise - Band matrix

SUBROUTINE DGBTRF(M, N, KL, KU, AB, LDAB, IPIV, INFO)
Band matrix factorization
INTEGER, INTENT(IN) :: M, N ! Rows and columns
INTEGER, INTENT(IN) :: KL, KU ! Number of lower and upper bands

REAL(8), DIMENSION(LDAB, N), INTENT(IN OUT) :: AB
INTEGER, INTENT(IN) :: LDAB ! LDAB >= $2 * K L+K U+1$
INTEGER, DIMENSION(*), INTENT(OUT) ::IPIV
INTEGER, INTENT(OUT) :: INFO
END SUBROUTINE DGBTRF

E5 - exercise - Band matrix

lapack_int LAPACKE_dgbtrf (int matrix_order, // input lapack_int m, // input: Rows lapack_int n, // input: Columns lapack_int kl, // input: Number of lower bands lapack_int ku, // input: Number of upper bands double * ab, // input/output: Matrix ab[ldab,n] lapack_int Idab, // input: LDAB $>=2 * K L+K U+1$ lapack_int * ipiv // output)

E5 - exercise - Band matrix

SUBROUTINE DGBTRS(TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, \&
\& $\quad B, L D B$, INFO)
! Solve a system of equation with band matrix
CHARACTER(1), INTENT(IN) :: TRANS ! "N" = no transpose
INTEGER, INTENT(IN) :: N, KL, KU ! Matrix order and bands
INTEGER, INTENT(IN) :: NRHS ! Right hand sides
REAL(8), DIMENSION(LDAB, N), INTENT(IN) :: AB
INTEGER, INTENT(IN) :: LDAB ! LDAB >= 2*KL+KU+1
INTEGER, DIMENSION(*), INTENT(IN) ::IPIV
REAL(8), DIMENSION(LDB,NRHS), INTENT(IN OUT) :: B
INTEGER, INTENT(IN) :: LDB
INTEGER, INTENT(OUT) :: INFO
END SUBROUTINE DGBTRS

SuperComputing Applications and Innovation

E5 - exercise - Band matrix

lapack_int LAPACKE_dgbtrs (int matrix_order, // input char trans, // input: "N" = no transpose lapack_int n, // input: Matrix order lapack_int kl, // input: Lower bands lapack_int ku, // input: Upper bands lapack_int nrhs, // input: Right hand sides const double * ab, // input: Matrix ab[ldab,n] lapack_int Idab, // input: LDAB >= $2 * K L+K U+1$
const lapack_int * ipiv, // input
double * b, // input-output: matrix b[ldb,nrhs]
lapack_int Idb // input

