

HPC enabling of OpenFOAM[®] for CFD applications

Implementation and evaluation of DES models in OpenFOAM

06-08 April 2016, Casalecchio di Reno, BOLOGNA. <u>Valerio D'Alessandro¹</u> – v.dalessandro@univpm.it, Renato Ricci¹ – ricci@univpm.it, Sergio Montelpare² – s.montelpare@unich.it, ¹Università Politecnica delle Marche, ²Università degli Studi "G. D'Annunzio" di Chieti-Pescara.

Aim of the work

• Assess OpenFOAM code performance in Detached–Eddy Simulations (DES)

Valerio D'Alessandro / HPC enabling of OpenFOAM (® for CFD applications / HPC facilities

- Assess OpenFOAM code performance in Detached–Eddy Simulations (DES)
- Provide a contribution to the ongoing research for a better hybrid LES/RANS approach applicable to high ${\rm Re}$ flows. In particular:
 - Elliptic Relaxation based DES techniques have been careful tested and implemented in OpenFOAM
 - a quadratic constitutive relation (QCR) for Reynolds Stresses introduced in [Spalart, 2000] for RANS equations is here evaluated in SA–DES environment

- Assess OpenFOAM code performance in Detached–Eddy Simulations (DES)
- Provide a contribution to the ongoing research for a better hybrid LES/RANS approach applicable to high ${\rm Re}$ flows. In particular:
 - Elliptic Relaxation based DES techniques have been careful tested and implemented in OpenFOAM
 - a quadratic constitutive relation (QCR) for Reynolds Stresses introduced in [Spalart, 2000] for RANS equations is here evaluated in SA–DES environment
- Perform an extensive DES study of the widespread analyzed flow past a circular cylinder in sub-critical regime at Re = 3900

DES overview

DES schematic representation

- DES technique was developed by Spalart et al., [Spalart et al., 1997] on the SA model
 - It is a non-zonal RANS/LES approach;
 - Transition from RANS to LES (for DES-97) is governed by minimum wall distance and grid size $\tilde{d} = \min(d, C_{DES}\Delta)$.
- DES-97 put in evidence some practical issues (GIS, MSD and log-layer mismatch). Fixed introducing DDES/IDDES.
- Recently DES based on other turbulence models have been introduced, *i.e.* k-ω,
 - a length scale based on flow properties is used;
 - transport equation based k-SGS are solved (more physical than ν̃);

SA-DES/NLDES equations

$$\boldsymbol{\nabla} \cdot \mathbf{u} = 0, \frac{\partial \mathbf{u}}{\partial t} + \boldsymbol{\nabla} \cdot (\mathbf{u} \otimes \mathbf{u}) = -\frac{1}{\rho} \boldsymbol{\nabla} \rho + \boldsymbol{\nabla} \cdot (2\nu \mathbf{D}) + \boldsymbol{\nabla} \cdot \mathbf{B}, \frac{\partial \tilde{\nu}}{\partial t} + \boldsymbol{\nabla} \cdot (\mathbf{u}\tilde{\nu}) = c_{b1}\tilde{S}\tilde{\nu} + \frac{c_{b2}}{\sigma} \boldsymbol{\nabla}\tilde{\nu} \cdot \boldsymbol{\nabla}\tilde{\nu} + \frac{1}{\sigma} \boldsymbol{\nabla} \cdot ((\nu + \tilde{\nu}) \boldsymbol{\nabla}\tilde{\nu}) - c_{w1}f_w \left(\frac{\tilde{\nu}}{\tilde{d}}\right)^2$$

where:

$$\begin{split} \mathbf{B} &= \mathbf{R} - c_{r1} \left(\mathbf{Q} \cdot \mathbf{R} - \mathbf{R} \cdot \mathbf{Q} \right), \\ \mathbf{R} &= -\frac{2}{3} k \mathbf{I} + 2\nu_t \mathbf{D}, \quad \mathbf{Q} = 2\mathbf{\Omega} / \sqrt{\nabla \mathbf{u} : \nabla \mathbf{u}} , \\ \mathbf{D} &= \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right), \quad \mathbf{\Omega} = \frac{1}{2} \left(\nabla \mathbf{u} - \nabla \mathbf{u}^T \right), \quad S = \sqrt{2\mathbf{\Omega} : \mathbf{\Omega}} , \\ \tilde{S} &= S + \frac{\tilde{\nu}}{k^2 d^2} f_{v2}, \quad \nu_t = f_{v1} \tilde{\nu}, \quad \tilde{d} = \min \left(d, C_{DES} \Delta \right). \end{split}$$

SA–DES/NLDES equations

- $\mathbf{B} = \mathbf{R} c_{r1} \left(\mathbf{Q} \cdot \mathbf{R} \mathbf{R} \cdot \mathbf{Q} \right)$
 - it was introduced in [Spalart, 2000] for RANS equations coupled with the one-equation Spalart-Allmaras turbulence model and it allows the prediction of secondary flows
 - it is related related to the proposal of [Wilcox and Rubesin, 1980]
 - this quadratic constitutive relation is considered preliminar in the sense it uses only one of the many possible combinations of strain rate and rotation tensor
 - $c_{r1} = 0.3$ was obtained in simple boundary layer flows requiring a fair level of anistropy $\overline{u'u'} > \overline{w'w'} > \overline{v'v'}$
 - it is turbulence model independent
- the closure functions and constants of the turbulence/SGS model are standard

$$\begin{split} &\frac{\partial k}{\partial t} + \nabla \cdot \left(\mathbf{u}k\right) = \mathbb{P} - \epsilon_{DES} + \nabla \cdot \left[\left(\nu + \nu_t\right) \nabla k\right], \\ &\frac{\partial \epsilon}{\partial t} + \nabla \cdot \left(\mathbf{u}\epsilon\right) = \frac{c_{\epsilon 1}\mathbb{P} - c_{\epsilon 2}\epsilon}{T_{DES}} - \epsilon_{DES} + \nabla \cdot \left[\left(\nu + \frac{\nu_t}{\sigma_\epsilon}\right) \nabla \epsilon\right], \\ &\frac{\partial \overline{v^2}}{\partial t} + \nabla \cdot \left(\mathbf{u}\overline{v^2}\right) = kf_{DES} - 6\frac{\overline{v^2}}{k}\epsilon_{DES} + \nabla \cdot \left[\left(\nu + \nu_t\right) \nabla \overline{v^2}\right], \\ &c_L^2 \mathcal{L}_{DES}^2 \nabla^2 f - f = \frac{1}{T_{DES}} \left[\left(c_1 - 6\right)\frac{\overline{v^2}}{k} - \frac{2}{3}\left(c_1 - 1\right)\right] - c_2 \frac{\mathbb{P}}{k} \end{split}$$

- Eddy-viscosity is evaluated as: $\nu_t = c_\mu \overline{v^2} T_{DES}$
- $\overline{v^2}-f$ suppresses wall normal velocity fluctuations. This element improves the prediction of separation and reattachment
- in LES mode $\overline{v^2}$ -f DES model give a transport equation for k-SGS.
- $\overline{v^2} f$ computes a length scale based on flow properties $(k, \epsilon \text{ and } \nu)$

 L_{DES} and T_{DES} are obtained using a RANS length scale: $k^{3/2}/\epsilon$ and LES length scale: $C_{DES}\Delta$.

$$L_{DES} = \begin{cases} L_{RANS} & k^{3/2}/\epsilon < C_{DES}\Delta \\ C_{DES}\Delta & k^{3/2}/\epsilon > C_{DES}\Delta \end{cases}$$
$$T_{DES} = \begin{cases} T_{RANS} & k^{3/2}/\epsilon < C_{DES}\Delta \\ C_{DES}\Delta/\sqrt{k} & k^{3/2}/\epsilon > C_{DES}\Delta \end{cases}$$

where:

$$T_{RANS} = \min\left[\max\left[\frac{k}{\epsilon}, c_T \left(\frac{\nu}{\epsilon}\right)^{1/2}\right], \frac{0.6k}{\sqrt{6}c_{\mu}\overline{\nu^2} \left|\mathbf{D}\right|}\right], \\ L_{RANS} = \max\left[\min\left[\frac{k^{3/2}}{\epsilon}, \frac{k^{3/2}}{\sqrt{6}c_{\mu}\overline{\nu^2} \left|\mathbf{D}\right|}\right], c_{\eta} \left(\frac{\nu^3}{\epsilon}\right)^{1/4}\right]$$

$$\frac{\partial k}{\partial t} + \boldsymbol{\nabla} \cdot (\mathbf{u}k) = \mathbb{P} - \epsilon_{DES} + \boldsymbol{\nabla} \cdot [(\nu + \nu_t) \, \boldsymbol{\nabla} k]$$

$$rac{\partial k}{\partial t} + oldsymbol{
abla} \cdot (oldsymbol{u} k) = \mathbb{P} - \epsilon_{DES} + oldsymbol{
abla} \cdot [(
u +
u_t) oldsymbol{
abla} k]$$

$$\frac{\partial \epsilon}{\partial t} + \boldsymbol{\nabla} \cdot (\mathbf{u}\epsilon) = \frac{c_{\epsilon 1} \mathbb{P} - c_{\epsilon 2}\epsilon}{T_{DES}} - \epsilon_{DES} + \boldsymbol{\nabla} \cdot \left[\left(\nu + \frac{\nu_t}{\sigma_\epsilon} \right) \boldsymbol{\nabla} \epsilon \right]$$

$$rac{\partial k}{\partial t} + oldsymbol{
abla} \cdot (oldsymbol{u} k) = \mathbb{P} - \epsilon_{DES} + oldsymbol{
abla} \cdot [(
u +
u_t) oldsymbol{
abla} k]$$

$$\frac{\partial \epsilon}{\partial t} + \boldsymbol{\nabla} \cdot (\mathbf{u}\epsilon) = \frac{c_{\epsilon 1} \mathbb{P} - c_{\epsilon 2}\epsilon}{T_{DES}} - \epsilon_{DES} + \boldsymbol{\nabla} \cdot \left[\left(\nu + \frac{\nu_t}{\sigma_{\epsilon}} \right) \boldsymbol{\nabla} \epsilon \right]$$

$$\begin{split} & \frac{\partial \overline{v^2}}{\partial t} + \boldsymbol{\nabla} \cdot \left(\mathbf{u} \overline{v^2} \right) = k f_{DES} - 6 \frac{\overline{v^2}}{k} \epsilon_{DES} + \boldsymbol{\nabla} \cdot \left[\left(\nu + \nu_t \right) \boldsymbol{\nabla} \overline{v^2} \right], \\ & \text{where: } k f_{DES} = \min \left(k f, 5 \frac{\overline{v^2}}{k} \epsilon_{DES} + \frac{2}{3} \mathbb{P} \right) \end{split}$$

$$\frac{\partial k}{\partial t} + \boldsymbol{\nabla} \cdot (\mathbf{u}k) = \mathbb{P} - \epsilon_{DES} + \boldsymbol{\nabla} \cdot [(\nu + \nu_t) \, \boldsymbol{\nabla} k]$$

$$\frac{\partial \epsilon}{\partial t} + \boldsymbol{\nabla} \cdot (\mathbf{u}\epsilon) = \frac{\boldsymbol{c}_{\epsilon 1} \mathbb{P} - \boldsymbol{c}_{\epsilon 2}\epsilon}{T_{DES}} - \epsilon_{DES} + \boldsymbol{\nabla} \cdot \left[\left(\nu + \frac{\nu_t}{\sigma_{\epsilon}} \right) \boldsymbol{\nabla} \epsilon \right]$$

$$\frac{\partial \overline{v^2}}{\partial t} + \boldsymbol{\nabla} \cdot \left(\mathbf{u} \overline{v^2} \right) = k f_{DES} - 6 \frac{\overline{v^2}}{k} \epsilon_{DES} + \boldsymbol{\nabla} \cdot \left[\left(\nu + \nu_t \right) \boldsymbol{\nabla} \overline{v^2} \right],$$

where: $k f_{DES} = \min \left(k f, 5 \frac{\overline{v^2}}{k} \epsilon_{DES} + \frac{2}{3} \mathbb{P} \right)$

$$c_L^2 \mathcal{L}_{DES}^2 oldsymbol{
abla}^2 f - f = rac{1}{\mathcal{T}_{DES}} \left[(c_1-6) \, rac{\overline{v^2}}{k} - rac{2}{3} \, (c_1-1)
ight] - c_2 rac{\mathbb{P}}{k}$$

Constants and closure functions:

$$\begin{split} c_{\mu} &= 0.22, \quad \sigma_{\epsilon} = 1.3, \qquad c_{\epsilon 1} = 1.4 \left(1 + 0.045 \sqrt{k/v^2} \right), \\ c_{\epsilon 2} &= 1.9, \qquad c_1 = 1.4, \qquad c_2 = 0.3, \\ c_T &= 6, \qquad c_L = 0.23, \qquad c_{\eta} = 70, \quad C_{DES} = 0.8. \end{split}$$

- the model was introduced by [Jee and Shariff, 2014];
- constants (deriving from original RANS model) were modified and
 - in the limit of isotropic turbulence $\overline{v^2}-f$ reduces to sgs-k LES
 - $\overline{v^2}$ is statistically 2/3 k in the limit of isotropic turbulence (also kf_{DES} was modified for this purpose)

Table: Turbulent variables boundary conditions

	k	$\overline{v^2}$	ϵ	f
Initial Conditions	$10^{-3} u_{\infty}^2$	$2/3 \cdot 10^{-3} u_{\infty}^2$	$10^{-3}u_{\infty}^{3}/D$	0
Wall boundary	0	0	$\nu \partial_n^2 k$	0
Inlet boundary	0	0	$\partial_n \epsilon = 0$	$\partial_n f = 0$
Outlet boundary	$\partial_n k = 0$	$\partial_n \overline{v^2} = 0$	$\partial_n \epsilon = 0$	$\partial_n f = 0$

[Jee and Shariff, 2014] proposed a Neumann type BC for ϵ . In this work a Dirichlet BC for ϵ is used:

$$\epsilon_{\rm w} = \nu \left(\frac{\partial^2 k}{\partial n^2} \right)_{\rm w} \rightarrow \quad \epsilon_{\rm w} = 2\nu k/y^2$$

Valerio D'Alessandro / HPC enabling of OpenFOAM® for CFD applications / HPC facilities

The wall boundary condition for ϵ was introduced by [Chien, 1982] starting from $\epsilon = \nu \frac{\overline{\partial u_i}}{\partial x_j} \frac{\partial u_i}{\partial x_j}$. In particular close to the wall we have:

$$\begin{array}{l} u = a_0 + a_1 y + a_2 y^2 + \dots \\ v = b_0 + b_1 y + b_2 y^2 + \dots \\ w = c_0 + c_1 y + c_2 y^2 + \dots \end{array} \Longrightarrow \begin{cases} \frac{\partial}{\partial y} >> \frac{\partial}{\partial x} \simeq \frac{\partial}{\partial z} \\ u \simeq w >> v \\ \epsilon = \nu \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial w}{\partial y}\right)^2 \end{cases}$$

Thus is possible to estimate k and ϵ in the wall region:

$$k = \frac{1}{2} \left(\overline{a_1^2} + \overline{c_1^2} \right) y^2 + \dots \quad \epsilon = \nu \left(\overline{a_1^2} + \overline{c_1^2} \right) + \dots$$

fixing $a_1 = c_1$, we obtain: $\epsilon_w = 2\nu k/y^2$.

- This Dirichlet wall condition for ϵ is equivalent to $\epsilon = \nu \partial_n^2 k |_w$.
- The condition is easy to be coded (second order space accuracy is guaranteed)

- Laminar boundary layer
- Kelvin-Helmoltz instabilities before the turbulent region
- Von Karman vortex street in the wake region

We have computed with: SA–DES (97), SA–IDDES, NLDES, $\overline{v^2}$ –f DES

Computational Grid (finest)

- Structured non-orthogonal grid
- Rectangular domain:
 - 40 D in the wake region
 - 20 D in transverse direction
 - π D in span-wise direction
- First cell height: $2 \cdot 10^{-4} D$
- N_z = 48 cells (span-wise direction)
- No wall functions
- No perturbations added at the inlet
- $n_c = 3955200$ cells (< 4 $\cdot 10^6$)

Computational Grid

	n _c	Lz	Nz	<i>n_{c_{x,y}}</i>	Δz
G1	3955200	πD	48	82400	$6.54 \cdot 10^{-2}$
G2	494400	πD	24	20600	$1.308 \cdot 10^{-1}$
G3	659200	πD	8	82400	$3.92 \cdot 10^{-1}$
G4	$2.06 \cdot 10^{6}$	0.5 <i>D</i>	25	82400	$2 \cdot 10^{-2}$
G5	659200	0.5 <i>D</i>	8	82400	$6.25 \cdot 10^{-2}$

Table: Computational grids parameters

- G1 is our finest grid
- G2 is the coarse version of G1 $(n_{c,G1}/n_{c,G2} = 8)$
- G3 is used to study the influence resolution in z-direction
- G4 and G5 are used to used the influence of domain size in span-wise direction
- G5 and G1 have very similar span-wise resolution

Scalability

Streamlines, [Vratis Ltd, 2015]

- Cubic domain, H = 1, Re = 10;
- icoFoam solver/Lid-driven cavity;
- Structured uniformly spaced grid;
- 40 time-steps without I/O as in [Culpo, 2011];
- $\Delta t = 10^{-4};$
- Default linear-solvers:
 - PCG for *p* with DIC preconditioner;
 - smoothSolver for u (symGaussSeidel);
 - PISO correctors: 2;
- Default tolerances: $p: 10^{-6}$, **u**: 10^{-5} .

Scalability (GALILEO)

Figure: Effect of different total number of grid cells

Scalability (GALILEO)

- 10 kCells/core are suitable for about $n_c = 4 \cdot 10^6$
- 384 CPU-cores on GALILEO@CINECA for G1 (about 2 · 10⁶, finest)
- 192 CPU–cores on GALILEO@CINECA for G5 (about $2 \cdot 10^6$)
- small grids computations have been run on a small Linux–Cluster (AMD Opteron)

Valerio D'Alessandro / HPC enabling of OpenFOAM® for CFD applications / HPC facilities

Numerics

- pisoFOAM solver (2 PISO correctors)
- second order implicit time integration ($\Delta t = 10^{-3}D/u_{\infty}$)
- some div-terms:

div(phi,U)	Gauss	linear;		
div(phi,nuTilda)	Gauss	limited	lLinear	0.333;
div(nonlinearStress)	Gauss	linear	correct	ced;

div(phi,U)	Gauss	Gamma	0.15;
div(phi,k)	Gauss	Gamma	0.15;
div(phi,epsilon)	Gauss	Gamma	0.15;
div(phi,v2)	Gauss	Gamma	0.15;

- For all laplacians Gauss linear corrected
- Linear solvers:
 - PBiCG with DILU for **u**, $\tilde{\nu}$, $\overline{v^2}$, k, ϵ
 - PCG with DIC for \mathbf{p} and f
- Tolerances: 10^{-5} for p, 10^{-9} for u, $\tilde{\nu}$, $\overline{v^2}$, k, f, ϵ

Valerio D'Alessandro / HPC enabling of OpenFOAM (® for CFD applications / HPC facilities

What is the correct solution ?

Figure: Instantaneous vorticity magnitude at $t = 10^3 D/u$

Valerio D'Alessandro / HPC enabling of OpenFOAM B for CFD applications / HPC facilities

Flow past a cylinder at Re = 3900 \checkmark High Performance Computing 2016

Critical issues (for CFD and experiments)

- Shape recirculation region
- Size recirculation region
- Mean separation angle

Exp. PIV	$\langle L_r/D \rangle$
[Lourenco, 1993]	1.18
[Parnaudeau et al., 2008a]	1.51

Figure: Mean streamwise velocity

Cineca

SuperComputing Applications and Innovation

Flow past a cylinder at Re = 3900

Critical issues (for CFD and experiments)

Figure: Mean streamwise velocity

- Shape recirculation region
- Size recirculation region
- Mean separation angle

Exp. PIV	$\langle L_r/D \rangle$
[Lourenco, 1993]	1.18
[Parnaudeau et al., 2008a]	1.51

Cineca

High Performance Computing 2016

Flow past a cylinder at Re = 3900 \checkmark High Performance Computing 2016

Critical issues (for CFD and experiments)

--- $\overline{v^2}-f$ DES (G1) --- $\overline{v^2}-f$ DES (G2) \triangle Exp. [Lourenco, 1993] \bigcirc Exp. Exp. [Parnaudeau et al., 2008b]

Figure: Mean streamwise velocity

Cineca

Figure: Mean streamwise velocity

Flow past a cylinder at Re = 3900 \checkmark High Performance Computing 2016

Critical issues (for CFD and experiments)

Figure: Instantaneous vorticity magnitude

Valerio D'Alessandro / HPC enabling of OpenFOAM Tor CFD applications / HPC facilities

- Profile shape is strictly to shear layer transition
 - early transition: V-shape
 - delay transition: U-shape
- Shear layer is longer in simulations with finer grid
- Coarse grid (G2) is inadequate to resolve shear layer hence we have early transition.
- Lourenco and Shih probably had early transition (agreeement with under-resolved simulations)

What is the correct solution ?

Figure: Instantaneous vorticity magnitude at $t = 10^3 D/u$

Valerio D'Alessandro / HPC enabling of OpenFOAM B for CFD applications / HPC facilities

Valerio D'Alessandro / HPC enabling of OpenFOAM® for CFD applications / HPC facilities

Mean streamwise velocity profiles

Valerio D'Alessandro / HPC enabling of OpenFOAM (B for CFD applications / HPC facilities

- --- NLDES
- ---SA-DES
- -SA-IDDES
- $--\overline{v^2}-f$ DES
- -- LES-TKE
 - [Lysenko et al., 2012]

Cineca

High Performance Computing 2016

- ---LES-SMAG
 - [Lysenko et al., 2012]
- \triangle Exp. [Lourenco, 1993]
- □ Exp. [Ong, 1996]
- Exp. Exp.
 - [Parnaudeau et al., 2008b]

Mean transverse velocity profiles

Valerio D'Alessandro / HPC enabling of OpenFOAM (B for CFD applications / HPC facilities

- --- NLDES
- ---SA-DES
- -SA-IDDES
- $--\overline{v^2}-f$ DES
- --- LES-TKE
 - [Lysenko et al., 2012]
- ---LES-SMAG
 - [Lysenko et al., 2012]
- \triangle Exp. [Lourenco, 1993]
- □ Exp. [Ong, 1996]
- Exp. Exp.
 - [Parnaudeau et al., 2008b]

Valerio D'Alessandro / HPC enabling of OpenFOAM® for CFD applications / HPC facilities

- --- NLDES
- - -SA–DES
- <u>—SA</u>–IDDES
- $--\overline{v^2}-f$ DES
- ---- LES-TKE
 - [Lysenko et al., 2012]
- ---LES-SMAG
 - [Lysenko et al., 2012]
- \triangle Exp. [Lourenco, 1993]
- □ Exp. [Ong, 1996]
- Exp. Exp.
 - [Parnaudeau et al., 2008b]

Valerio D'Alessandro / HPC enabling of OpenFOAM® for CFD applications / HPC facilities

- ---- NLDES
- - -SA–DES
- -SA-IDDES
- $--\overline{v^2}-f$ DES
- ---- LES-TKE
 - [Lysenko et al., 2012]
- ---LES-SMAG
 - [Lysenko et al., 2012]
- \triangle Exp. [Lourenco, 1993]
- □ Exp. [Ong, 1996]
- Exp. Exp.
 - [Parnaudeau et al., 2008b]

PRACE CINECA

Figure: Force coefficients (G1 grid)

Vortical structures

Figure: $Q = 0.5 u_{\infty}^2/D^2$ at $T = 500 D/u_{\infty}$. $\overline{v^2}$ -f DES

Vortical structures

Figure: $Q = 0.5 u_{\infty}^2/D^2$ at $T = 500 D/u_{\infty}$. SA–DES

Valerio D'Alessandro / HPC enabling of OpenFOAM R for CFD applications / HPC facilities

Integrated flow quantities

	$C_{L,rms}$	$\langle C_D \rangle$	St
[Lourenco, 1993] (Exp.)	_	0.99	_
[Parnaudeau et al., 2008a] (Exp.)	_	_	0.21
[Norberg, 1994] (Exp.)	_	0.98	_
Present SA-IDDES	0.1458	1.0235	0.222
Present NLDES	0.3832	1.1751	0.217
Present SA–DES	0.4248	1.2025	0.215
Present $\overline{v^2} - f$ DES	0.1088	0.9857	0.214
[Lysenko et al., 2012] (SMAG)	0.444	1.18	0.19
[Lysenko et al., 2012] (TKE)	0.09	0.97	0.209
[Jee and Shariff, 2014] $(\overline{v^2}-f)$	_	1.0	0.214
[Jee and Shariff, 2014] (SA–DDES)	_	0.965	0.221
[Parnaudeau et al., 2008a] (LES)	_	_	0.21
[Mittal and Moin, 1997] (LES)	—	1.00	0.22
[Kravchenko and Moin, 2000] (LES)	—	1.04 🖌	≁ 0.21 ↓

Integrated flow quantities

	$-\langle C_{p,b} \rangle$	$\langle L_r/D \rangle$	$\langle \theta_{sep} \rangle$
[Lourenco, 1993] (Exp.)	_	1.18	_
[Parnaudeau et al., 2008a] (Exp.)	_	1.51	_
[Norberg, 1994] (Exp.)	0.84	_	_
Present SA–IDDES	0.878	1.427	87.0°
Present NLDES	1.037	0.911	88.99°
Present SA–DES	1.077	0.850	89.28°
Present $\overline{v^2} - f$ DES	0.829	1.678	86.40°
[Lysenko et al., 2012] (SMAG)	0.8	0.9	89°
[Lysenko et al., 2012] (TKE)	0.91	1.67	88°
[Jee and Shariff, 2014] $(\overline{v^2}-f)$	0.928	1.44	86.1°
[Jee and Shariff, 2014] (SA–DDES)	0.969	1.37	88.3°
[Parnaudeau et al., 2008a] (LES)	_	1.56	_
[Mittal and Moin, 1997] (LES)	_	1.588	87°
[Kravchenko and Moin, 2000] (LES)	0.94	1.35 🚄	≁ [~] 88° <u>×</u>

Valerio D'Alessandro / HPC enabling of OpenFOAM (R) for CFD applications / HPC facilities

1D energy spectra

Figure: x/D = 3.0

Valerio D'Alessandro / HPC enabling of OpenFOAM ® for CFD applications / HPC facilities

- Flow past a circular cylinder at $\mathrm{Re}=3900$ has been carefully computed
- The DES capabilities of OpenFOAM were investigated
- $\overline{v^2}-f$ (with a Dirichlet condition for ϵ) and NLDES have implemented and tested
 - $\overline{v^2}-f$ DES was able to obtain reliable and accurate results on this flow benchmark
 - limited benefits have been obtained from NLDES
- Future work will be devoted to test $k \omega \overline{v^2} f$ (already implemented)

Akcnowledgments: We acknowledge the CINECA Award N. HP10CV8M72 YEAR 2015 under the ISCRA initiative, for the availability of high performance computing resources and support.

Bibliography I

Chien, K. (1982).

Predictions of channel and boundary layer flows with a low-reynolds-number turbulence model. AIAA Journal, 20:33–38.

Culpo, M. (2011).

Current Bottlenecks in the Scalability of OpenFOAM on Massively Parallel Clusters. PRACE white paper, available on www.prace-ri.eu.

Jee, K. and Shariff, K. (2014).

Detached–eddy simulation based on the v^2-f model. International Journal of Heat and Fluid Flow, 46:84–101.

Kravchenko, A. and Moin, P. (2000).

Numerical studies of flow over a circular cylinder at $Re_D = 3900$. Physics of Fluids, 12(2):403–417.

Lourenco, L. e. a. (1993).

Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study. Technical Report.

Lysenko, D. A., Ertesvag, I., and Rian, K. E. (2012).

Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox. Flow, Turbulence and Combustion, 89:491–518.

Mittal, R. and Moin, P. (1997).

Suitability of upwind-biased finite difference schemes for Large–Eddy simulation of turbulent flows. AIAA Journal, 35(8):1415–1417.

Norberg, C. (1994).

An experimental investigation of flow around a circular cylinder: influence of aspect ratio. Journal of Fluid Mechanics, 258(0):287–316.

Bibliography II

12	-	

Ong, L. e. a. (1996).

The velocity field of the turbulent very near wake of a circular cylinder. Exp. Fluids, 20:441–453.

Parnaudeau, P., Carlier, J., Heitz, D., and Lamballais, E. (2008a).

Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Physics of Fluids, 20(8).

Parnaudeau, P., Carlier, J., Heitz, D., and Lamballais, E. (2008b).

Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. *Phys. Fluids*, 20.

Spalart, P. (2000).

Strategies for turbulence modelling and simulations. International Journal of Heat and Fluid Flow, 21(3):252 – 263.

Spalart, P., Jou, W., Strelets, M., and Allmaras, S. (1997).

Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In Advances in DNS/LES, 1st AFOSR Int. Conf. on DNS/LES, pages 4–8, Columbus, OH, USA. Greyden Press,.

Vratis Ltd (2015).

SpeedIT FLOW accelerates OpenFOAM. http://vratis.com/blog/.

Wilcox, D. and Rubesin, M. (1980).

Proposal in Turbulence Modelling for Complex Flow–Fields. NASA Technical Paper-1517.

