

HPC enabling of OpenFOAM® for CFD applications

HPC-based simulation tool for motorcycle helmets design and development

07 April 2016, Casalecchio di Reno, BOLOGNA Matteo Longoni matteo.longoni@moxoff.com

Moxoff Srl

About us

PoliMI Math Department Director

PoliMI MOX Director

Managementteam

Engineers & Data scientists

Spinoff of Politecnico di Milano MOX Lab

- Technology & Know-how transfer
- Innovative product development
- Solutions & software provider

Where's math?

Where's math?

OpenFOAM® for Aerodynamics

 Handling of real complex geometries (full detail production drawings)

- Mesh criteria definition and conformity checks to ensure quality
- Dedicated simulation worflow and settings
- The results are input for thermofluid dynamics and vibroacoustics simulations

Multiphysics workflow coupling

A "mathematically" comfortable helmet

Vibroacoustic model for noise propagation

P.F.Antonietti, I.Mazzieri, A.Quarteroni, F.Rapetti: Non-conforming high order approximation of the elastodynamics equation, CMAME, 2012

http://speed.mox.polimi.it/SPEED/Home.html

Thermofluid dynamics model for ventilation system

Projects carried out in collaboration with

Non-linear structural dynamics model for crash

LS-Dyna

The challenge Some numbers

Aerodynamics simulations on OpenFOAM®:

- ★ 10M elements per mesh
- ★ 45 typical configurations per helmet (inclination, speed, style, etc)

Workflow	Solver	h/sim	Config.
Thermofluid	Steady/time-dep.	24	25 + parametric
Vibroacoustics	Time-dependent	1500	25
Crash	Time-dependent	60	25

Next Step: HPC

FORTISSIMO

The FORTISSIMO project

Factories of the Future Resources, Technology, Infrastructure and Services for Simulation and Modelling

Enabling Innovative Products & Services

OpenFOAM[®] for glass melting furnaces

¹ Developed by Dr. Holzmann and Prof. A. Cuoci from Politecnico di Milano

OpenFOAM [®] for polymerization oven

buoyantPimpleFoam

- Thermo + fluid dynamics
- Gravity
- Time dependent

Modified to:

- buoyantDynPimpleFoam
 - Moving mesh

Mesh size	≈ 3M
Processors [#]	12
Computational time (average)	»14gg

OpenFOAM® for laser cutting

Contacts

- matteo.longoni@moxoff.cominfo@moxoff.com
 - Www.moxoff.com
 - moxoff_mathxinn
 - in moxoff_mathematics_for_innovation
 - MOXOFFmath
 - f
- /mathematicsforinnovation

Via Giovanni Durando 38/A, Milan Ph: +39 02 2399 2966

Thank you for your attention!

