
Introduction to
parallel computing

P. Ramieri

May 2016

What is Parallel Computing?

Traditionally, software has been written for serial computation:

• To be run on a single computer having a single Central

Processing Unit (CPU);

• A problem is broken into a discrete series of instructions.

• Instructions are executed one after another.

• Only one instruction may execute at any moment in time.

What is Parallel Computing?

Parallel computing is the simultaneous use of multiple compute

resources to solve a computational problem:

• A problem is broken into discrete parts that can be solved

concurrently

• Instructions from each part execute simultaneously on

different CPUs

Compute resources

The compute resources might be:

• A single computer with multiple processors;

• An arbitrary number of computers connected by a

network;

• A combination of both.

Why Use Parallel Computing?

Save time and/or money:

in theory, more resources we use, shorter the time to finish, with potential

cost savings.

Solve larger problems:

when the problems are so large and complex, it is impossible to solve them

on a single computer. For example: the so called "Grand Challenge" problems

requiring PetaFLOPS and PetaBytes of computing resources.

(en.wikipedia.org/wiki/Grand_Challenge)

Limits to serial computing: there are physical and practical reasons:

• Transmission speeds

• Limits to miniaturization

• Economic limitations

Why computing power is never
enough?

Many scientific problems can be tackled only by increasing

processor performances.

Highly complex or memory greedy problems can be solved only

with greater computing capabilities:

• Weather modelling

• Protein analysis

• Medical drugs research

• Energy research

• Huge data amount analysis

TOP500

http://www.top500.org/

Flynn's Taxonomy

There are different ways to classify parallel computers. One of the more

widely used classifications, in use since 1966, is called Flynn's Taxonomy.

S I S D = Single Instruction, Single Data

S I M D = Single Instruction, Multiple Data

M I S D = Multiple Instruction, Single Data

M I M D = Multiple Instruction, Multiple Data

Single Instruction, Single Data
(SISD)

• Classical von Neumann architecture: serial computer

• Single Instruction: Only one instruction is executed by the CPU during any

one clock cycle

• Single Data: Only one data stream is being used as input during any one

clock cycle

• This is the oldest and the most common type of computer

• Examples: older generation mainframes and workstations; most modern

day PCs.

Single Instruction, Multiple Data
(SIMD)

• A type of parallel computer

• Single Instruction: All processing units execute the same instruction at any

given clock cycle

• Multiple Data: Each processing unit can operate on a different data

element

• Best suited for specialized problems characterized by a high degree of

regularity, such as graphics/image processing.

• Most modern computers, particularly those with graphics processor

units (GPUs) employ SIMD instructions and execution units.

Multiple Instruction, Single Data
(MISD)

• A type of parallel computer

• Multiple Instruction: Each processing unit operates on the

data independently via separate instruction streams.

• Single Data: A single data stream is fed into multiple

processing units.

• Few actual examples of this class of parallel computer have

ever existed.

Multiple Instruction, Multiple Data
(MIMD)

• A type of parallel computer

• Multiple Instruction: Every processor may be executing a different

instruction stream

• Multiple Data: Every processor may be working with a different data

stream

• Currently, the most common type of parallel computer - most modern

supercomputers fall into this category.

• Note: many MIMD architectures also include SIMD execution sub-

components

Multiple Instruction, Multiple Data
(MIMD)

GALILEO Cluster

Concepts and Terminology

• Shared Memory = a computer architecture where all processors have

direct access to common physical memory. Also, it describes a model

where parallel tasks can directly address and access the same logical

memory locations.

• Distributed Memory = network based memory access for physical

memory that is not common. As a programming model, tasks can only

logically "see" local machine memory and must use communications to

access memory on other machines where other tasks are executing.

Shared Memory Distributed Memory

Concepts and Terminology

• Communications = parallel tasks typically need to exchange

data. There are several ways to do that: through a shared

memory bus or over a network.

• Synchronization = the coordination of parallel tasks in real

time, very often associated with communications. Usually

implemented by establishing a synchronization point where a

task may not proceed further until another task(s) reaches the

same or logically equivalent point. Synchronization can cause

an increase of the wall clock execution time.

Concepts and Terminology

Speedup

Speedup of a code which has been parallelized, defined as:

Wall-clock time (serial execution) / wall-clock time (parallel execution)

It is used as an indicator for a parallel program's performance.

Parallel Overhead = the amount of time required to coordinate parallel tasks.

Parallel overhead can include factors such as:

• Task start-up time

• Synchronizations

• Data communications

• Software overhead imposed by parallel compilers, libraries, tools,

operating system, etc.

• Task termination time

Concepts and Terminology

• Massively Parallel = refers to the hardware that comprises a given parallel

system - having many processors.

• Embarrassingly Parallel = solving many similar, but independent tasks

simultaneously; it needs just few coordination between the tasks.

• Scalability = the ability of a parallel system to proportionate increase in

parallel speedup with the addition of more processors. Factors that

contribute to scalability include:

– Hardware: memory-cpu bandwidths and network communications

– Application algorithm

– Parallel overhead

Parallel programs

Generally speaking a program parallelisation implies a subdivision of the

problem model.

After subdivision the computing tasks can be distributed among more

processes.

Two main approaches may be distinguished:

• Thread level parallelism

• Data level parallelism

Task parallelism

Thread (or task) parallelism is based on parting the operations of the

algorithm.

If an algorithm is implemented with series of independent operations these

can be spread throughout the processors thus realizing program

parallelisation.

begin

end

task 1

task 2

task 3

task 4

cpu

1

cpu

2

cpu

3

cpu

4

Data parallelism

Data parallelism means spreading data to be computed through the

processors.

The processors execute merely the same operations, but on diverse data sets.

This often means distribution of array elements across the computing units.

begin

end

task

cpu

1

cpu

2

cpu

3

cpu

4

i<4?

data
array[4]yes

no

Parallel, concurrent, distributed

What is the difference between parallel, concurrent and distributed

programming?

A program is said to be concurrent if multiple threads are generated during

execution.

A parallel program execution is carried on by multiple, tightly cooperating

threads.

A program is distributed when indipendent processes do cooperate to

complete execution.

Anyhow there are not unique definitions and authors may give different

versions. The definitions herein cited are those held by P. Pacheco, “An

introduction to parallel programming”.

Parallel, concurrent, distributed

Based on the preceding definitions, parallel and distributed programs are

concurrent programs, because multiple independent threads are working

together to complete computation.

Often a program is said to be parallel if it is executed on computing units that

share the same memory or are elsewhere connected by a high speed

network and usually are very closed together.

Distributed programs instead are executed on processors physically

distributed in a (wide) geographical area and connected by a (not so fast)

network. Program processes are therefore considered rather independent

each other.

Processes, threads and multitasking

Operating systems are sets of programs that manage software and hardware

resources in a computer. Operating systems control the usage of processor

time, mass storage, I/O devices and other resources.

When a program execution is started, the operating system generates one or

more processes. These are instances of the computer program and contain:

• Executable machine code

• A memory area, often divided in stack, heap and other parts

• A list of computer resources allocated to enable program execution

• Security data to access hardware and software resources

• Informations on the state of the process, i.e. executing, waiting for a

resource availability, memory allocation and so on

Processes, threads and multitasking

If the operating system is able to manage the execution of multiple processes

at one time, it is said to be multitasking. On high performance parallel

computers multi-tasking is usually of the pre-emptive type, i.e. slices of CPU

time are dedicated in turn to each process, unless enough multiple

computing units are available.

This means that parallel programs can be executed by concurrent processes

and the operating system is able to manage their requests. If a computing

resource is temporarily unavailable, the requiring process is halted. Anyhow

program execution may still be carried on because time slices are granted to

the processes that have the availability of the resource.

Parallel programs launched on systems where processors share a global

memory are often executed as one process containing multiple threads,

that share the computing resources of the process including process

memory and devices.

Process interactions

Process interactions may be classified as:

• Cooperation

• Competition

• Interference

•Mutual exclusion

• Deadlock

Cooperation

This kind of interaction is predictable and desirable. Cooperating

processes exchange short signals or heavier data transfers.

Process interaction leads to synchronisation and hence to a

communication if data are transferred.

Competition

This kind of interaction is undesirable but nonetheless predictable and

unavoidable. It may happen when more processes need to access a

common resource that can not be shared (as an example updating a unique

counter). Competition may be managed with so called critical sections.

Also contending processes exchange signals and synchronize but in a way

different from cooperation.

We can distinguish direct or explicit synchronisation (coming from

cooperation) from indirect or implicit synchronisation (caused by

competition).

Interference

Interference is an unpredictable and undesirable kind of

interaction usually arising from errors in developing a parallel

program. Errors could come from interactions not required by

the implemented algorithm or from interactions not properly

handled.

This kind of interaction may show up or not depending by

process execution flowing.

Mutual exclusion

Whenever more processes should not access concurrently a

computing resource the problem of realising mutual exclusion

has to be managed. This may come up from accessing devices

such as writing a disk file or from updating a common memory

space.

This kind of problem is often solved using critical sections.

Critical sections do ensure that processes can execute the

instructions contained therein but only one at a time.

Deadlock

This undesired situation is always due to programming errors

and arises when one or more processes are compelled to wait

for something that will never happen.

Processes often enter a deadlock state if they encounter a

synchronising point while some other process follow a different

executing stream. As an example a program could contain two

distinct barriers but processes can reach both of them

concurrently.

Parallel program performance

The goal of program parallelisation is to reduce execution elapsed time. This

is accomplished by distributing execution tasks across the independent

computing units. To measure the goodness of the parallelisation effort the

time spent in execution by the sequential version of the program (i.e. the

program before parallelisation optimisation) must be compared to the time

spent by the parallelised version of the program.

Let us call Tserial the execution elapsed time of the sequential version of a

program and Tparallel the execution elapsed time of the parallel version. In

an ideal case if we run the program with p computing units (or cores):

If that is true it is said the (parallel) program has a linear speed-up.

p

T
T serial
parallel =

Speed-up and efficiency

In a real program a linear speed-up is difficult to gain. It has to be considered

that the execution flow of the sequential version of the program does not

encounter troubles that the parallel version does.

Overheads in a parallel program are introduced by simply dividing the

program execution stream. Moreover there is often need of synchronisation

and data exchange; furthermore critical sections have to be implemented.

Speed-up is defined as:

The program has a linear speed-up if S=p, where p is the number of cores

used in executing the program.

parallel

serial

T

T
S =

Speed-up and efficiency
It could be difficult to get a linear speed-up because of the overheads due to

synchronisations, communications and often because of an unbalanced

distribution of the computing tasks.

This leads to decreasing speed-up while growing the number of cores,

because each core brings added overhead.

Efficiency is said to be the ratio between speedup and number of cores:

Usually more cores are added, less efficiency is measured.

parallel

serialparallel

serial

Tp

T

p

T

T

p

S
E

⋅
=



















==

Overhead

Overheads are a significant issue in parallel programs and

strongly affect program efficiency.

If overhead delays have to be considered elapsed execution

times could be calculated according to:

overhead
serial

parallel T
p

T
T +=

Amdahl’s law

If we can analyze a program and measure the portion of code that must be

executed sequentially and the part of code that can be distributed across the

cores we are able to forsee the program speed-up.

As an example, if it would be possible to parallelize 90% of a program, the

remaining 10% of code runs sequentially; then according to Amdhal law:

Tparallel = (0.9xTserial)/p + 0.1xTserial

where p = number of available cores

If Tserial = 20 sec and p = 6, then speed-up will be: S = 20/(18/p + 2) = 4.

The time spent in the parallel portion of code decreases as the number of

cores increases. Eventually this time tends to zero, but the time spent in the

sequential part of the code still remains and strongly limits the program

speed-up.

Amdahl’s law

As a consequence Amdahl's law tells that speed-up will always be less than

1/r, where r is the sequential portion of the program.

But let us not worry too much!

In real parallel computing world we have to take account of many facets and

one of the most important is problem dimension. If we consider this we can

be interested in Gustafson's (or Gustafson-Barsis') law:

SG
p = p – a (p-1)

This formula can be applied to problems for which execution time can be kept

constant increasing parallel cores as the problem dimensions increase. This

actually applies to many real cases.

Problem dimensions

Problem dimension is important because size of data to be computed

increases the processors computing time. It is possible to lower global

elapsed time by distributing the work across more processors.

But overheads due to parallelisation stuff will not grow as much, hence

speed-up is likely to increase.

Usually, as the dimension of the problem grows, speed-up will grow as well, if

enough parallel processors are added.

Speed-up and problem dimension

Efficiency and problem dimension

Scalability

In conclusion, there are basically two ways of evaluating

scalability of a program.

If global problem dimension is fixed and efficiency does not

decrease while increasing the number of cores, then it is said

that the program is strongly scalable.

If the efficiency does not decrease when problem dimension per

processor (i.e. global dimension has to be augmented as the

number of processors increases) is kept almost unchanged, then

the program is said to be weakly scalable.

Example: ANSYS Fluent benchmarks

L3
linear scalability till 128 cpus

linear scalability till 16 cpusMedium

Large

