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FFD, mesh morphing & reduced order models:  
Enablers for efficient aerodynamic shape optimization 
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Motivation 

1.  Difficult to set-up (Integration) 
•  identification of parameters, parameterization itself etc 
•  totally automatized (geometry creation, pre-processing) 
•  especially critical if at advanced design 

2.  Expensive (Availability) 
•  computing resources sized for analysis 
•  licenses CAD, CFD  



Information provided by 
solver 

• Evaluate functional (Comparative) 
– Industry standard 

• Evaluate gradient (convergence, direction) 
– Advanced capabilities 

 
• Evaluate Hessian (step, local topology) 

– Cutting edge  

func'onal)

design)parameter)

uncertainty:"the"dark"side"of"CFD"
5%"error"bounds"
5%"op7miza7on"goal"



Time & Costs 

•  cost of real life RANS approx.     CHFM =2000 cpuh 
•  # of design variables     O(10) 
•  cost of computing      0.1€/cpuh 
•  cost of licenses      0 

2 Level multi-fidelity approach using response surface (neglectable cost) + HFM 
•  global optimization run O(100)  - O(1000)    2.e5 – 2.e6 cpuh 
•  computing resources O(10) – O(1000)    2. e2 – 2.e4 h 

        
 1week – 2years  :stop we you have to 
 20K€ - 200K€  :convince your management 

  
3 Level multi-fidelity approach using response surface (neglectable cost) + ROM + HFM 
•  cost of Reduced Order Model     CROM = σ CHFM 

•  global optimization run O(1000) ROM + O(10) HFM    2.e6 σ + 2.e4 cpuh 
•  necessary saving factor σ O(1month), O(10K€)   1 – 1/100 



About optimization 

•  uncertain 
i.  hope in “systematic errors” or “conservation of trends” 
ii.  what if your new prototype(!!) performs worse than original?? 
iii.  mastered by empirical knowledge 
iv.  limited basin of validity 

 
•  it takes specialized technical staff 

i.  to set all optimization parameters (parameters?, strategy) 
ii.  to build an automatic workflow (geometry??, mesh??, 1month) 
iii.  and to do some preliminary investigations (sensitivity, uncertainty) (1.5 month) 
iv.  which help you to set up the optimization run (0.5 month) 

•  very costly wrt to analysis 
i.  computing: 10x – 100x 
ii.  staff: 10x – 100x 

Automatic shape optimization is used only if strategic 



HPC view 

•  2 level parallelization 
–  concurrent jobs 
–  parallel execution of single job 
 

•  serial part of workflow 0.01-0.1*(parallel part) 
–  geometry & mesh processing 



FreeGForm)Deforma'on)&)MeshGMorphing)using)LevelGSets)



Requirements to  
geometrical engine 

Geometry represented as surface triangulation (CAD neutral) 
 
1.  parameterization of complex geometries 

–   Free-Form Deformation developed by Desideri et al @INRIA 
–  Mesh-Morphing using RBFS 

2.  constraints handling 
–   C0, C1, C2 conditions on arbitrary boundaries 
–   no-penetration condition 

3.  features & curvature based surface mesh adaptation 
–   if deformed geometry needs finer surface mesh than original geometry 



Direct morphing of surface & mesh 

•  surface constraints are handled by 
choosing wisely CPs (e.g. inner points of 
lattice, rbf nodes with given distance to 
boundaries) 

•  mesh constraints handled via limitations 
on bounds of CP 

•  very cheap, since only evaluations of 
Deformation Lattice or RBF required 

 
 
http://mathlab.sissa.it/pygem 
 
used in the final examples!! 

1.  surface deformation 
2.  mesh morphing 

•  surface constraints via topological 
information (geodesic distances) on 
surface 

•  volume constraints via computation of 
Euclidean distances 

•  expensive, since constraints are computed 
explicitly at each deformation 

•  very expensive, since mesh morphing is 
formulated as an interpolation 
(minimization) pb on surface deformation 

https://github.com/optimad/MIMMO 
http://www.optimad.it/products/camilo 

Different approaches 



explicit surface constraints 

Free-Form Deformation applies a displacement vector Ni = Si + D(Si) 

•  difficult to impose regularity  
•  conditions on an arbitrary  
•  shaped boundary Γ 

•  our approach introduces a weight function  
•  Ni = Si + w[ ϕ(Si|Γ) ] D(Si) 

•  with  w(0) = 0      for C0  condition 
•  with  w(0) = 0 , w’(0) = 0    for C1 condition 
•  with  w(0) = 0 , w’(0) = 0 , w’’(0)=0  for C2 condition 

•  ϕ(Si|Γ) must provide topological information  
•  but it is requires that ϕ(Si|Γ) is C0, C1 and C2 respectively 



topological information 1: 
exact geodesic distances 

2 • K. Crane et al.

Fig. 2. Given an exact reconstruction of the heat kernel (top left) Varadhan’s
formula can be used to recover geodesic distance (bottom left) but fails in
the presence of approximation or numerical error (middle, right), as shown
here for a point source in 1D. The robustness of the heat method stems from
the fact that it depends only on the direction of the gradient.

2. RELATED WORK
The prevailing approach to distance computation is to solve the
eikonal equation

|r�| = 1 (2)

subject to boundary conditions �|
�

= 0 over some subset � of
the domain. This formulation is nonlinear and hyperbolic, mak-
ing it difficult to solve directly. Typically one applies an iterative
relaxation scheme such as Gauss-Seidel – special update orders
are known as fast marching and fast sweeping, which are some
of the most popular algorithms for distance computation on reg-
ular grids [Sethian 1996] and triangulated surfaces [Kimmel and
Sethian 1998]. These algorithms can also be used on implicit sur-
faces [Memoli and Sapiro 2001], point clouds [Memoli and Sapiro
2005], and polygon soup [Campen and Kobbelt 2011], but only indi-
rectly: distance is computed on a simplicial mesh or regular grid that
approximates the original domain. Implementation of fast marching
on simplicial grids is challenging due to the need for nonobtuse
triangulations (which are notoriously difficult to obtain) or else a
complex unfolding procedure to preserve monotonicity of the so-
lution; moreover these issues are not well-studied in dimensions
greater than two. Fast marching and fast sweeping have asymptotic
complexity of O(n logn) and O(n), respectively, but sweeping is
often slower due to the large number of sweeps required to obtain
accurate results [Hysing and Turek 2005].

The main drawback of these methods is that they do not reuse
information: the distance to different subsets � must be computed
entirely from scratch each time. Also note that both sweeping and
marching present challenges for parallelization: priority queues are
inherently serial, and irregular meshes lack a natural sweeping order.
Weber et al. [2008] address this issue by decomposing surfaces
into regular grids, but this decomposition resamples the surface and
requires a low-distortion parameterization over a small number of
quadrilateral patches, which is difficult to obtain.

In a different development, Mitchell et al. [1987] give an
O(n2

logn) algorithm for computing the exact polyhedral distance
from a single source to all other vertices of a triangulated surface.
Surazhsky et al. [2005] demonstrate that this algorithm tends to
run in sub-quadratic time in practice, and present an approximate
O(n logn) version of the algorithm with guaranteed error bounds;
Bommes and Kobbelt [2007] extend the algorithm to polygonal
sources. Similar to fast marching, these algorithms propagate dis-
tance information in wavefront order using a priority queue, again
making them difficult to parallelize. More importantly, the amortized
cost of these algorithms (over many different source subsets �) is

Fig. 3. The heat method computes the shortest distance to a subset � of a
given domain. Gray curves indicate isolines of the distance function.

substantially greater than for the heat method since they do not reuse
information from one subset to the next. Finally, although [Surazh-
sky et al. 2005] greatly simplifies the original formulation, these
algorithms remain challenging to implement and do not immediately
generalize to domains other than triangle meshes.

Closest to our approach is the recent method of Rangarajan
and Gurumoorthy [2011], who do not appear to be aware of
Varadahn’s formula – they instead derive an analogous relation-
ship � = �

p
~ log between the distance function and solutions

 to the time-independent Schrödinger equation. We emphasize,
however, that this derivation applies only in Rn where  takes a
special form – in this case it may be just as easy to analytically invert
the Euclidean heat kernel u

t,x

= (4⇡t)�n/2e��(x,y)2/4t. Moreover,
they compute solutions using the fast Fourier transform, which lim-
its computation to regular grids. To obtain accurate results their
method requires either the use of arbitrary-precision arithmetic or a
combination of multiple solutions for various values of ~; no general
guidance is provided for determining appropriate values of ~.

Finally, there is a large literature on smoothed distances [Coifman
and Lafon 2006; Fouss et al. 2007; Rustamov et al. 2009; Lipman
et al. 2010], which are valuable in contexts where differentiability is
required. However, existing smooth distances may not be appropriate
in contexts where the geometry of the original domain is important,
since they do not attempt to approximate the original metric and
therefore substantially violate the unit-speed nature of geodesics
(Figure 10). These distances also have an interpretation in terms
of simple discretizations of heat flow – see Section 3.3 for further
discussion.

Fig. 4. Distance to the boundary on a region in the plane (left) or a surface
in R3 is achieved by simply placing heat along the boundary curve. Note
good recovery of the cut locus, i.e., points with more than one closest point
on the boundary.

Car mesh courtesy AIM@Shape.

ACM Transactions on Graphics, Vol. 32, No. 3, Article XXX, Publication date: Month 2013.

resul7ng"func7on"is"only"C0,"cannot"impose"higher"regularity"
source:"Crane"et"al.""



topological information 2: 
smoothed geodesic distances 
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we"impose"the"following"op7miza7on"problem:"
•  as"close"as"possible"to"geodesic"LS"to"keep"topology"

•  constraint"on"C2"con7nuity"

•  infinite"solu7ons"F>"smoothing"parameter""

"

this"leads"to"the"solu7on"of"1"parabolic"and"1"ellip7c"PDE"
•  sparse"direct"solver"with"reordering"is"used"

"

"



Geodesics based on  
heat kernel Geodesics in Heat:A New Approach to Computing Distance Based on Heat Flow • 3

Fig. 5. Outline of the heat method. (I) Heat u is allowed to diffuse for a
brief period of time (left). (II) The temperature gradient ru (center left) is
normalized and negated to get a unit vector field X (center right) pointing
along geodesics. (III) A function � whose gradient follows X recovers the
final distance (right).

3. THE HEAT METHOD
Our method can be described purely in terms of operations on
smooth manifolds; we explore spatial and temporal discretiza-
tion in Sections 3.1 and 3.2, respectively. Let � be the negative-
semidefinite Laplace–Beltrami operator acting on (weakly) differ-
entiable real-valued functions over a Riemannian manifold (M,g).
The heat method consists of three basic steps:

Algorithm 1 The Heat Method
I. Integrate the heat flow u̇ = �u for some fixed time t.

II. Evaluate the vector field X = �ru/|ru|.
III. Solve the Poisson equation �� = r ·X .

The function � approximates geodesic distance, approaching the
true distance as t goes to zero (Eq. (1)). Note that the solution to step
III is unique only up to an additive constant – final values simply
need to be shifted such that the smallest distance is zero. Initial
conditions u0 = �(x) (i.e., a Dirac delta) recover the distance to
a single source point x 2 M as in Figure 1, but in general we can
compute the distance to any piecewise submanifold � by setting u0

to a generalized Dirac [Villa 2006] over � (see Figures 3 and 4).
The heat method can be motivated as follows. Consider an

approximation u
t

of heat flow for a fixed time t. Unless u
t

ex-
hibits precisely the right rate of decay, Varadhan’s transformation
u
t

7!
p
�4t log u

t

will yield a poor approximation of the true
geodesic distance � because it is highly sensitive to errors in mag-
nitude (see Figures 2 and 6). The heat method asks for something
different: it asks only that the gradient ru

t

points in the right direc-
tion, i.e., parallel to r�. Magnitude can safely be ignored since we
know (from the eikonal equation) that the gradient of the true dis-
tance function has unit length. We therefore compute the normalized
gradient field X = �ru/|ru| and find the closest scalar potential
� by minimizing

R
M

|r� � X|2, or equivalently, by solving the
corresponding Euler-Lagrange equations �� = r · X [Schwarz
1995]. The overall procedure is depicted in Figure 5.

3.1 Time Discretization
We discretize the heat equation from step I of Algorithm 1 in time
using a single backward Euler step for some fixed time t. In practice,
this means we simply solve the linear equation

(id� t�)u
t

= u0 (3)

over the entire domain M , where id is the identity (here we still
consider a smooth manifold; spatial discretization is discussed in

Fig. 6. Left: Varadhan’s formula. Right: the heat method. Even for very
small values of t, simply applying Varadhan’s formula does not provide an
accurate approximation of geodesic distance (top left); for large values of t
spacing becomes even more uneven (bottom left). Normalizing the gradient
results in a more accurate solution, as indicated by evenly spaced isolines
(top right), and is also valuable when constructing a smoothed distance
function (bottom right).

Section 3.2). We can get a better understanding of solutions to
Eq. (3) by considering the elliptic boundary value problem

(id� t�)v
t

= 0 on M\�
v
t

= 1 on � .
(4)

which for a point source yields a solution v
t

equal to u
t

up to a
multiplicative constant. As established by Varadhan in his proof of
Eq. (1), v

t

also has a close relationship with distance, namely

lim

t!0
�

p
t

2 log v
t

= � (5)

away from the cut locus. This relationship ensures the validity of
steps II and III since the transformation applied to v

t

preserves the
direction of the gradient.

3.2 Spatial Discretization
In principle the heat method can be applied to any domain with a
discrete gradient (r), divergence (r·) and Laplace operator (�).
Note that these operators are highly local and hence do not exhibit
significant cancellation error despite large global variation in u

t

.

3.2.1 Simplicial Meshes. Let u 2 R|V | specify a piecewise
linear function on a triangulated surface. A standard discretization
of the Laplacian at a vertex i is given by

(Lu)
i

=

1

2A
i

X

j

(cot↵
ij

+ cot�
ij

)(u
j

� u
i

),

where A
i

is one third the area of all trian-
gles incident on vertex i, the sum is taken over
all neighboring vertices j, and ↵

ij

,�
ij

are the
angles opposing the corresponding edge [Mac-
Neal 1949]. We can express this operation via
a matrix L = A�1L

C

, where A 2 R|V |⇥|V | is
a diagonal matrix containing the vertex areas and L

C

2 R|V |⇥|V | is
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1.  resovle"heat"equa7on"u,t)=)Gu,xx)"for"a"given"7me"(parameter"for"smoothing)"
2.  calculate"X)=)Ggrad)u)/)|grad)u|)
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boundary""



Heat kernel solution: t=0 



Heat kernel solution: t=0.1 



Heat kernel solution: t=1.0 



Deformation using C0 
constraint 



Deformation using C1 
constraint 



Deformation using C2 
constraint 



volume constraints 

Common constraint: Distance to a given surface should be 
maintained 

•  1. User should indicate only intuitive information 
•  surface (open or closed) 
•  distance to be maintained 
•  bounds on CP non-intuitive and often not efficient 

•  2. Combined control algorithm 
•  Ray-tracing 
•  Level Set 
•  Line search 

•  3. Two different types of rescaling algorithms available 



basic algorithm 

•  Given an unconstraint deformation field and a control surface 
•  Calculate the Level-Set function (signed distance) of constraint 
•  Perform a ray-tracing step using deformation field as rays 
•  Compute for each surface point allowable fraction 

•  All steps are extremely scalable 



Controll off 



Local rescaling 

distance"wrt"tangen7al"projec7on"



Global rescaling 

iden7fica7on"of"cri7cal"point"



Mesh-Morphing 

•  propagate surface deformation to mesh 
•  avoid usage of sHM but creation of one initial high quality grid 
•  brute force: RBF with one node on each surface vertex 

•  very costly (NV volume grid nodes, NS surface grid nodes):  
–  solve phase: dense linear system NS DoF 
–  evaluation phase: NV * NS operations (n5) 

•  greedy algorithm: 
initial RBF with one node @ largest surface displacement; 
calculate initial error; 
while (maxError > tolerance ) do 
–  evaluate RBF at each surface node 
–  calculate error = ||realDispl-reconDispl|| 
–  add new node @maxError 
enddo 



Mesh-Morphing 

•  RBF types, convergence and quality, NS = O(104) 
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HPC based HF + ROMs 

•  Models tend to saturate HPC resources 
–  bigger & more complex (e.g. DES, multi-physics) 
–  more reliable & accurate (??) 

•  Computing time does not decrease as computing power increases 
–  big challenge for optimization 

•  Scenario 
–  use high-fidelity simulations to build a knowledge database (few, but 

which?) 
–  recycle your data through semi-empirical Reduced Order Models 



Scenario 1 

you knew from the very beginning of your project that you would do 
shape optimization 

•  parametric geometrical model (a0…aN-1) 
•  create a database of solutions (DoE) 
•  associate set of parameters ai to each solution of DB 

•  make a Voronoi tesselation of the parameter space 
•  build a linearized model for each simplex 



ezRB 

•  tessellation of parameter space 
–  can be done efficiently in N dimensions 
–  small problem size 

•  requested solution 
–  locate right simplex 
–  interpolate solution at simplex vertices 

•  can be performed efficiently via POD   



Scenario 2 

you didn’t know that you would need some shape optimization 

•  database of loose solutions 
 
•  parametric geometrical model (a0…aN-1) 
•  feed your CFD with information from DB to reduce cost 



podFOAM 

Far"Field"BC"

perturba'on)

inner)zone:)use)nonGlinear)CFD)
outer)zone:)use)simplified)model)to)impose)BC)to)inner)zone)



podFOAM 

•  Our assumptions are that 
•  in the outer zone, the perturbation becomes linear 
•  the information needed for describing the flow field of outer zone, is already available 

in the data stored on your HD 

•  Represent the green zone by Proper Orthogonal Decomposition 
•  Couple to CFD in blue zone through a Least-Squares Problem on the data at the interface 

 



POD 

•  Proper Orthogonal Decomposition 
 

•  representation of a solution as uj
i(x) = Σ aj

i Φi(x)    for i= 0…N-1 
•  Φi(x) I sorthogonal POD basis, which can be found by solving the eigen-problem of the 

snapshot correlation matrix 
•  no series converges faster than POD;  identification of coherent structures; very few 

modes to capture 99% of the energy 



Sampling strategy 

•  both ROMs zero error at solution of DB 
•  the ROM should be reliable in entire parameter space 
•  if a priori error available, additional snapshots in critical zones 

•   Leave-One-Out strategy to determine pseudo error 
foreach solution of DB 
–  remove solution from DB 
–  recalculate ROM 
–  evaluate ROM at solution point 
–  calculate error = ||UHF – UROM || 
end foreach 
 
add new snapshot where indicator is high & far from points 



DrivAer model 

Free model by TU Munich in collaboration with Audi & BMW 
 
•  Clean symmetric model: 14M cells 
•  2 control parameters 
•  Sforces = 0.1 

 



Sampling strategy 

Iteration 0 



Sampling strategy 

Iteration 1 



Sampling strategy 

Iteration 2 



Sampling strategy 

Iteration 3 



Sampling strategy 

Iteration 4 



ezRB 

•  reconstruction of surface pressure and shear stress 
•  mean error over 4 random configurations out-of-DB 
•  Cost O(s) 
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podFOAM 

•  recalculation of inner & outer flow field 
•  mean error over 4 random configurations out-of-DB 
•  speed-up O(50) 
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from: 
van Dyke, An Album of Fluid Motion 

Thank"you,""
happy"to"answer"any"ques7on."


