Energy conserving schemes in OpenFOAM

<u>Davide Modesti</u>

Matteo Bernardini

Sergio Pirozzoli

Dipartimento di Ingegneria Meccanica ed Aerospaziale "La Sapienza" Universita' di Roma

HPC Enabling of OpenFOAM for CFD Applications - Bologna, Italy April 6-8,2016

davide.modesti@uniroma1.it

Objectives

- ► Introduce the concept of "discrete energy consistency"
- Capability of different schemes/solver to satisfy the kinetic energy conservation property of Navier-Stokes equations
- Comparative study: OpenFOAM vs. other CFD solvers
- Test Cases:
 - 1. Taylor-Green flow
 - 2. Laminar flow past circular cylinder
 - 3. Turbulent flow past circular cylinder (URANS and LES)
 - 4. DNS of supersonic channel flows
 - 5. Flows with shock waves

Numerical solvers

OpenFOAM

- ► Open Source(GPL)
- Unstructured, Finite Volume(FV)
- dnsFoam, incompressible DNS PISO algorithm
- rhoCentralFoam, compressible, Kurganov and Tadmor (TVD).
- rhoEnergyFoam, novel compressible solver

Numerical solvers

OpenFOAM

- ► Open Source(GPL)
- Unstructured, Finite Volume(FV)
- dnsFoam, incompressible DNS PISO algorithm
- rhoCentralFoam, compressible, Kurganov and Tadmor (TVD).
- rhoEnergyFoam, novel compressible solver

Commercial Solver

- Proprietary
- Unstructured(FV)
- Upwinding, TVD

versità di Roma

Numerical solvers

OpenFOAM

- ► Open Source(GPL)
- Unstructured, Finite Volume(FV)
- dnsFoam, incompressible DNS PISO algorithm
- rhoCentralFoam, compressible, Kurganov and Tadmor (TVD).
- rhoEnergyFoam, novel compressible solver

Commercial Solver

- Proprietary
- Unstructured(FV)
- Upwinding, TVD

Finite Differences in-house solver

- Compressible energy-conserving
- 3D, Cartesian
- Arbitrary order of accuracy

Jniversità di Roma

Conservation principles

Kinetic energy

Conservation principles

Kinetic Energy

It is important to satisfy the conservation of the kinetic energy in the **inviscid** and **incompressible** limit, in an **unbounded domain**

Conservation principles

Kinetic Energy

It is important to satisfy the conservation of the kinetic energy in the **inviscid** and **incompressible** limit, in an **unbounded domain**

Discrete energy conservation:

the nonlinear terms in the Navier-Stokes equations:

- ► do **not** contribute to the **net** variation of kinetic energy
- do not dissipate or inject spurious energy

Is OpenFOAM energy conserving?

 OpenFOAM is not provided with any strictly energy conserving solver, neither compressible or incompressible.

Low-dissipative schemes

- Vuorinen, V., et al. "A low-dissipative, scale-selective discretization scheme for the Navier-Stokes equations." Computers & Fluids 70 (2012): 195-205.
- Vuorinen, V., et al. "On the implementation of low-dissipative Runge-Kutta projection methods for time dependent flows using OpenFOAM." Computers & Fluids 93 (2014): 153-163.

rhoEnergyFoam: Shock Capturing Capabilities

Kinetic energy and shock waves

The **kinetic energy** is **not conserved** in the presence of **shock waves**, neither in the inviscid limit:

- energy conserving scheme near the shock is conceptually wrong
- shock waves are detected with an appropriate shock sensor
- ► some amount of numerical dissipation is added near the shock

Hybrid Numerical Flux

$$\widehat{f}_{j+1/2} = \widehat{f}_{j+1/2}^{ec} + \begin{cases} 0 & \text{if ishock} = 0\\ \widehat{f}_{j+1/2}^{AUSM} & \text{if ishock} = 1 \end{cases}$$

energy conserving + dissipative part of AUSM flux

Implementation into OpenFOAM:rhoEnergyFoam

Space discretization

Energy consistent **numerical fluxes** implemented in the OpenFOAM library:

- stability without numerical dissipation
- shock capturing capabilities with hybrid energy conserving/AUSM

Time integration

Explicit fourth-order **Runge-Kutta** time integration:

► low-storage implementation, suitable for LES and DNS.

rhoEnergyFoam:

- compressible unsteady solver (subsonic and supersonic)
- exact kinetic energy conservation in the inviscid and incompressible limit
- ▶ 2nd order accurate in space, 4th order in time
- Integration with the OpenFOAM thermodynamic and turbulence libraries
- ► Suitable for DNS and LES of compressible flows.

Test case proposed by Duponcheel et al. (2008)

Initial Conditions

$$u = u_0 \sin(k_0 x) \cos(k_0 y) \cos(k_0 z)$$

$$v = -u_0 \cos(k_0 x) \sin(k_0 y) \cos(k_0 z)$$

$$w = 0$$

Time reversibility

Euler equations are time reversible, that is: $\mathbf{u}(t,\mathbf{x}) \Rightarrow -\mathbf{u}(-t,\mathbf{x})$

 $\omega_{max}/\omega_{max0}$

 $\omega_{max}/\omega_{max0}$

 $\omega_{max}/\omega_{max0}$

 $\omega_{max}/\omega_{max0}$

 $\omega_{max}/\omega_{max0}$

rhoEnergyFoam

Circular Cylinder at low Reynolds number

Regimes

Re=40, Mesh=64x64

Williamson (1996)

- $\blacktriangleright \ {\rm Re} < 49 \ {\rm stationary} \ {\rm laminar}$
- $\blacktriangleright \ 49 < Re < 190 \text{ laminar,} \\ \text{vortex shedding}$
- $\label{eq:rescaled} \bullet \ 190 < {\rm Re} < 260 \ {\rm transitional} \\ {\rm wake}$

	l/d	C_D
rhoEnergyFoam	2.40	1.54
dnsFOAM	2.36	1.53
rhoCentralFoam	1.19	1.90
Commercial	1.58	1.63
Taira et al. (2007)	2.30	1.56
Linnick et al. (2005)	2.28	1.54
Coutanceau et al. (1977)*	2.13	1.59

Circular Cylinder at low Reynolds number

rhoEnergyFoam

Re=200, Mesh=128×128

	C_D	C_L
rhoEnergyFoam	1.33 ± 0.050	± 0.66
dnsFoam	1.33 ± 0.045	± 0.69
Commercial	1.26±?	± 0.57
rhoCentralFoam	1.30±?	± 0.40
Taira et al.	1.35 ± 0.044	± 0.69
Linnick et al.*	1.34 ± 0.044	± 0.69

Flow Parameters

- $\blacktriangleright Re_D = 10^6 M_\infty = 0.1$
- ► URANS (2D) and LES (3D)
- Mesh $256 \times 256 \times 48$ $L_z = 2D$
- ▶ Ref. Catalano laccarino Moin (CIM) (2003)

Y Velocity isosurfaces

Pressure Coefficient

Pressure Coefficient

rhoEnergyFoam

Streamwise velocity in the YZ plane

Computational set-up

Parameters:

 $Re_{\tau}(=u_{\tau}h/\nu) = 220,$ $M_b(=u_b/a_w) = 1.5$

- Forcing: momentum and total energy equation, to maintain constant mass flow rate.
- ► Box dimensions: $L_x \times L_y \times L_z =$ $4\pi h \times 2h \times 4/3\pi h$
- Mesh resolution: ∆x⁺ ≈ 10, ∆y⁺ < 4, ∆z⁺ ≈ 5
 About 9 milions cells

Università di Roma

Streamwise velocity fluctuations

'ersità di Roma

Wall-normal velocity fluctuations

'ersità di Roma

Spanwise velocity fluctuations

versità di Roma

Reynolds stress

Inviscid test cases

- ► Flow past backward facing step, M_∞ = 3 (Woodward&Colella (1984))
- ► Flow past Onera M6 wing, $M_{\infty} = 0.84 \ \alpha = 3.04$ (AGARD Report 138)

Flows with shocks: backward facing step

Computational times

FD	rhoEnergyFoam	rhoCentralFoam	dnsFoam
1.0	5.9	5.9	5.1

Linear Scalability

- ▶ FD: up to 64K CPUs and more
- standard OpenFOAM solvers: up to 1K CPUs. Bottlenecks: I/O and linear solvers
- rhoEnergyFoam: ?

OpenFOAM/Commercial are **not energy-conserving** The **novel** solver **rhoEnergyFoam** guarantees:

- stability without addition of artificial dissipation
- shock capturing with hybrid energy conserving/AUSM
- ► a greater **fidelity** to the physics

Future work

- Scalability analysis of rhoEnergyFoam
- ► RANS and LES simulations of flows with shocks

Conclusions

Conclusions

