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Hello world! (Fortran)

As a beginning activity let’s compile and run the Hello program, either in C or 
in Fortran.

The most important lines in Fortran code are emphasized:

PROGRAM HELLO

!$OMP PARALLEL

PRINT*,"Hello world!"

!$OMP END PARALLEL

STOP

END PROGRAM HELLO



Hello world! (C/C++)

Again, the most important lines in C code are emphasized:

#include <omp.h>

#include <stdio.h>

#include <stdlib.h>

main (int argc, char *argv[]) 

{

#pragma omp parallel 

{

fprintf(stdout," Hello world!\n");

}

return(0);

}



Hello world! (output)

If the program is executed with one thread the output is:

Hello world!

If the program is executed with four threads the output is:

Hello world!

Hello world!

Hello world!

Hello world!



Compiling notes

To compile programs that make use of OpenMP directives:

gfortran/gcc/g++ -fopenmp -o <executable> <file 1> 

… <file n>

Where: <file n> - program source files

<executable> - executable file

To start parallel execution:

export OMP_NUM_THREADS=<number_of_threads>

<executable>



E1 – exercise

By making use of the proper runtime functions try to add to the former
examples instructions for writing number of activated threads and thread ids.

The output generated by the program should look like:

Hello world from:

Thread id: 0; total number: 4

Thread id: 2; total number: 4

Thread id: 3; total number: 4

Thread id: 1; total number: 4



E2 – example – Pi by quadrature



E2 – example – Pi by quadrature

Thus the program may be sketched this way:

• (if my_rank == 0) get number of intervals for quadrature

• Iterate for computing function value in the centre of each interval

• Sum up function values

• Divide by interval range and multiply by 4

Source code: Pi_integral



E3 – exercise – Montecarlo Pi



E3 – exercise – Montecarlo Pi

Therefore the program may be written this way:

Decide how many points have to be generated

Generate random points in a squared region

Calculate how many points fall in the inscribed circle

Sum up number of points in the square

Sum up number of points in the circle

Divide the two numbers

Source code: Pi_area



E4 – example – Mandelbrot set

In 1979 Benoît Mandelbrot, who was working at Thomas J. Watson 

Research Center of IBM, was studying what would have been later 

known as Mandelbrot set. This mathematical object may be easily 

studied only by means of numerical computing, with the added 

support of computer graphics.

Defining the Mandelbrot set is quite easy: 

Given the transformation z -> z+z0
2 in the complex plane, iterate at 

each point of the circle of radius 2 centred in the origin. 

The Mandelbrot set is the set of points that do not diverge outside 

this circle. 



E4 - example – Mandelbrot set

Of course points inside the circle with radius 1 always remain in the set, but 

there is no simple rules to decide whether the other points do belong to the 

set. In fact the border of the set has fractal properties. 

The example program computes the Mandelbrot set in a given area (inside the 

radius two circle) and creates an image colored on the basis of how many 

iterations are needed to send a point outside the circle. The result is a well 

known image that can also be used to effectively check the correctness of the 

program.



E4 - example – Mandelbrot set

The image is generated in PGM or PPM formats because they are very easy to 
remember and realize.

PGM format:

Row 1 – P2

Row 2 - <rows> <columns>

Row 3 - <Maximum value>

… <point values> …

PPM format:

Row 1 – P3

Row 2 - <rows> <columns>

Row 3 - <Maximum value>

… <R G B point values> …



E4 - example – Mandelbrot set

The program could thus be sketched this way:

Define area in complex plane (squared for simplicity)

Define image size (squared for simplicity)

Define maximum iterations per point

Compute iterations for every point in the square

Produce image

Parallel computation may be implemented by domain decomposition or loop 

distribution.

Source code: Mandel



E5 – exercise – Matrix multiply

Matrix row-column multiply is an example of program that can be easily 

parallelized. 

Given the matrices A(L,M), B(M,N), C(L,N) try writing a OpenMP program that 

computes C = A x B

The program could be written this way:

Decide matrix sizes

Parallel computation by distributing loops iterations

Source code: MatrMult



E6 – exercise – Heat equation

The distribution of heat over time is described by the so called heat equation: 

𝑑𝑓

𝑑𝑡
= 𝛂(

𝑑2𝑓

𝑑𝑥2
+ 
𝑑2𝑓

𝑑𝑦2
) for a function f(x,y,t).

This formula may be discretized in a regular grid G(:,:) by computing the new 

value G1(x,y) in a point (x,y) at each time step as:

G1(x,y) = G(x,y) + CX * ( G(x+1,y) + G(x-1,y) - 2.0 * G(x,y))

+ CY * ( G(x,y+1) + G(x,y-1) - 2.0 * G(x,y))

For each point in the grid the next value depends on the values of the four up 

and down, left and right adjacent points.

Source code: Heat



E7 – exercise – Atomic

• In the sources “atomic_ser.c” and “atomic_ser.f90” race 
conditions may happen if we are going to parallelize the loop 
contained in the “atomix_example” routine.

• Try to parallelize the loop and avoid race conditions 
(simultaneous updates of an element of x by multiple threads) 
by using the atomic construct .

• Try to parallelize the code using OpenMP directives 



E8 – exercise – Fibonacci

• The Fibonacci Sequence is the series of numbers:

– 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

• The next number is found by adding up the two numbers 
before it.

• The source code “fibonacci_ser.c” or “fibonacci_ser.f90” 
compute the Fibonacci sequence in a serial way using a 
recursive function.

• Try to parallelize the code using OpenMP directives 


