

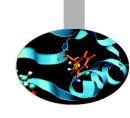


Welcome!

Tool and techniques for massive data processing

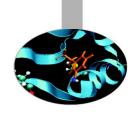
Giuseppe Fiameni April 12th 2016

Why this course?



- Data are becoming more and more important
- Processing large data sets has become an issue for young researchers
- Many interesting technologies are emerging and entering the HPC domain
- HPC common technologies, although are the only viable solutions in many cases, have a steep learning curve which limits their wide adoption

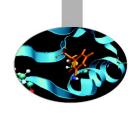
Goals



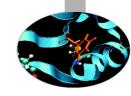
During this course, you will learn:

- the trends and challenges surrounding the BigData definition
- how the most relevant technologies and methods in this domain work
 - Map-Reduce
 - Apache Hadoop
 - Apache Spark, Apache SparkSQL
 - Apache Spark MLLIB (Machine Learning Library)
- how to structure and program your code using Python/Scala

General notes



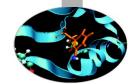
- Each participant will receive personal credentials to access Cineca resources for a limited amount of time
 - requests for extensions are possible
- There is one workstation every two participants:
 - **U**: corsi **P**: corsi_2013!
- Course web site:
 - https://goo.gl/Pq03qz
- Feel free to ask questions at any time → do not be shy!



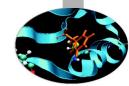
	Thursday, April 14	
09.00 - 09.30	Apache SparkR	Giorgio Pedrazzi Giovanni Simonini Song Zhu**
09.30 - 10.00	Apache Spark Exercises	Giovanni Simonini Giorgio Pedrazzi Song Zhu
10.00 - 12.30	Apache Spark Exercises	Giovanni Simonini Giorgio Pedrazzi Song Zhu
12.30 - 14.00	Lunch Break	
14.00 - 15.30	Apache Spark MLLib	Giorgio Pedrazzi Song Zhu
15.30 - 17.30	Apache Spark MLLib	Giorgio Pedrazzi Song Zhu

^{*}Giuseppe Fiameni, Paolo D'Onorio De Meo, Giorgio Pedrazzi - CINECA

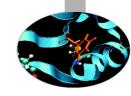
^{**}Giovanni Simoni, Song Zhu - University of Modena and Reggio Emilia



	Tuesday, April 12	
09.00 - 09.30	Registration	
09.30 - 09.40	Introduction/logistics/agenda	Giuseppe Fiameni*
09.40 - 10.30	Big Data and HPC Giuseppe Fiameni	
10.30 - 11.00	Coffee break	
11.00 - 11.40	Brief introduction to Map-Reduce and Hadoop (Hadoop, HDFS, Yarn)	Giuseppe Fiameni
11.40 - 12.30	Set-up of the environment	Paolo D'Onorio De Meo* Giuseppe Fiameni
12.30 - 14.00	Lunch break	
14.00 - 15.00	Brief introduction to iPython MrJob/Hadoop Exercies	Paolo D'Onorio De Meo Giuseppe Fiameni
15.00 - 15.30	Coffee Break	
15.30 - 17.30	MrJob/Hadoop Exercises	Paolo D'Onorio De Meo Giuseppe Fiameni
17.30	End of the first day	



	Wednesday, April 13	
09.30 - 11.00	MrJob/Hadoop Exercises	Paolo D'Onorio De Meo Giuseppe Fiameni
11.00 - 11.15	Coffee break	
11.15 - 12.30	MrJob/Hadoop Exercises (NGS Use Case)	Paolo D'Onorio De Meo Giuseppe Fiameni
12.30 - 14.00	Lunch break	
14.00 - 15.00	Apache Spark	Giovanni Simonini** Giorgio Pedrazzi*
15.00 - 16.00	Apache Spark Examples	Giovanni Simonini Giorgio Pedrazzi
16.00 - 16.30	Coffee break	
16.30 - 17.30	Apache SparkSQL	Giovanni Simonini Giorgio Pedrazzi
17.30	End of the second day	

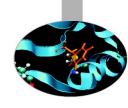


	Thursday, April 14	
09.00 - 09.30	Apache SparkR	Giorgio Pedrazzi Giovanni Simonini Song Zhu**
09.30 - 10.00	Apache Spark Exercises	Giovanni Simonini Giorgio Pedrazzi Song Zhu
10.00 - 12.30	Apache Spark Exercises	Giovanni Simonini Giorgio Pedrazzi Song Zhu
12.30 - 14.00	Lunch Break	
14.00 - 15.30	Apache Spark MLLib	Giorgio Pedrazzi Song Zhu
15.30 - 17.30	Apache Spark MLLib	Giorgio Pedrazzi Song Zhu

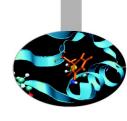
^{*}Giuseppe Fiameni, Paolo D'Onorio De Meo, Giorgio Pedrazzi - CINECA

^{**}Giovanni Simoni, Song Zhu - University of Modena and Reggio Emilia

Quick poll

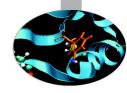


- How many of you already know part of the mentioned Big Data technologies?
- How many of you know any HPC methods (MPI, OpenMP, etc.)?
- How many of you know Python?
- Scala?



Before starting

Size of computational applications



Computational Dimension:

number of operations needed to solve the problem, in general is a function of the size of the involved data structures $(n, n^2, n^3, n \log n, etc.)$

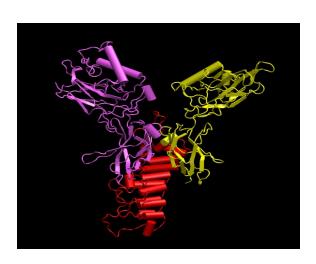
flop - Floating point operations indicates an arithmetic floating point operation.

flop/s - Floating points operations per second is a unit to measure the speed of a computer.

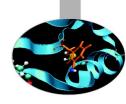
Computational problems today: 10¹⁵ – 10²² flop

One year has about 3 x 10⁷ seconds!

Most powerful computers today have reach a sustained performance is of the order of Tflop/s - Pflop/s $(10^{12} - 10^{15} \text{ flop/s})$.

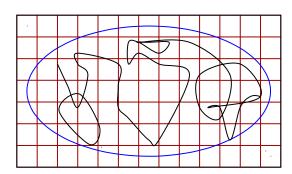


Example: Weather Prediction

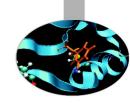


Forecasts on a global scale:

- 3D Grid to represent the Earth
 - \sim Earth's circumference: \approx 40000 km
 - \sim radius: \approx 6370 km
 - \checkmark Earth's surface: $≅ 4πr^2 ≅ 5 10^8 km^2$
- 6 variables:
 - temperature
 - pressure
 - humidity
 - wind speed in the 3 Cartesian directions
- cells of 1 km on each side
- 100 slices to see how the variables evolve on the different levels of the atmosphere
- a 30 seconds time step is required for the simulation with such resolution
- Each cell requires about 1000 operations per time step (Navier-Stokes turbulence and various phenomena)



Example: Weather Prediction / 1



Grid:
$$5 \cdot 10^8 \cdot 100 = 5 \cdot 10^{10}$$
 cells

- each cell is represented with 8 Byte
- Memory space:
 - → $(6 \text{ var}) \cdot (8 \text{ Byte}) \cdot (5 \cdot 10^{10} \text{ cells}) \cong 2 \cdot 10^{12} \text{ Byte} = 2 \text{ TB}$

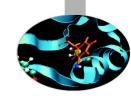
A 24 hours forecast needs:

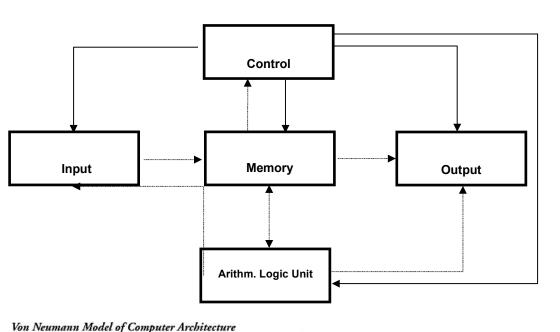
- → 24 60 2 \cong 3 10³ time-step
- → $(5 \cdot 10^{10} \text{ cells}) \cdot (10^3 \text{ oper.}) \cdot (3 \cdot 10^3 \text{ time-steps}) = 1.5 \cdot 10^{17} \text{ operations }!$

A computer with a power of 1Tflop/s will take 1.5 • 10⁵ sec.

24 hours forecast will need 2days to run ... but we shall obtain a very accurate forecast

Von Neumann Model





Printer Control Output Main Memory Mass Storage

Instructions are processed sequentially

- A single instruction is loaded from memory (fetch) and decoded
- → Compute the addresses of operands
- Fetch the operands from memory;
- → Execute the instruction;
- → Write the result in memory (store).

Speed of Processors: Clock Cycle and Frequency

The *clock cycle* τ is defined as the time between two adjacent pulses of oscillator that sets the time of the processor.

The number of these pulses per second is known as clock speed or clock frequency, generally measured in GHz (gigahertz, or billions of pulses per second).

The clock cycle controls the synchronization of operations in a computer: All the operations inside the processor last a multiple of τ .

		:
Processor	τ (ns)	freq (MHz)
CDC 6600	100	10
Cyber 76	27.5	36,3
IBM ES 9000	9	111
Cray Y-MP C90	4.1	244
Intel i860	20	50
PC Pentium	< 0.5	> 2 GHz
Power PC	1.17	850
IBM Power 5	0.52	1.9 GHz
IBM Power 6	0.21	4.7 GHz

Increasing the clock frequency:

The **speed of light** sets an upper limit to the speed with which electronic components can operate .

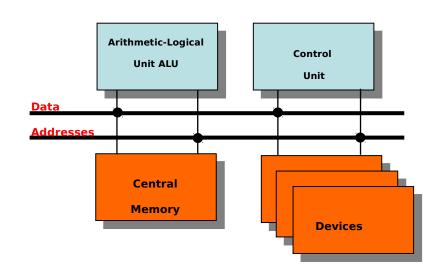
Propagation velocity of a signal in a vacuum: **300.000 Km/s = 30 cm/ns**

Heat dissipation problems inside the processor. Also Quantum tunelling expected to become important.

Other factors that affect Performance

In addition to processor power, other factors affect the performance of computers:

- Size of memory
- Bandwidth between processor and memory
- Bandwidth toward the I/O system
- Size and bandwidth of the cache
- Latency between processor, memory, and I/O system



Memory hierarchies

Time to run code = clock cycles running code + clock cycles waiting for memory

Memory access time: the *time* required by the processor to *access* data or to write data from / to *memory*

The hierarchy exists because:

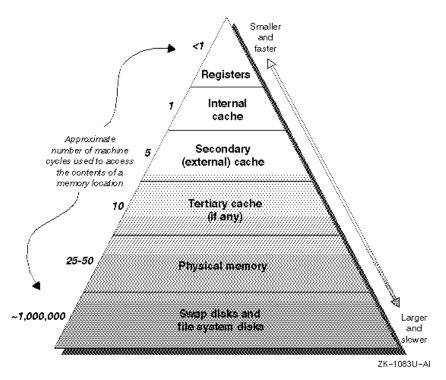
- fast memory is expensive and small
- slow memory is cheap and big

Latency

- how long do I have to wait for the data?
- (cannot do anything while waiting)

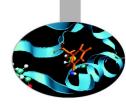
Throughput

how many bytes/second. but not important if waiting.

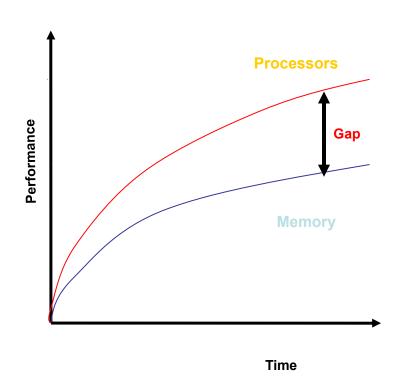


Total time = latency + (amount of data / throughput)

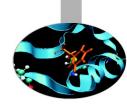
Memory access



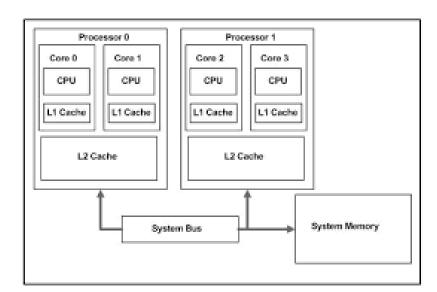
- Important problem for the performance of any computer is access to main memory. Fast processors are useless if memory access is slow!
- Over the years the difference in speed between processors and main memory has been growing.



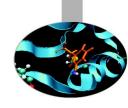
Cache Memory



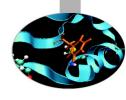
- High speed, small size memory used as a buffer between the main memory and the processor. When used correctly, reduces the time spent waiting for data from main memory.
- Present as various "levels" (e.g. L1, L2, L3, etc) according to proximity to the functional units of the processor.
- Cache efficiency depends on the locality of the data references:
 - Temporal locality refers to the re-use of data within relatively small time frame.
 - Spatial locality refers to the use of data within close storage locations (e.g. one dimensional array).
- Cache can contain Data, Instructions or both.



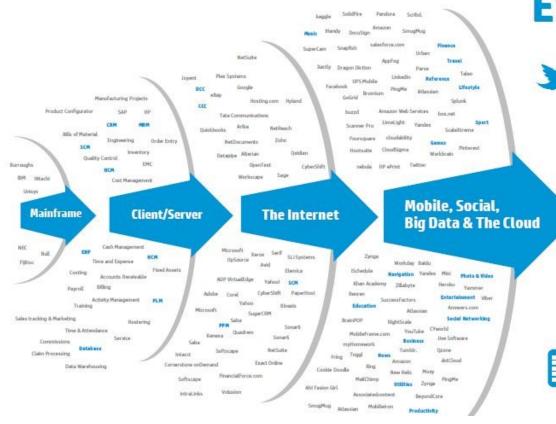
Aspects of parallelism



- It has been recognized for a long time that constant performance improvements cannot be obtained just by increasing factors such as processor clock speed parallelism is needed.
- Parallelism can be present at many levels:
 - Functional parallelism within the CPU
 - Pipelining and vectorization
 - Multi-processor and multi-core
 - Accelerators
 - Parallel I/O



A new style of IT emerging



Every 60 seconds

98,000+ tweets

695,000 status updates

11million instant messages

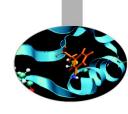
698,445 Google searches

168 million+ emails sent

1,820TB of data created

217 new mobile web users

Why?



- Overwhelming amounts of data generated by all kinds of devices, networks and programs, e.g. sensors, mobile devices, internet, social networks, computer simulations, satellites, radiotelescopes, LHC, etc.
- Increasing storage capacity
 - Storage capacity has doubled every 3 years since 1980 with prices steadily going down
 - 1,8 zetabytes: an estimation for the data stored by humankind in 2011 (Digital Universe study of International Data Corporation)
- Massive data can produce high-value information and knowledge
- Critical for data analysis, decision support, forecasting, business intelligence, research, (dataintensive) science, etc.

Big Data

A buzz word!

 With different meanings depending on your perspective - e.g. 100 TBs is big for a transaction processing system, but small for a world-wide search engine

A simple "definition" (Wikipedia)

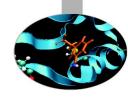
- Consists of data sets that grow so large that they become awkward to work with using onhand database management tools
 - →Difficulties: capture, storage, search, sharing, analytics, visualizing

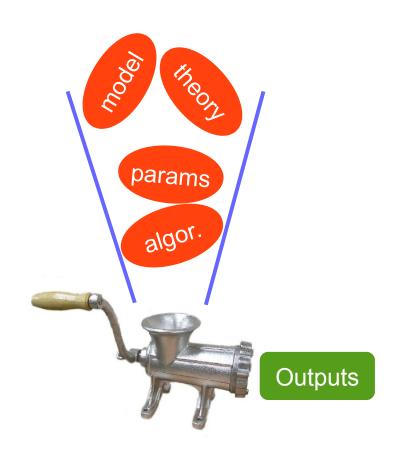
How big is big?

 Moving target: terabyte (1012 bytes), petabyte (1015 bytes), exabyte (1018), zetabyte (1021)

Scale is only one dimension of the problem!

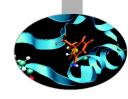
Operate without models forward problem

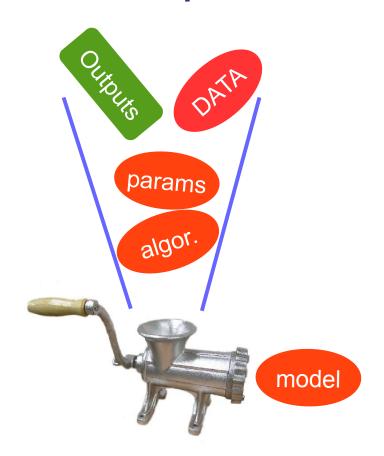




Before...

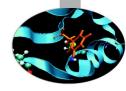
Operate without models inverse problem

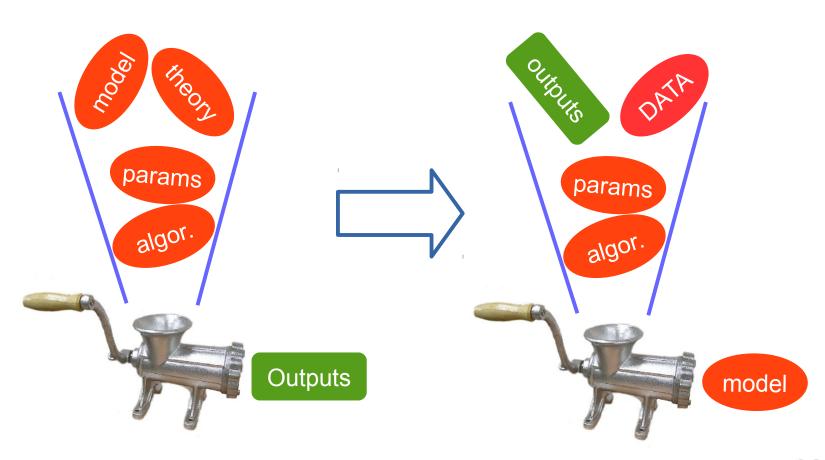




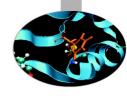
Now, future...

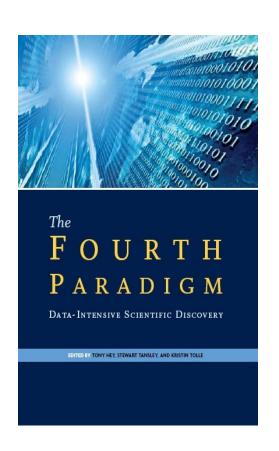
Operate without models (Big Data)





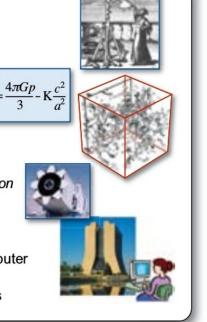
Where all began...a decade ago!





Science Paradigms

- Thousand years ago: science was empirical describing natural phenomena
- Last few hundred years: theoretical branch using models, generalizations
- Last few decades: a computational branch simulating complex phenomena
- Today: data exploration (eScience) unify theory, experiment, and simulation
 - Data captured by instruments or generated by simulator
 - Processed by software
 - Information/knowledge stored in computer
 - Scientist analyzes database/files using data management and statistics



http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_complete_lr.pdf

кпоета III DataMarket Ffactual

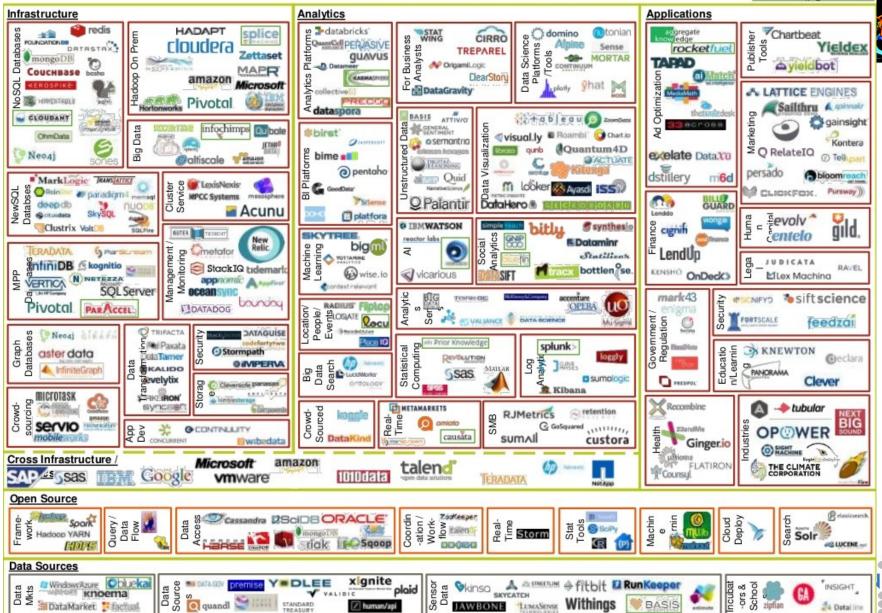
Sup

BIG DATA LANDSCAPE, VERSION 3.0

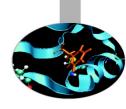
Exited: Acquisition or IPO

INSIGHT

Dotal litte



Dimensions of the problem



Volume

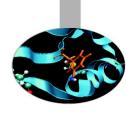
- Refers to massive amounts of data
- Makes it hard to store and manage, but also to analyze (big analytics)

Velocity

- Continuous data streams are being captured (e.g. from sensors or mobile devices) and produced
- Makes it hard to perform online processing

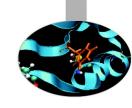
Variety

- Different data formats (sequences, graphs, arrays, ...), different semantics, uncertain data (because of data capture), multiscale data (with lots of dimensions)
- Makes it hard to integrate and analyze



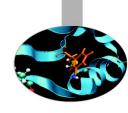
What do we do when there is too much data to process?

Parallel data processing!

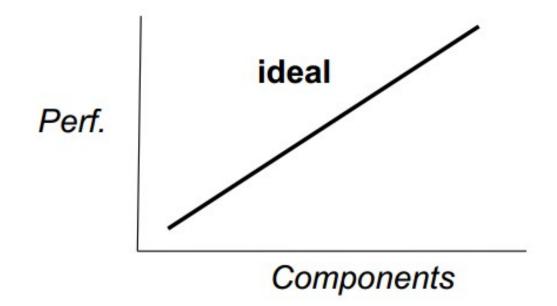


- Exploit a massively parallel computer
 - A computer that interconnects lots of CPUs, RAM and disk units
- To obtain
 - High performance through data-based parallelism
 - → High throughput for transaction-oriented (OLTP) loads
 - →Low response time for decision-support (OLAP) queries
 - High availability and reliability through data replication
 - Extensibility with the ideal goals
 - *→ Linear speed-up*
 - *→ Linear scale-up*

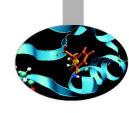
Speed-up



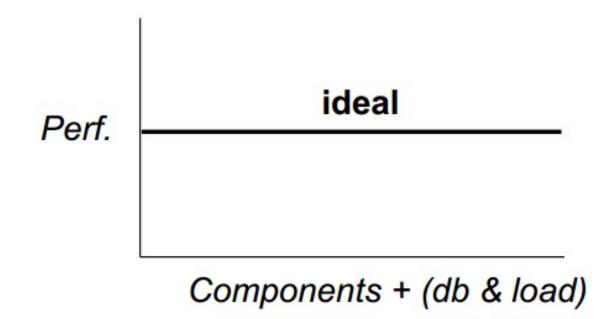
 Linear increase in performance for a constant database size and load, and proportional increase of the system components (CPU, memory, disk)



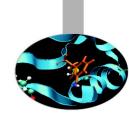
Scale-up



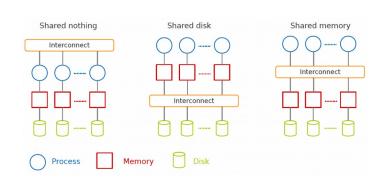
 Sustained performance for a linear increase of database size and load, and proportional increase of components



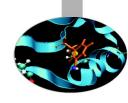
Parallel Architectures for Data Processing



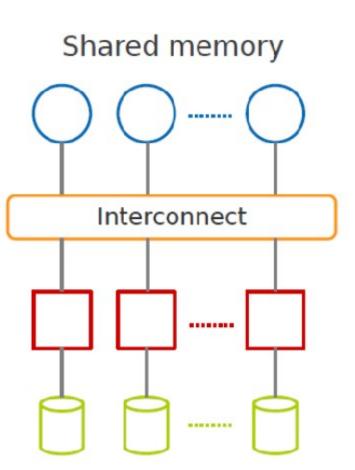
- Three main alternatives, depending on how processors, memory and disk are interconnected
 - Shared-memory computer
 - Shared-disk cluster
 - Shared-nothing cluster



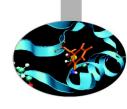
Shared Memory



- All memory and disk are shared
 - Symmetric Multiprocessor (SMP)
 - Recent: Non Uniform Memory
 - + Simple for apps, fast com., load balancing
 - Complex interconnect limits extensibility, cost
- For write-intensive workloads, not for big data



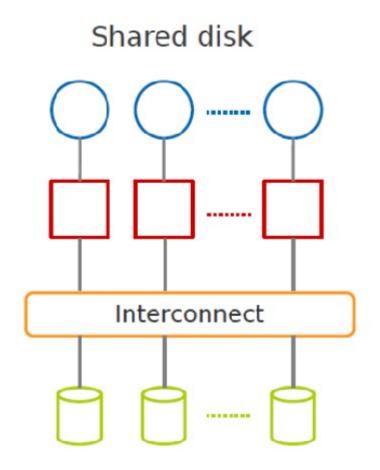
Shared Disk



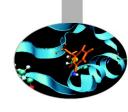
- Disk is shared, memory is private
 - Storage Area Network (SAN) to interconnect memory and disk (block level)
 - Needs distributed lock manager (DLM) for cache coherence

+ Simple for apps, extensibility

- Complex DLM, cost
- For write-intensive workloads or big data

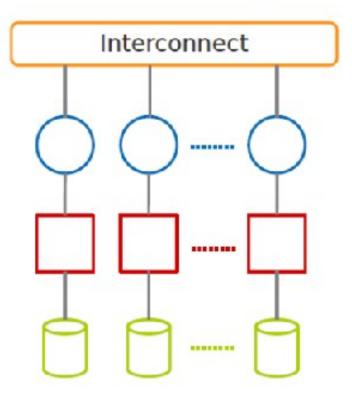


Shared Nothing

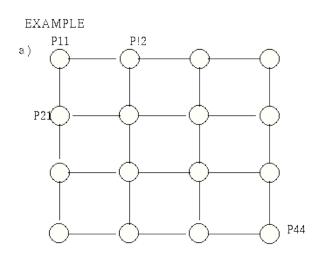


- No sharing of memory or disk across nodes
 - No need for DLM
 - But needs data partitioning
 - + highest extensibility, cost
 - updates, distributed
 trans
- For big data (read intensive)

Shared nothing



Example networks



2D mesh of width 4 with no wraparound connections on edge or corner nodes

corner nodes have degree 2 edge nodes have degree 3

C)

connections between the nodes to the edges of the mesh (torus topology).
The Cray T3E adopts a 3D torus

model have wrap-around type

topology

IBM BG/Q adopts a 5D torus topology

 $k = 3 \ w = 3$

i.e. $3 \land 3 = 27 \text{ nodes}$

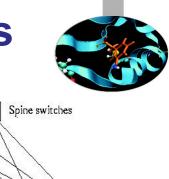
with wraparound connections

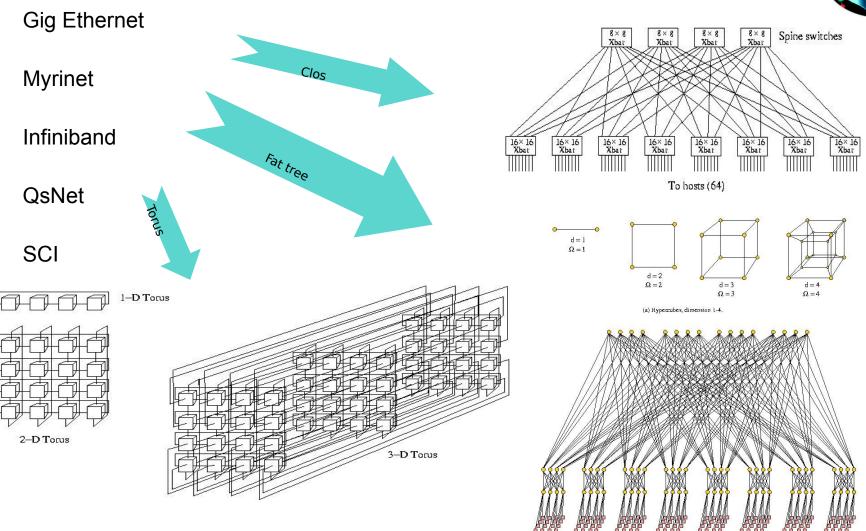
all nodes have degree 6 (2k)

MESH Topology

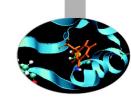
Toroidal Topology

Commodity Interconnects





Simple Model for Parallel Data



Shared-nothing architecture

The most general and scalable

Set-oriented

Each dataset **D** is represented by a table of rows

Key-value

- Each row is represented by a <key, value> pair where
 - → Key uniquely identifies the value in D
 - → Value is a list of (attribute name: attribute value)

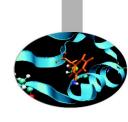
Can represent structured (relational) data or NoSQL data

But graph is another story (see Pregel, DEX or Spark)

Examples

- <row-id#5, (part-id:5, part-name:iphone5, supplier:Apple)>
- <doc-id#10, (content:<html> html text ... </html>)>
- <akeyword, (doc-id:id1, doc-id:id2, doc-id:id10)>

Data Partitioning

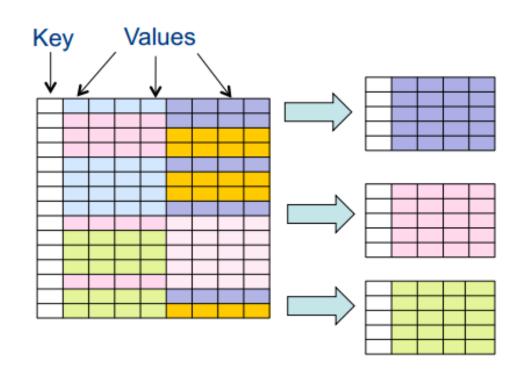


Vertical partitioning

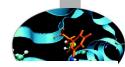
- Basis for column stores (e.g. MonetDB): efficient for OLAP queries
- Easy to compress,
 e.g. using Bloom
 filters

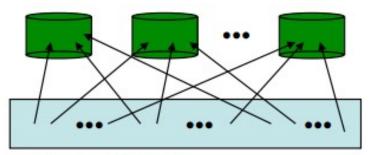
Horizontal partitioning (sharding)

 Shards can be stored (and replicated) at different nodes



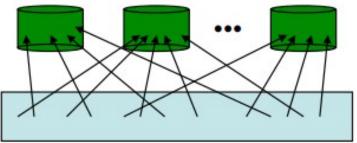
Sharding Schemes





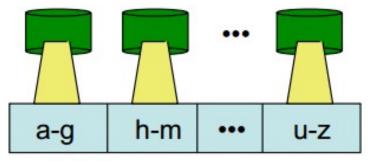
Round-Robin

- ith row to node (i mod n)
- perfect balancing
- but full scan only



Hashing

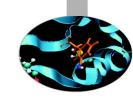
- (k,v) to node h(k)
- exact-match queries
- but problem with skew



Range

- (k,v) to node that holds k's interval
- exact-match and range queries
- deals with skew

Different classes of applications



MPI (Message Passing Interface)

 A shared disk infrastructure for processing large data sets with a parallel algorithm on clusters

OpenMP (Open MultiProcessing)

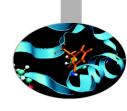
 A shared memory infrastructure for processing large data sets with a parallel algorithm on a node

Map Reduce (Hadoop)

 A shared nothing architecture for processing large data sets with a distributed algorithm on clusters

Process

Parallel Architectures



Map Reduce/Hadoop Shared nothing Shared disk Shared memory Interconnect Interconnect Interconnect Interconnect

Disk

Memory

- World's most popular distributed API
- MPI is "de facto standard" in scientific computing
- C and FORTRAN, ver. 2 in 1997

What is MPI good for?

- Abstracts away common network communications
- Allows lots of control without bookkeeping
- Freedom and flexibility come with complexity
 - 300 subroutines, but serious programs with fewer than 10

Basics:

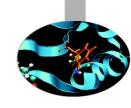
- One executable run on every node
- Each node process has a rank ID number assigned
- Call API functions to send messages

http://www.mpi-forum.org/

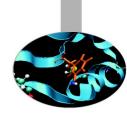
http://forum.stanford.edu/events/2007/plenary/slides/Olukotun.ppt

http://www.tbray.org/ongoing/When/200x/2006/05/24/On-Grids

Challenges with MPI

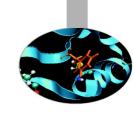


- Deadlock is possible...
 - Blocking communication can cause deadlock
 - "crossed" calls when trading information
 - example:
 - Proc1: MPI_Receive(Proc2, A);
 MPI_Send(Proc2, B);
 - Proc2: MPI_Receive(Proc1, B);
 MPI_Send(Proc1, A);
 - There are some solutions MPI_SendRecv()
- Large overhead from comm. mismanagement
 - Time spent blocking is wasted cycles
 - Can overlap computation with non-blocking comm.
- Load imbalance is possible! Dead machines?
- Things are starting to look hard to code!



Brief recap

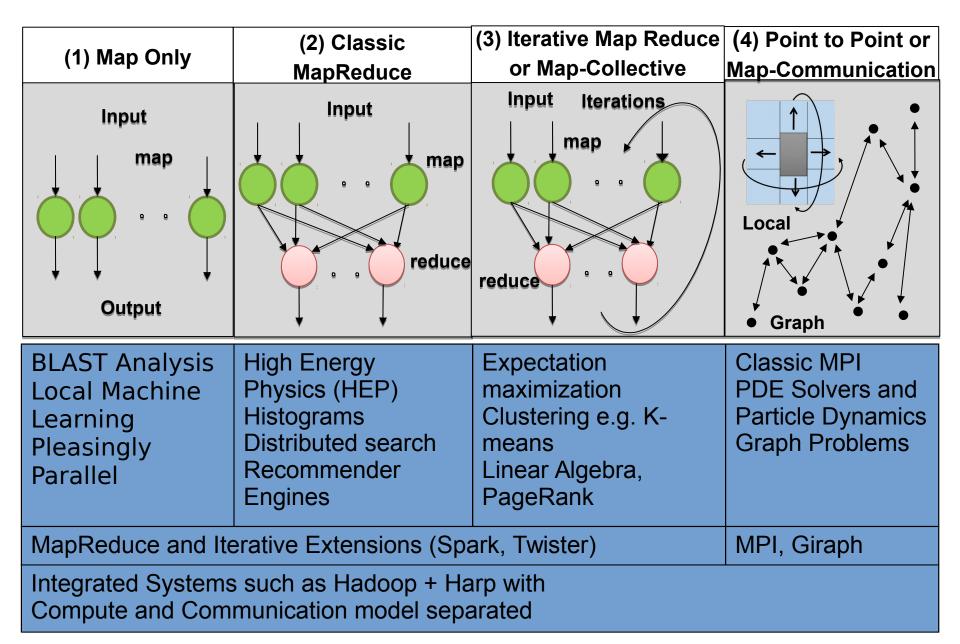
Map Reduce flow

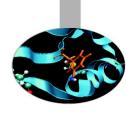


- Programmers must specify:
 - **map** (k, v) → list(<k', v'>) **reduce** (k', list(v')) → <k", v">
 - All values with the same key are reduced together
- Optionally, also:
 - **partition** (k', number of partitions) → partition for k'
 - Often a simple hash of the key, e.g., hash(k') mod n
 - Divides up key space for parallel reduce operations combine (k', v') → <k', v'>*
 - Mini-reducers that run in memory after the map phase
 - Used as an optimization to reduce network traffic
- The execution framework handles everything else...

"Everything Else"

- The execution framework handles everything else...
 - Scheduling: assigns workers to map and reduce tasks
 - "Data distribution": moves processes to data
 - Synchronization: gathers, sorts, and shuffles intermediate data
 - Errors and faults: detects worker failures and restarts
- Limited control over data and execution flow
 - All algorithms must expressed in m, r, c, p
- You don't know:
 - Where mappers and reducers run
 - When a mapper or reducer begins or finishes
 - Which input a particular mapper is processing
 - Which intermediate key a particular reducer is processing





Are emerging data analytics techniques the new El Dorado?

Where and When using Apache Hadoop Where When

- Batch data processing, not real-time
- Highly parallel data intensive distributed applications
- Very large production deployments

- Process lots of unstructured data
- When your processing can easily be made parallel
- Running batch jobs is acceptable
- When you have access to lots of cheap hardware

Advantages/Disadvantages

Now it's easy to program for many CPUs

- Communication management effectively gone
 - I/O scheduling done for us
- Fault tolerance, monitoring
 - machine failures, suddenly-slow machines, etc are handled
- Can be much easier to design and program!

But ... it further restricts solvable problems

- Might be hard to express problem in MapReduce
- Data parallelism is key
- Need to be able to break up a problem by data chunks
- MapReduce is closed-source (to Google) C++
- Hadoop is open-source Java-based rewrite

Parallel Computing Model

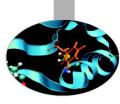
MapReduce can be classified as a SIMD (single-instruction, multiple-data) problem.

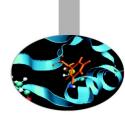
- ✓ Indeed, the map step is highly scalable because the same instructions are carried out over all data. Parallelism arises by breaking the data into independent parts with no forward or backward dependencies (side effects) within a Map step; that is, the Map step may not change any data (even its own).
- ✓ The reducer step is similar, in that it applies the same reduction process to a different set of data (the results of the Map step).
- ✓ In general, the MapReduce model provides a functional, rather than procedural, programing model. Similar to a functional language, MapReduce cannot change the input data as part of the mapper or reducer process, which is usually a large file. Such restrictions can at first be seen as inefficient; however, the lack of side effects allows for easy scalability and redundancy.

An HPC cluster, on the other hand, can run SIMD and MIMD (multiple-instruction, multiple-data) jobs.

✓ The programmer determines how to execute the parallel algorithm.

Users, however, are not restricted when creating their own MapReduce application within the framework of a typical HPC cluster.





When to use Apache Hadoop

When to use Apache Hadoop

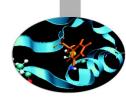
Your Data Sets Are Really Big

Don't even think about Hadoop if the data you want to process is measured in MBs or GBs. If the data driving the main problem you are hoping to use Hadoop to solve is measured in GBs, save yourself the hassle and use Excel, a SQL BI tool on Postgres, or some similar combination. On the other hand, if it's several TB or (even better) measured in petabytes, Hadoop's superior scalability will save you a considerable amount of time and money

You Celebrate Data Diversity

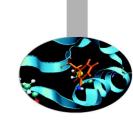
 One of the advantages of the Hadoop Distributed File System (HDFS) is it's really flexible in terms of data types. It doesn't matter whether your raw data is structured, semi-structured (like XML and log files), unstructured (like video files).

When to use MapReduce



- You Find Yourself Throwing Away Perfectly Good Data
 - One of the great things about Hadoop is its capability to store petabytes of data. If you find that you are throwing away potentially valuable data because its costs too much to archive, you may find that setting up a Hadoop cluster allows you to retain this data, and gives you the time to figure out how to best make use of that data.

When to NOT use MapReduce



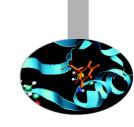
You Need Answers in a Hurry

 Hadoop is probably not the ideal solution if you need really fast access to data. The various SQL engines for Hadoop have made big strides in the past year, and will likely continue to improve. But if you're using Map-Reduce to crunch your data, expect to wait days or even weeks to get results back.

Your Queries Are Complex and Require Extensive Optimization

 Hadoop is great because it gives you a massively parallel cluster for low-cost Lintel servers and scads of cheap hard disk capacity. While the hardware and scalability is straightforward, getting the most out of Hadoop typically requires a hefty investment in the technical skills required to optimize queries.

When to NOT use MapReduce



You Require Random, Interactive Access to Data

The pushback from the limitations of the batch-oriented MapReduce paradigm in early Hadoop led the community to improve SQL performance and boost its capability to serve interactive queries against random data. While SQL on Hadoop is getting better, in most cases it's not a reason in of itself to adopt Hadoop.

You Want to Store Sensitive Data

Hadoop is evolving quickly and is able to do a lot of things that it couldn't do just a few years ago. But one of the things that it's not particularly good at today is storing sensitive data. Hadoop today has basic data and use access security. And while these features are improving by the month, the risks of accidentally losing personally identifiable information due to Hadoop's less-than-stellar security capabilities is probably not worth the risk.

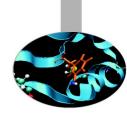
Advantages/Disadvantages

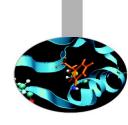
Now it's easy to program for many CPUs

- Communication management effectively gone
 - I/O scheduling done for us
- Fault tolerance, monitoring
 - machine failures, suddenly-slow machines, etc are handled
- Can be much easier to design and program!
- Can cascade several (many?) Map-Reduce tasks

But ... it further restricts solvable problems

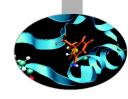
- Might be hard to express problem in Map-Reduce
- Data parallelism is key
- Need to be able to break up a problem by data chunks
- Map-Reduce is closed-source (to Google) C++
- Hadoop is open-source Java-based rewrite

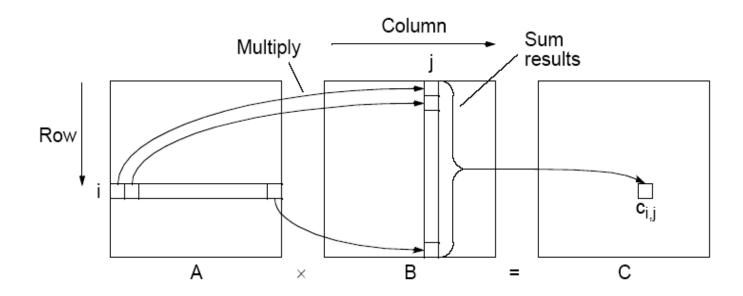




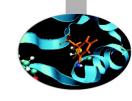
- Basic matrix multiplication on a 2-D grid
- Matrix multiplication is an important application in HPC and appears in many areas (linear algebra)
- C = A * B where A, B, and C are matrices (two-dimensional arrays)
- A restricted case is when B has only one column, matrix-vector product, which appears in representation of linear equations and partial differential equations

$C = A \times B$



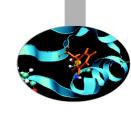


$$c_{i,\,j} = \sum_{k=0}^{l-1} a_{i,k} b_{k,j}$$



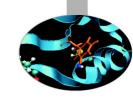
$$AB = C$$

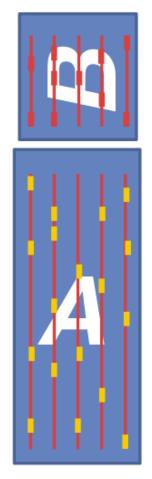
$$C_{ij} = \sum_{k} A_{ik} B_{kj}$$



B is stored by row (\$ head data/mat/smat_5x5_B)

- 0 0 0.12527732342 3 1.02407852061 4 0.121151207685
- 1 0 0.597062100484
- 2 2 1.24708888756
- 3 4 -1.45057798535
- 4 2 0.0618772663296





Map 1 Align on columns

Reduce 1 Output A_{ik}B_{kj} keyed on (i,j)

Reduce 2 Output $sum(A_{ik}, B_{ki})$

Joinmap



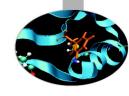

```
def joinmap(self, key, line):
    mtype = self.parsemat()
    vals = [float(v) for v in line.split()]
    row = int(vals[0])
    rowvals = [(int(vals[i]),vals[i+1]) for i
in xrange(1,len(vals),2)]
    if mtype==1:
        # rowvals are the entries in the row
        # we output the entire row for each
column
    for val in rowvals:
        # reorganize data by columns
        yield (val[0], (row, val[1]))
    else:
        yield (row, (rowvals,))
```


 $C_{ij} = \sum_{k}^{AB} A_{ik} B_{kj}$

Reduce 1 Output $A_{ik}B_{kj}$ keyed on (i,j)

Reduce 2 Output $sum(A_{ik}, B_{ki})$

Joinred




```
def joinred(self, key, vals):
        # each key is a column of the matrix.
        # and there are two types of values:
        # len == 2 (1, row, A row, key) # a column of A
        # len == 1 rowvals # a row of B
        # load the data into memory
        brow = []
        acol = []
        for val in vals:
            if len(val) == 1:
                brow.extend(val[0])
            else:
                acol.append(val)
        for (bcol, bval) in brow:
            for (arow, aval) in acol:
                yield ((arow,bcol), aval*bval)
```

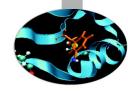
$$AB = C$$

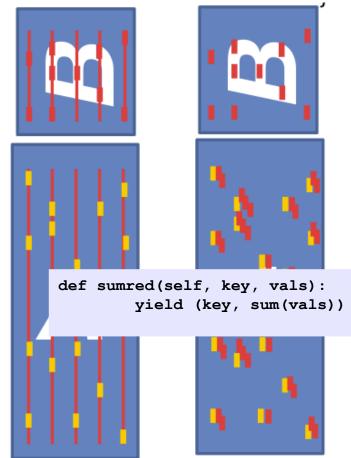
$$C_{ij} = \sum_{k} A_{ik} B_{kj}$$

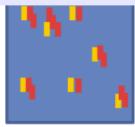
Map 1
Align on columns

Reduce 1 Output A_{ik}B_{kj} keyed on (i,j) Reduce 2 Output $sum(A_{ik}, B_{ki})$

Sumred







Reduce 1 Output A_{ik}B_{kj} keyed on (i,j)

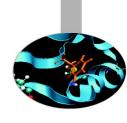
Reduce 2 Output $sum(A_{ik}, B_{kj})$

AB = C $C_{ij} = \sum A_{ik} B_{kj}$

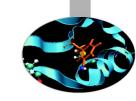
sparse_matmat.py

```
from mrjob.job import MRJob
from mrjob.compat import get jobconf value
import itertools
import sys
class SparseMatMult(MRJob):
    def configure options(self):
        super(SparseMatMult, self).configure options()
        self.add passthrough option('--A-
matrix', default='A',
            dest='Amatname')
    def parsemat(self):
        """ Return 1 if this is the A matrix, otherwise
return 2"""
        fn = get jobconf value('map.input.file')
        if self.options.Amatname in fn:
            return 1
        else:
            return 2
    def joinmap(self, key, line):
        mtype = self.parsemat()
        vals = [float(v) for v in line.split()]
        row = int(vals[0])
        rowvals = [(int(vals[i]),vals[i+1]) for i in
xrange(1,len(vals),2)]
        if mtype==1:
            # rowvals are the entries in the row
            # we output the entire row for each column
            for val in rowvals:
                # reorganize data by columns
                yield (val[0], (row, val[1]))
        else:
            yield (row, (rowvals,))
```

```
def joinred(self, key, vals):
        brow = []
        acol = []
        for val in vals:
            if len(val) == 1:
                brow.extend(val[0])
            else:
                acol.append(val)
        for (bcol,bval) in brow:
            for (arow, aval) in acol:
                yield ((arow,bcol), aval*bval)
    def sumred(self, kev, vals):
        vield (key, sum(vals))
    def rowgroupmap(self, key, val):
        yield key[0], (key[1], val)
    def appendred(self, key, vals):
        yield key, list(itertools.chain.from iterable(vals))
    def steps(self):
        return [self.mr(mapper=self.joinmap,
reducer=self.joinred),
            self.mr(mapper=None, reducer=self.sumred),
            self.mr(mapper=self.rowgroupmap,
reducer=self.appendred)]
if __name__=='__main__':
    SparseMatMult.run()
```

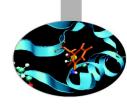
Matrix-matrix product v2



We can think of a matrix as a relation with three attributes:

- the row number, the column number, and the value in that row and column.
- M as a relation M (I, J, V), with tuples (i, j, m_{ij})
- N as a relation N (J, K, W), with tuples (j, k, n_{ik})
- The product M N is almost the natural join of M (I, J, V) and N (J, K, W), having only attribute J in common, would produce tuples (i, j, k, v, w) from each tuple (i, j, v) in M and tuple (j, k, w) in N
- This five-component tuple represents the pair of matrix elements (m_{ij}, n_{jk}) . What we want instead is the product of these elements, that is, the four-component tuple $(i, j, k, v \times w)$, because that represents the product $m_{ij}n_{jk}$
- Once we have this relation as the result of one Map Reduce operation, we can perform grouping and aggregation, with I and K as the grouping attributes and the sum of V × W as the aggregation.

Matrix-matrix product v2



The Map Function:

• For each matrix element m_{ij} , produce the key value pair j, (M, i, m_{ij}) . Likewise, for each matrix element n_{jk} , produce the key value pair j, (N, k, n_{jk}) . Note that M and N in the values are not the matrices themselves but rather a bit indicating whether the element comes from M or N

The Reduce Function:

• For each key j, examine its list of associated values. For each value that comes from M , say (M, i, m_{ij}) , and each value that comes from N , say (N, k, n_{jk}), produce a key-value pair with key equal to (i, k) and value equal to the product of these elements, $m_{ij}n_{jk}$

The Map Function:

This function is just the identity. That is, for every input element with key (i, k) and value v, produce exactly this key-value pair

The Reduce Function:

 For each key (i, k), produce the sum of the list of values associated with this key. The result is a pair (i, k), v, where v is the value of the element in row i and column k of the matrix P = MN

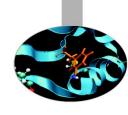
matmat.py

```
SuperComputing Applications and Innovation
import sys
import random
import numpy
import pickle
from mrjob.job import MRJob
from mrjob.compat import get jobconf value
import os
class MatMult(MRJob):
    def configure options(self):
        super(MatMult, self).configure options()
        self.add passthrough option('--A-matrix', default='A',
             dest='Amatname')
    def parsemat(self):
         """ Return 1 if this is the A matrix, otherwise return 2""
        fn = get jobconf value('map.input.file')
        if self.options.Amatname in fn:
             return 1
        else:
             return 2
    def emit values (self, , line):
        mtype = self.parsemat()
        a, b, v = line.split()
        v = float(v)
        if mtype == 1:
             i = int(a)
             j = int(b)
            yield j, (0, i, v)
        else:
             j = int(a)
            k = int(b)
```

yield j, (1, k, v)

```
def multiply values(self, j, values):
       values from1 = []
        values_from2 = []
        for v in values:
            if v[0] == 0:
                values from1.append(v)
            elif v[0] == 1:
                values from2.append(v)
        for (m, i, v1) in values from1:
            for (m, k, v2) in values from2:
                yield (i, k), v1*v2
    def identity(self, k, v):
        yield k, v
    def add values(self, k, values):
        vield k, sum(values)
    def steps(self):
        return [self.mr(mapper=self.emit values,
                        reducer=self.multiply values),
                self.mr(mapper=self.identity,
                        reducer=self.add values)]
if name == ' main ':
   MatMult.run()
```

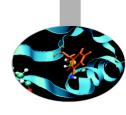

Matrix-matrix product v2



Matrix is stored by value (\$ head matmat 3x2 A)

- 0 0 1
- 1 2
- 0 2
- 1 3
- 0 4
- 1 5

Log based debug

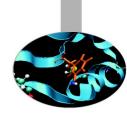


Python

```
sys.stderr(out).write("REDUCER INPUT: ({0},{1})\n".format(j,
values))
```

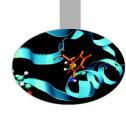
Java

```
System.err.println("Temperature over 100 degrees for input: " +
value);
```

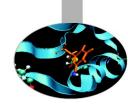
Debugging

Debug mechanisms

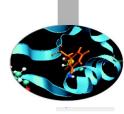


- The Web Interface
- Runtime monitor
- Log based debug

The Web User Interface



- Hadoop comes with a web UI for viewing information about your jobs. It is useful for following a job's progress while it is running, as well as finding job statistics and logs after the job has completed.
- You can find the UI at http://127.0.0.1:50030/
- \$ docker run -p 127.0.0.1:50030:50030 -p 127.0.0.1:50070:50070 -i -t cineca/hadoop-mrjob:1.2.1 /etc/bootstrap.sh -bash



db75867f9e2c Hadoop Map/Reduce Administration

State: RUNNING

Started: Sun Nov 30 11:13:55 UTC 2014

Version: 1.2.1, r1503152

Compiled: Mon Jul 22 15:23:09 PDT 2013 by mattf

Identifier: 201411301113

SafeMode: OFF

Cluster Summary (Heap Size is 72 MB/889 MB)

Running Map Tasks	Running Reduce Tasks	Total Submissions	Nodes	Occupied Map Slots	Occupied Reduce Slots	Reserved Map Slots	Reserved Reduce Slots	Map Task Capacity	Reduce Task Capacity	Tasks/Node	Blacklisted Nodes	Graylisted Nodes	Excluded Nodes
0	0	1	1	0	0	0	0	2	2	4.00	<u>0</u>	<u>0</u>	<u>0</u>

Scheduling Information

Queue Name	State	Scheduling Information
default	running	N/A

Filter (Jobid, Priority, User, Name)

Example: 'user:smith 3200' will filter by 'smith' only in the user field and '3200' in all fields

Running Jobs

none

User: root

Job Name: streamjob5169397935625686158.jar

Job File: hdfs://db75867f9e2c:9000/tmp/hadoop-root/mapred/staging/root/.staging/job 201411301113 0001/job.xml

Submit Host: db75867f9e2c Submit Host Address: 172.17.0.6 Job-ACLs: All users are allowed

Job Setup: Successful Status: Succeeded

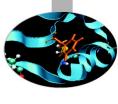
Started at: Sun Nov 30 11:19:03 UTC 2014 Finished at: Sun Nov 30 11:19:23 UTC 2014

Finished in: 20sec

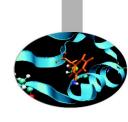
Job Cleanup: Successful

Kind	% Complete	Num Tasks	Pending	Running	Complete	Killed	Failed/Killed Task Attempts
<u>map</u>	100.00%	2	0	0	2	0	0/0
reduce	100.00%	1	0	0	1	0	0/0

	Counter	Мар	Reduce	Total
File Input Format Counters	Bytes Read	0	0	554,451
	SLOTS_MILLIS_MAPS	0	0	12,887
	Launched reduce tasks	0	0	1
	Total time spent by all reduces waiting after reserving slots (ms)	0	0	0
Job Counters	Total time spent by all maps waiting after reserving slots (ms)	0	0	0
	Launched map tasks		0	2
	Data-local map tasks	0	0	2
	SLOTS_MILLIS_REDUCES	0	0	10,031
File Output Format Counters	Bytes Written	0	0	43
	FILE_BYTES_READ	0	545,621	545,621
FileSystemCounters	HDFS_BYTES_READ	554,781	0	554,781
rilesystemcounters	FILE_BYTES_WRITTEN		606,362	1,273,689
	HDFS_BYTES_WRITTEN	0	43	43

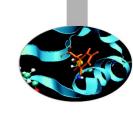


Hadoop Reporter



- The fastest way of debugging programs is via print statements, and this is certainly possible in Hadoop.
- However, there are complications to consider: with programs running on tens, hundreds, or thousands of nodes, how do we find and examine the output of the debug statements, which may be scattered across these nodes?
- For a particular case, where we are looking for (what we think
 is) an unusual case, we can use a debug statement to log
 to standard error, in conjunction with a message to
 update the task's status message to prompt us to look in
 the error log. The web UI makes this easy, as you will see.

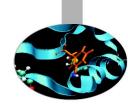
Hadoop Reporter



"A facility for Map-Reduce applications to report progress and update counters, status information etc."

```
if (temperature > 1000) {
    System.err.println("Temperature over 100 degrees
    for input: " + value);
    reporter.setStatus("Detected possibly corrupt
    record: see logs.");
    reporter.incrCounter(Temperature.OVER_100, 1);
}
```


Hadoop Reporter

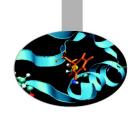


Hadoop map task list for job 200904110811 0003 on ip-10-250-110-47

Completed Tasks

Task	Complete	Status	Start Time	Finish Time	Errors	Counters
task 200904110811 0003 m 000043	100.00%	hdfs://ip- 10-250-110-47.ec2.internal /user/root/input/ncdc/all /1949.gz:0+220338475	11-Apr-2009 09:00:06	11-Apr-2009 09:01:25 (1mins, 18sec)		10
task 200904110811 0003 m 000044	100.00%	Detected possibly corrupt record: see logs.	11-Apr-2009 09:00:06	11-Apr-2009 09:01:28 (1mins, 21sec)		11
task 200904110811 0003 m 000045	100.00%	hdfs://ip- 10-250-110-47.ec2.internal /user/root/input/ncdc/all /1970.gz:0+208374610	11-Apr-2009 09:00:06	11-Apr-2009 09:01:28 (1mins, 21sec)		10

Runtime monitor

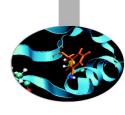


- The Java Platform Debugger Architecture is a collection of APIs to debug Java code.
- Java Debugger Interface (JDI) defines a high-level Java language interface that developers can easily use to write remote debugger application tools.

```
$ export HADOOP_OPTS="-
agentlib:jdwp=transport=dt_socket,server=y,suspend=
y, address=8000"
```

CINECA

Log based debug



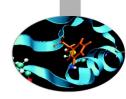
Python

```
sys.stderr(out).write("REDUCER INPUT: ({0},{1})\n".format(j,
values))
```

Java

```
System.err.println("Temperature over 100 degrees for input: " +
value);
```


Debugging/profiling



Job Configuration: JobId - job_201411301113_0001

name	
ob.end.retry.interval	30000
o.bytes.per.checksum	512
mapred.job.tracker.retiredjobs.cache.size	1000
mapreduce.jobhistory.cleaner.interval-ms	86400000
mapred.queue.default.acl-administer-jobs	*
dfs.image.transfer.bandwidthPerSec	0
mapred.task.profile.reduces	0-2
mapreduce.jobtracker.staging.root.dir	\${hadoop.tmp.dir}/mapred/staging
mapreduce.job.cache.files.visibilities	true,true
mapred.job.reuse.jvm.num.tasks	1
dfs.block.access.token.lifetime	600
mapred.reduce.tasks.speculative.execution	true
mapred.job.name	streamjob5169397935625686158.jar
hadoop.http.authentication.kerberos.keytab	\${user.home}/hadoop.keytab
ffs.permissions.supergroup	supergroup
o.seqfile.sorter.recordlimit	1000000
stream.reduce.output.reader.class	org.apache.hadoop.streaming.io.TextOutputReader
nadoop.relaxed.worker.version.check	false
napred.task.tracker.http.address	0.0.0.0:50060
tream.reduce.input.writer.class	org.apache.hadoop.streaming.io.TextInputWriter
dfs.namenode.delegation.token.renew-interval	86400000
mapred.cache.archives.timestamps	1417346338423
s.ramfs.impl	org.apache.hadoop.fs.InMemoryFileSystem
mapred.system.dir	\${hadoop.tmp.dir}/mapred/system
dfs.namenode.edits.toleration.length	0
mapred.task.tracker.report.address	127.0.0.1:0
mapreduce.reduce.shuffle.connect.timeout	180000
mapreduce.job.counters.max	120
dfs.datanode.readahead.bytes	4193404
mapred.healthChecker.interval	60000
mapreduce.job.complete.cancel.delegation.tokens	true
dfs.namenode.replication.work.multiplier.per.iteration	2
s.trash.interval	0

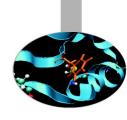
Profiling



- Like debugging, profiling a job running on a distributed system like MapReduce presents some challenges. Hadoop allows you to profile a fraction of the tasks in a job, and, as each task completes, pulls down the profile information to your machine for later analysis with standard profiling tools.
- HPROF is a profiling tool that comes with the JDK that, although basic, can give valuable information about a program's CPU and heap usage.

```
conf.setProfileEnabled(true);
conf.setProfileParams("-
agentlib:hprof=cpu=samples,heap=sites,depth=6," +
"force=n,thread=y,verbose=n,file=%s");
conf.setProfileTaskRange(true, "0-2");
```


Profiling



- Set mapred.task.profile to true
- Profile a small range of maps/reduces
 - mapred.task.profile.{maps|reduces}
- hprof support is built-in
- Use mapred.task.profile.params to set options for the debugger
- Possibly DistributedCache for the profiler's agent

NameNode 'db75867f9e2c:9000'

Started: Sun Nov 30 11:13:51 UTC 2014

Version: 1.2.1, r1503152

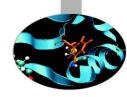
Compiled: Mon Jul 22 15:23:09 PDT 2013 by mattf Upgrades: There are no upgrades in progress.

Browse the filesystem Namenode Logs

Go back to DFS home

Live Datanodes : 1

	Node	Last Contact	Admin State	Configured Capacity (GB)	Used (GB)	Non DFS Used (GB)	Remaining (GB)	Used (%)	Used (%)	Remaining (%)	Bloc
l	db75867f9e2c	2	In Service	18.21	0	13.43	4.78	0		26.25	



Task	Complete	Status	Start Time	Finish Time	Errors	Counters
task 201411301113 0001 m 000000	100.00%	Records R/W=3586/1	30-Nov-2014 11:19:06	30-Nov-2014 11:19:11 (4sec)		<u>16</u>
task 201411301113 0001 m 000001	100.00%	Records R/W=3609/1	30-Nov-2014 11:19:06	30-Nov-2014 11:19:11 (4sec)		<u>16</u>

NameNode 'db75867f9e2c:9000'

Started: Sun Nov 30 11:13:51 UTC 2014

Version: 1.2.1, r1503152

Compiled: Mon Jul 22 15:23:09 PDT 2013 by mattf
Upgrades: There are no upgrades in progress.

Browse the filesystem Namenode Logs

Cluster Summary

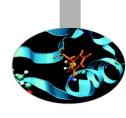
13 files and directories, 14 blocks = 27 total. Heap Size is 72 MB / 889 MB (8%)

: 18.21 GB Configured Capacity DFS Used 28.01 KB Non DFS Used 13.43 GB **DFS Remaining** 4.78 GB DFS Used% 0 % 26.25 % DFS Remaining% Live Nodes **Dead Nodes** 0 **Decommissioning Nodes** 0 Number of Under-Replicated Blocks : 0

NameNode Storage:

Storage Directory	Туре	State
/tmp/hadoop-root/dfs/name	IMAGE_AND_EDITS	Active

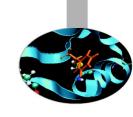
Cluster optimizations



The problem:

- Out of the box configuration not friendly
- Difficult to debug
- Performance tuning/optimizations is a black art

Hadoop basic options

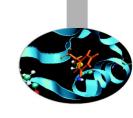


All hadoop commands are invoked by the bin/hadoop script. Running the hadoop script without any arguments prints the description for all commands.

```
Usage: hadoop [--config confdir] [COMMAND]
  [GENERIC_OPTIONS] [COMMAND_OPTIONS]
```

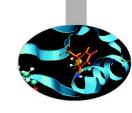
Hadoop has an option parsing framework that employs parsing generic options as well as running classes.

Hadoop basic options



- -conf <configuration file> Specify an application configuration file.
- -D property=value> Use value for given property.
- -fs <local|namenode:port> Specify a namenode.
- -jt <local|jobtracker:port> Specify a job tracker.
 Applies only to job.
- -files <comma separated list of files> Specify comma separated files to be copied to the map reduce cluster. Applies only to job.
- -libjars <comma seperated list of jars> Specify comma separated jar files to include in the classpath. Applies only to job.
- -archives <comma separated list of archives> Specify comma separated archives to be unarchived on the compute machines. Applies only to job.

Configuration parameters

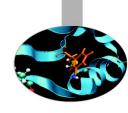


Compression <u>mapred.compress.map.output</u> → Map Output Compression

- Default: False
- Pros: Faster disk writes, lower disk space usage, lesser time spent on data transfer (from mappers to reducers).
- Cons: Overhead in compression at Mappers and decompression at Reducers.
- Suggestions: For large cluster and large jobs this property should be set true.

\$ hadoop -Dmapred.compress.map.output=<false|true>

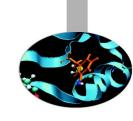
Speculative Execution



Speculative Execution <u>mapred.map/reduce.speculative.execution</u>

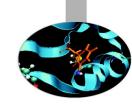
- → Enable/Disable task (map/reduce) speculative Execution
- Default: True
- Pros: Reduces the job time if the task progress is slow due to memory unavailability or hardware degradation.
- Cons: Increases the job time if the task progress is slow due to complex and large calculations. On a busy cluster speculative execution can reduce overall throughput, since redundant tasks are being executed in an attempt to bring down the execution time for a single job.
- Suggestions: In large jobs where average task completion time is significant (> 1 hr) due to complex and large calculations and high throughput is required the speculative execution should be set to false.

Speculative execution



- It is possible for one Map task to run more slowly than the others (perhaps due to faulty hardware, or just a very slow machine)
- It would appear that this would create a bottleneck
 - The reduce method in the Reducer cannot start until every Mapper has finished
- Hadoop uses speculative execution to mitigate against this
 - If a Mapper appears to be running significantly more slowly than the others, a new instance of the Mapper will be started on another machine, operating on the same data
 - The results of the first Mapper to finish will be used
 - Hadoop will kill off the Mapper which is still running

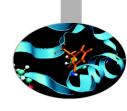
Number of Maps/Reducers



Number of Maps/Reducers
<u>mapred.tasktracker.map/reduce.tasks.maximum</u> → Maximum tasks (map/reduce) for a tasktracker

- Default: 2
- Suggestions: Recommended range (cores_per_node)/2 to 2x(cores_per_node), especially
 for large clusters. This value should be set according to
 the hardware specification of cluster nodes and resource
 requirements of tasks (map/reduce).

File block size



File block size <u>dfs.block.size</u> → File system block size

• **Default**: 67108864 (bytes)

Suggestions:

- Small cluster and large data set: default block size will create a large number of map tasks. e.g. Input data size = 160 GB and dfs.block.size = 64 MB then the minimum no. of maps= (160*1024)/64 = 2560 maps.
- If dfs.block.size = 128 MB minimum no. of maps= (160*1024)/128 = 1280 maps.
- If dfs.block.size = 256 MB minimum no. of maps= (160*1024)/256 = 640 maps.
- In a small cluster (6-10 nodes) the map task creation overhead is considerable. So dfs.block.size should be large in this case but small enough to utilize all the cluster resources. The block size should be set according to size of the cluster, map task complexity, map task capacity of cluster and average size of input files.

Sort size

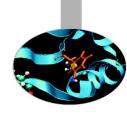


Sort size <u>io.sort.mb</u> → Buffer size (MBs) for sorting

• **Default**: 100

• **Suggestions**: For Large jobs (the jobs in which map output is very large), this value should be increased keeping in mind that it will increase the memory required by each map task. So the increment in this value should be according to the available memory at the node. Greater the value of io.sort.mb, lesser will be the spills to the disk, saving write to the disk

Sort factor

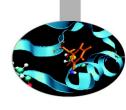


Sort factor *io.sort.factor* → Stream merge factor

• **Default**: 10

• **Suggestions**: For Large jobs (the jobs in which map output is very large and number of maps are also large) which have large number of spills to disk, value of this property should be increased. The number of input streams (files) to be merged at once in the map/reduce tasks, as specified by io.sort.factor, should be set to a sufficiently large value (for example, 100) to minimize disk accesses. Increment in io.sort.factor, benefits in merging at reducers since the last batch of streams (equal to io.sort.factor) are sent to the reduce function without merging, thus saving time in merging.

JVM Reuse

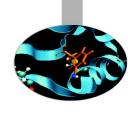


JVM reuse <u>mapred.job.reuse.jvm.num.tasks</u> → Reuse single JVM

Default: 1

Suggestions: The minimum overhead of JVM creation for each task is around 1 second. So for the tasks which live for seconds or a few minutes and have lengthy initialization, this value can be increased to gain performance.

Reduce parallel copies



Reduce parallel copies <u>mapred.reduce.parallel.copies</u> → Threads for parallel copy at reducer

- Default: 5
- Description: The number of threads used to copy map outputs to the reducer.
- Suggestions: For Large jobs (the jobs in which map output is very large), value of this property can be increased keeping in mind that it will increase the total CPU usage.

Welcome!

Tool and techniques for massive data processing

Giuseppe Fiameni April 12th 2016

Why this course?

- Data are becoming more and more important
- Processing large data sets has become an issue for young researchers
- Many interesting technologies are emerging and entering the HPC domain
- HPC common technologies, although are the only viable solutions in many cases, have a steep learning curve which limits their wide adoption

Goals

During this course, you will learn:

- the trends and challenges surrounding the BigData definition
- how the most relevant technologies and methods in this domain work
 - Map-Reduce
 - Apache Hadoop
 - Apache Spark, Apache SparkSQL
 - Apache Spark MLLIB (Machine Learning Library)
- how to structure and program your code using Python/Scala

General notes

- Each participant will receive personal credentials to access Cineca resources for a limited amount of time
 - requests for extensions are possible
- There is one workstation every two participants:
 - **U**: corsi **P**: corsi_2013!
- Course web site:
 - https://goo.gl/Pq03qz
- Feel free to ask questions at any time → do not be shy!

	Thursday, April 14			
09.00 - 09.30	Apache SparkR	Giorgio Pedrazzi Giovanni Simonini Song Zhu**		
09.30 - 10.00	Apache Spark Exercises	Giovanni Simonini Giorgio Pedrazzi Song Zhu		
10.00 - 12.30	Apache Spark Exercises	Giovanni Simonini Giorgio Pedrazzi Song Zhu		
12.30 - 14.00	Lunch Break			
14.00 - 15.30	Apache Spark MLLib	Giorgio Pedrazzi Song Zhu		
15.30 - 17.30	Apache Spark MLLib	Giorgio Pedrazzi Song Zhu		

^{*}Giuseppe Fiameni, Paolo D'Onorio De Meo, Giorgio Pedrazzi - CINECA **Giovanni Simoni, Song Zhu - University of Modena and Reggio Emilia

	Tuesday, April 12		
09.00 - 09.30	Registration		
09.30 - 09.40	Introduction/logistics/agenda	Giuseppe Fiameni*	
09.40 - 10.30	Big Data and HPC	Giuseppe Fiameni	
10.30 - 11.00	Coffee break		
11.00 - 11.40	Brief introduction to Map-Reduce and Hadoop (Hadoop, HDFS, Yarn)	Giuseppe Fiameni	
11.40 - 12.30	Set-up of the environment	Paolo D'Onorio De Meo* Giuseppe Fiameni	
12.30 - 14.00	Lunch break		
14.00 - 15.00	Brief introduction to iPython MrJob/Hadoop Exercies	Paolo D'Onorio De Meo Giuseppe Fiameni	
15.00 - 15.30	Coffee Break		
15.30 - 17.30	MrJob/Hadoop Exercises	Paolo D'Onorio De Meo Giuseppe Fiameni	
17.30	End of the first day		

	Wednesday, April 13		
09.30 - 11.00	MrJob/Hadoop Exercises	Paolo D'Onorio De Meo Giuseppe Fiameni	
11.00 - 11.15	Coffee break		
11.15 - 12.30	MrJob/Hadoop Exercises (NGS Use Case)	Paolo D'Onorio De Meo Giuseppe Fiameni	
12.30 - 14.00	Lunch break		
14.00 - 15.00	Apache Spark	Giovanni Simonini** Giorgio Pedrazzi*	
15.00 - 16.00	Apache Spark Examples	Giovanni Simonini Giorgio Pedrazzi	
16.00 - 16.30	Coffee break		
16.30 - 17.30	Apache SparkSQL	Giovanni Simonini Giorgio Pedrazzi	
17.30	End of the second day		

	Thursday, April 14		
09.00 - 09.30	Apache SparkR	Giorgio Pedrazzi Giovanni Simonini Song Zhu**	
09.30 - 10.00	Apache Spark Exercises	Giovanni Simonini Giorgio Pedrazzi Song Zhu	
10.00 - 12.30	Apache Spark Exercises	Giovanni Simonini Giorgio Pedrazzi Song Zhu	
12.30 - 14.00	Lunch Break		
14.00 - 15.30	Apache Spark MLLib	Giorgio Pedrazzi Song Zhu	
15.30 - 17.30	Apache Spark MLLib	Giorgio Pedrazzi Song Zhu	

^{*}Giuseppe Fiameni, Paolo D'Onorio De Meo, Giorgio Pedrazzi - CINECA **Giovanni Simoni, Song Zhu - University of Modena and Reggio Emilia

Quick poll

- How many of you already know part of the mentioned Big Data technologies?
- How many of you know any HPC methods (MPI, OpenMP, etc.)?
- How many of you know Python?
- Scala?

Before starting

CINECA

Size of computational applications

Computational Dimension:

number of operations $\,$ needed to solve the problem, in general is a function of the size of the involved data structures (n, n^2 , n^3 , n log n, etc.)

flop - Floating point operations

indicates an arithmetic floating point operation.

flop/s - Floating points operations per second is a unit to measure the speed of a computer.

Computational problems today: 10¹⁵ - 10²² flop

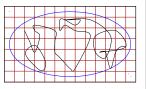
One year has about 3 x 107 seconds!

Most powerful computers today have reach a sustained performance is of the order of Tflop/s - Pflop/s (10^{12} - 10^{15} flop/s).

Example: Weather Prediction

Forecasts on a global scale:

- · 3D Grid to represent the Earth
 - ✓ Earth's circumference: ≅ 40000 km
 - \checkmark radius: \cong 6370 km
 - \checkmark Earth's surface: $≅ 4πr^2 ≅ 5 10^8 km^2$
- 6 variables:
 - temperature
 - r pressure
 - humidity
 - wind speed in the 3 Cartesian directions
- · cells of 1 km on each side
- 100 slices to see how the variables evolve on the different levels of the atmosphere
- a 30 seconds time step is required for the simulation with such resolution
- Each cell requires about 1000 operations per time step (Navier-Stokes turbulence and various phenomena)



Example: Weather Prediction / 1


```
Grid: 5 \cdot 10^8 \cdot 100 = 5 \cdot 10^{10} cells
```

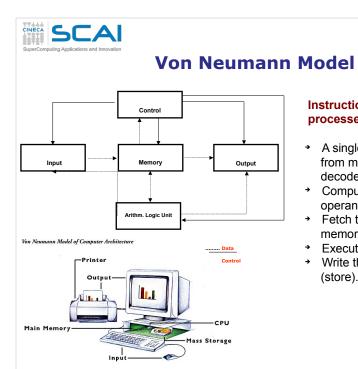
- · each cell is represented with 8 Byte
- · Memory space:
 - → (6 var) (8 Byte) (5 10¹⁰ cells) ≅ 2 10¹² Byte = 2TB

A 24 hours forecast needs:

- → 24 60 2 \cong 3 10³ time-step
- → (5•10¹⁰ cells) (10³ oper.) (3•10³ time-steps) = 1.5•10¹⁷ operations!

A computer with a power of 1Tflop/s will take 1.5•10⁵ sec.

 24 hours forecast will need 2days to run ... but we shall obtain a very accurate forecast



Instructions are processed sequentially

- A single instruction is loaded from memory (fetch) and decoded
- Compute the addresses of operands
- Fetch the operands from memory;
- → Execute the instruction;
- Write the result in memory (store).

The clock cycle τ is defined as the time between two adjacent pulses of oscillator that sets the time of the processor.

The number of these pulses per second is known as clock speed or clock frequency, generally measured in GHz (gigahertz, or billions of pulses per second).

The clock cycle controls synchronization of operations in a computer: All the operations inside the processor last a multiple of T.

Processor	τ (ns)	freq (MHz)
CDC 6600	100	10
Cyber 76	27.5	36,3
IBM ES 9000	9	111
Cray Y-MP C90	4.1	244
Intel i860	20	50
PC Pentium	< 0.5	> 2 GHz
Power PC	1.17	850
IBM Power 5	0.52	1.9 GHz
IBM Power 6	0.21	4.7 GHz

Increasing the clock frequency:

The speed of light sets an upper limit to the speed with which electronic components can operate .

Propagation velocity of a signal in a vacuum: 300.000 Km/s = 30 cm/ns

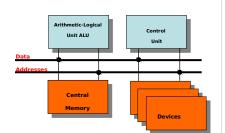
Heat dissipation problems inside the processor.

Also Quantum tunelling expected to become CINECA Also Quantum tunelling expected to become important.

Other factors that affect Performance

In addition to processor power, other factors affect the performance of computers:

- → Size of memory
- Bandwidth between processor and memory
- → Bandwidth toward the I/O system
- → Size and bandwidth of the cache
- Latency between processor, memory, and I/O system



Memory hierarchies

Time to run code = clock cycles running code + clock cycles waiting for memory

Memory access time: the *time* required by the processor to *access* data or to write data from / to *memory*

The hierarchy exists because :

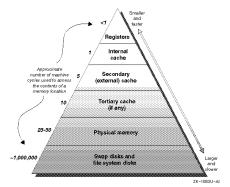
- · fast memory is expensive and small
- slow memory is cheap and big

Latency

- how long do I have to wait for the data?
- (cannot do anything while waiting)

Throughput

how many bytes/second. but not important if waiting.

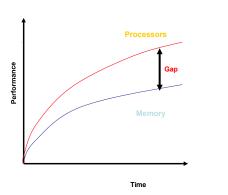


CINECA

Total time = latency + (amount of data / throughput)

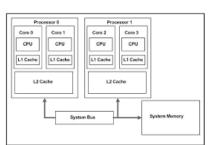
Memory access

- Important problem for the performance of any computer is access to main memory. Fast processors are useless if memory access is slow!
- Over the years the difference in speed between processors and main memory has been growing.



Cache Memory

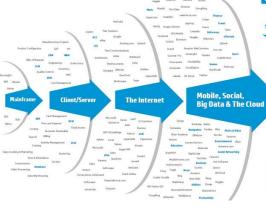
- High speed, small size memory used as a buffer between the main memory and the processor. When used correctly, reduces the time spent waiting for data from main memory.
- Present as various "levels" (e.g. L1, L2, L3, etc) according to proximity to the functional units of the processor.
- Cache efficiency depends on the locality of the data references:
 - Temporal locality refers to the re-use of data within relatively small time frame.
 - Spatial locality refers to the use of data within close storage locations (e.g. one dimensional array).
- Cache can contain Data, Instructions or both.



Aspects of parallelism

- It has been recognized for a long time that constant performance improvements cannot be obtained just by increasing factors such as processor clock speed parallelism is needed.
- Parallelism can be present at many levels:
 - Functional parallelism within the CPU
 - Pipelining and vectorization
 - Multi-processor and multi-core
 - Accelerators
 - Parallel I/O

A new style of IT emerging



Every 60 seconds

98,000+ tweets

695,000 status updates

11million instant messages

698,445 Google searches

168 million+ emails sent

1,820TB of data created

217 new mobile web users

Why?

- Overwhelming amounts of data generated by all kinds of devices, networks and programs, e.g. sensors, mobile devices, internet, social networks, computer simulations, satellites, radiotelescopes, LHC, etc.
- Increasing storage capacity
 - Storage capacity has doubled every 3 years since 1980 with prices steadily going down
 - √ 1,8 zetabytes: an estimation for the data stored by humankind in 2011 (Digital Universe study of International Data Corporation)
- Massive data can produce high-value information and knowledge
- Critical for data analysis, decision support, forecasting, business intelligence, research, (dataintensive) science, etc.

Big Data

A buzz word!

 With different meanings depending on your perspective - e.g. 100 TBs is big for a transaction processing system, but small for a world-wide search engine

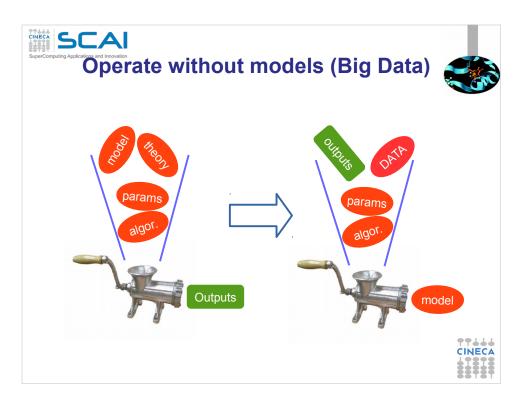
A simple "definition" (Wikipedia)

- Consists of data sets that grow so large that they become awkward to work with using onhand database management tools
 - Difficulties: capture, storage, search, sharing, analytics, visualizing

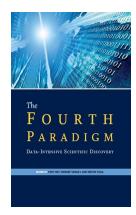
How big is big?

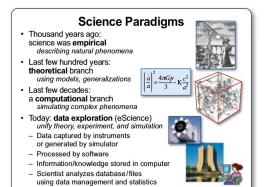
 Moving target: terabyte (1012 bytes), petabyte (1015 bytes), exabyte (1018), zetabyte (1021)

Scale is only one dimension of the problem!

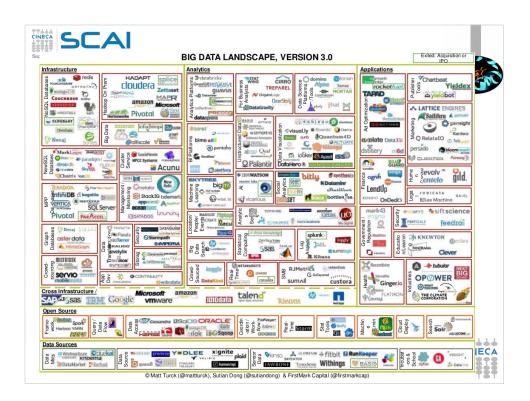


Where all began...a decade ago!





http://research.microsoft.com/enus/collaboration/fourthparadigm/4th_paradigm_book_complete_lr.pdf



Dimensions of the problem

CINECA

Volume

- Refers to massive amounts of data
- Makes it hard to store and manage, but also to analyze (big analytics)

Velocity

- Continuous data streams are being captured (e.g. from sensors or mobile devices) and produced
- · Makes it hard to perform online processing

Variety

- Different data formats (sequences, graphs, arrays, ...), different semantics, uncertain data (because of data capture), multiscale data (with lots of dimensions)
- Makes it hard to integrate and analyze

What do we do when there is too much data to process?

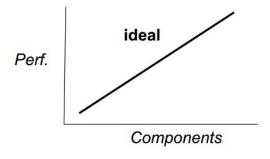
CINECA

Parallel data processing!

- Exploit a massively parallel computer
 - A computer that interconnects lots of CPUs, RAM and disk units
- · To obtain
 - High performance through data-based parallelism
 - *High throughput for transaction-oriented (OLTP) loads
 - *→*Low response time for decision-support (OLAP) queries
 - High availability and reliability through data replication
 - Extensibility with the ideal goals
 - *→*Linear speed-up
 - *→*Linear scale-up

Speed-up

 Linear increase in performance for a constant database size and load, and proportional increase of the system components (CPU, memory, disk)



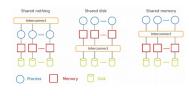
Scale-up

 Sustained performance for a linear increase of database size and load, and proportional increase of components

Perf.	ideal	
	Components + (db & load)	CINE

Parallel Architectures for Data Processing

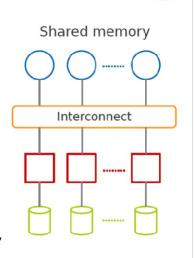
- Three main alternatives, depending on how processors, memory and disk are interconnected
 - Shared-memory computer
 - · Shared-disk cluster
 - · Shared-nothing cluster



DeWitt, D. and Gray, J. "Parallel database systems: the future of high performance database systems". ACM Communications, 35(6), 85-98, 1992.

Shared Memory

- All memory and disk are shared
 - Symmetric Multiprocessor (SMP)
 - Recent: Non Uniform Memory
 - + Simple for apps, fast com., load balancing
 - Complex interconnect limits extensibility, cost
- For write-intensive workloads, not for big data

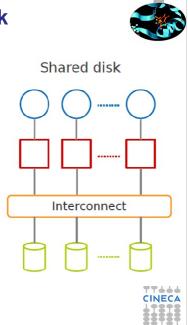


Shared Disk

- Disk is shared, memory is private
 - Storage Area Network (SAN) to interconnect memory and disk (block level)
 - Needs distributed lock manager (DLM) for cache coherence

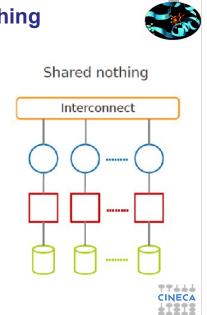
+ Simple for apps, extensibility

- Complex DLM, cost
- For write-intensive workloads or big data



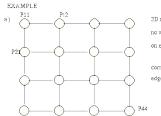
Shared Nothing

- No sharing of memory or disk across nodes
 - No need for DLM
 - But needs data partitioning
 - + highest extensibility, cost
 - updates, distributed trans
- For big data (read intensive)



Example networks

CINECA



2D mesh of width 4 with no wraparound connections on edge or corner nodes corner nodes have degree 2

corner nodes have degree 2 edge nodes have degree 3

C)

MESH Topology

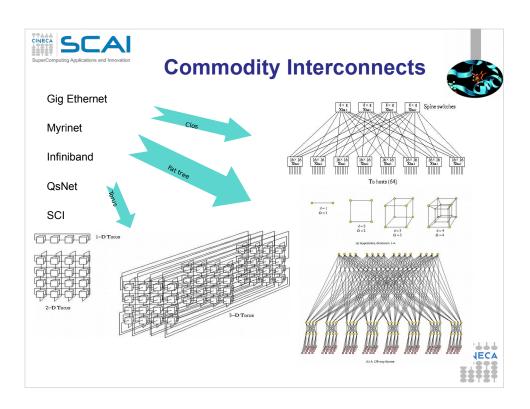
Some variations of the mesh model have wrap-around type connections between the nodes to the edges of the mesh (torus topology).

The Cray T3E adopts a 3D torus topology

IBM BG/Q adopts a 5D torus topology

 $k=3\ w=3$ i.e. 3 ^ 3 = 27 nodes $\label{eq:with}$ with wraparound connections all nodes have degree 6 (2k)

Toroidal Topology



Simple Model for Parallel Data

Shared-nothing architecture

The most general and scalable

Set-oriented

ullet Each dataset $oldsymbol{D}$ is represented by a table of rows

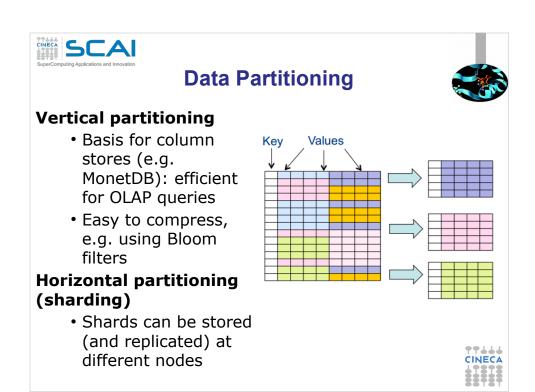
Key-value

- Each row is represented by a <key, value> pair where
 - → Key uniquely identifies the value in D
 - → Value is a list of (attribute name : attribute value)

Can represent structured (relational) data or NoSQL data

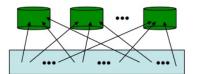
But graph is another story (see Pregel, DEX or Spark)
 Examples

- <row-id#5, (part-id:5, part-name:iphone5, supplier:Apple)>
- <doc-id#10, (content:<html> html text ... </html>)>
- <akeyword, (doc-id:id1, doc-id:id2, doc-id:id10)>



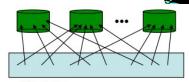
a query returns either "possibly in set" or "definitely not in set" On-Line Analytical Processing

Sharding Schemes



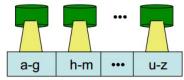
Round-Robin

- ith row to node (i mod n)
- perfect balancing
- · but full scan only



Hashing

- (k,v) to node h(k)
- exact-match queries
- · but problem with skew



Range

- (k,v) to node that holds k's interval
- exact-match and range queries
- · deals with skew

Different classes of applications

MPI (Message Passing Interface)

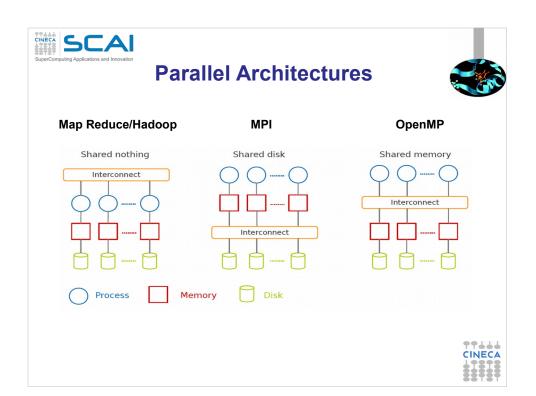
 A shared disk infrastructure for processing large data sets with a parallel algorithm on clusters

OpenMP (Open MultiProcessing)

 A shared memory infrastructure for processing large data sets with a parallel algorithm on a node

Map Reduce (Hadoop)

 A shared nothing architecture for processing large data sets with a distributed algorithm on clusters



Message Passing Interface (MPI)

- World's most popular distributed API
- MPI is "de facto standard" in scientific computing
- C and FORTRAN, ver. 2 in 1997

· What is MPI good for?

- Abstracts away common network communications
- Allows lots of control without bookkeeping
- Freedom and flexibility come with complexity
 - 300 subroutines, but serious programs with fewer than 10

· Basics:

- One executable run on every node
- Each node process has a rank ID number assigned
- Call API functions to send messages

http://www.mpi-forum.org/ http://forum.stanford.edu/events/2007/plenary/slides/Olukotun.ppt http://www.tbray.org/ongoing/When/200x/2006/05/24/On-Grids

Challenges with MPI

- · Deadlock is possible...
 - Blocking communication can cause deadlock
 - "crossed" calls when trading information
 - example:
 - Proc1: MPI_Receive(Proc2, A); MPI_Send(Proc2, B);Proc2: MPI_Receive(Proc1, B);
 - There are some solutions MPI_SendRecv()
- · Large overhead from comm. mismanagement
 - Time spent blocking is wasted cycles
 - Can overlap computation with non-blocking comm.
- Load imbalance is possible! Dead machines?
- Things are starting to look hard to code!

MPI Send(Proc1, A);

Brief recap

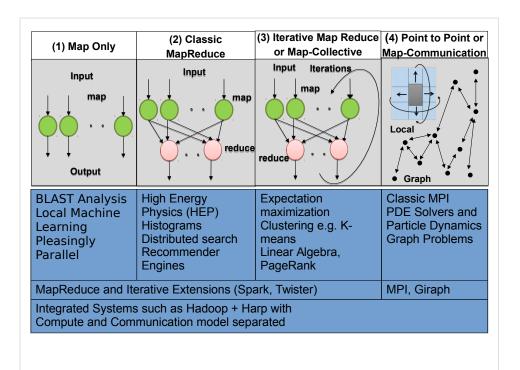
Map Reduce flow

· Programmers must specify:

- All values with the same key are reduced together
- · Optionally, also:
 - **partition** (k', number of partitions) → partition for k'
 - Often a simple hash of the key, e.g., hash(k') mod n
 - Divides up key space for parallel reduce operations **combine** (k', v') → <k', v'>*
 - Mini-reducers that run in memory after the map phase
 - Used as an optimization to reduce network traffic
- · The execution framework handles everything else...

"Everything Else"

- · The execution framework handles everything else...
 - **Scheduling**: assigns workers to map and reduce tasks
 - "Data distribution": moves processes to data
 - Synchronization: gathers, sorts, and shuffles intermediate data
 - **Errors and faults**: detects worker failures and restarts
- Limited control over data and execution flow
 - All algorithms must expressed in m, r, c, p
- You don't know:
 - Where mappers and reducers run
 - When a mapper or reducer begins or finishes
 - Which input a particular mapper is processing
 - Which intermediate key a particular reducer is processing



Are emerging data analytics techniques the new El Dorado?

Where and When using Apache Hadoop

Where

- Batch data processing, not real-time
- Highly parallel data intensive distributed applications
- Very large production deployments

- Process lots of unstructured data
- When your processing can easily be made parallel
- Running batch jobs is acceptable
- When you have access to lots of cheap hardware

Now it's easy to program for many CPUs

- Communication management effectively gone
 - · I/O scheduling done for us
- Fault tolerance, monitoring
 - · machine failures, suddenly-slow machines, etc are handled
- Can be much easier to design and program!

But ... it further restricts solvable problems

- Might be hard to express problem in MapReduce
- Data parallelism is key
- Need to be able to break up a problem by data chunks
- MapReduce is closed-source (to Google) C++
- Hadoop is open-source Java-based rewrite

MapReduce can be classified as a SIMD (single-instruction, multiple-data) problem.

- Indeed, the map step is highly scalable because the same instructions are carried out over all data. Parallelism arises by breaking the data into independent parts with no forward or backward dependencies (side effects) within a Map step; that is, the Map step may not change any data (even its own).
- ✓ The reducer step is similar, in that it applies the same reduction process
 to a different set of data (the results of the Map step).
- In general, the MapReduce model provides a functional, rather than procedural, programing model. Similar to a functional language, MapReduce cannot change the input data as part of the mapper or reducer process, which is usually a large file. Such restrictions can at first be seen as inefficient; however, the lack of side effects allows for easy scalability and redundancy.

An HPC cluster, on the other hand, can run SIMD and MIMD (multiple-instruction, multiple-data) jobs.

The programmer determines how to execute the parallel algorithm. Users, however, are not restricted when creating their own MapReduce application within the framework of a typical HPC cluster.

A Tale of Two Data-Intensive Paradigs: Applications, Abstractions, and Architectures Shantenu Jha , Judy Qiu, Andre Luckow , Pradeep Mantha , Geoffrey C.Fox

When to use Apache Hadoop

Your Data Sets Are Really Big

Don't even think about Hadoop if the data you want to process is measured in MBs or GBs. If the data driving the main problem you are hoping to use Hadoop to solve is measured in GBs, save yourself the hassle and use Excel, a SQL BI tool on Postgres, or some similar combination. On the other hand, if it's several TB or (even better) measured in petabytes, Hadoop's superior scalability will save you a considerable amount of time and money

You Celebrate Data Diversity

 One of the advantages of the Hadoop Distributed File System (HDFS) is it's really flexible in terms of data types. It doesn't matter whether your raw data is structured, semi-structured (like XML and log files), unstructured (like video files).

When to use MapReduce

- You Find Yourself Throwing Away Perfectly Good Data
 - One of the great things about Hadoop is its capability to store petabytes of data. If you find that you are throwing away potentially valuable data because its costs too much to archive, you may find that setting up a Hadoop cluster allows you to retain this data, and gives you the time to figure out how to best make use of that data.

SuperComputing Applications and Innovation When to NOT use **MapReduce**

CINECA

You Need Answers in a Hurry

- Hadoop is probably not the ideal solution if you need really fast access to data. The various SQL engines for Hadoop have made big strides in the past year, and will likely continue to improve. But if you're using Map-Reduce to crunch your data, expect to wait days or even weeks to get results back.

Your Queries Are Complex and Require Extensive Optimization

- Hadoop is great because it gives you a massively parallel cluster for low-cost Lintel servers and scads of cheap hard disk capacity. While the hardware and scalability is straightforward, getting the most out of Hadoop typically requires a hefty investment in the technical skills required to optimize queries.

SuperComputing Applications and Innovation When to NOT use **MapReduce**

· You Require Random, Interactive Access to Data

The pushback from the limitations of the batch-oriented MapReduce paradigm in early Hadoop led the community to improve SQL performance and boost its capability to serve interactive gueries against random data. While SQL on Hadoop is getting better, in most cases it's not a reason in of itself to adopt Hadoop.

You Want to Store Sensitive Data

Hadoop is evolving quickly and is able to do a lot of things that it couldn't do just a few years ago. But one of the things that it's not particularly good at today is storing sensitive data. Hadoop today has basic data and use access security. And while these features are improving by the month, the risks of accidentally losing personally identifiable information due to Hadoop's less-than-stellar security capabilities is probably not worth the risk.

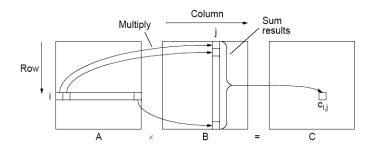
Now it's easy to program for many CPUs

- Communication management effectively gone
 - · I/O scheduling done for us
- Fault tolerance, monitoring
 - · machine failures, suddenly-slow machines, etc are handled
- Can be much easier to design and program!
- Can cascade several (many?) Map-Reduce tasks

But ... it further restricts solvable problems

- Might be hard to express problem in Map-Reduce
- Data parallelism is key
- Need to be able to break up a problem by data chunks
- Map-Reduce is closed-source (to Google) C++
- Hadoop is open-source Java-based rewrite

- · Basic matrix multiplication on a 2-D grid
- Matrix multiplication is an important application in HPC and appears in many areas (linear algebra)
- C = A * B where A, B, and C are matrices (two-dimensional arrays)
- A restricted case is when B has only one column, matrix-vector product, which appears in representation of linear equations and partial differential equations



$$c_{i,j} = \sum_{k=0}^{l-1} a_{i,k} b_{k,j}$$

$$AB = C$$

$$C_{ij} = \sum_{k} A_{ik} B_{kj}$$

A is stored by row (\$ head data/mat/smat_10x5_A)

```
0 0 0.599560659528 4 -1.53589644057
1
2 2 0.260564861569
3
```

- 4 0 0.26719729583 1 0.839470246524
- 5 2 -1.49761307371
- 6 0 0.558321894518 1 1.22774377511
- 7 2 -1.09283410126
- 8 1 -0.912374571316 3 1.40678001003
- 9 0 -0.402945890763

B is stored by row (\$ head data/mat/smat_5x5_B)

- 0 0 0.12527732342 3 1.02407852061 4 0.121151207685
- 1 0 0.597062100484
- 2 2 1.24708888756
- 3 4 -1.45057798535
- 4 2 0.0618772663296

AB = C $C_{ij} = \sum_{k} A_{ik} B_{kj}$

Map 1 Align on columns

Reduce 1 Output A_{ik}B_{kj} keyed on (i,j)

Reduce 2 Output sum(A_{ik}, B_{kj})

Joinmap

column

mtype = self.parsemat()
vals = [float(v) for v in line.split()] row = int(vals[0])

rowvals = [(int(vals[i]),vals[i+1]) for i in xrange(1,len(vals),2)] if mtype==1:

rowvals are the entries in the row # we output the entire row for each

for val in rowvals:

reorganize data by columns
yield (val[0], (row, val[1])) else:

yield (row, (rowvals,))

Map 1 Align on columns

Reduce 1 Output $A_{ik}B_{kj}$ keyed on (i,j)

Reduce 2 Output $sum(A_{ik}, B_{ki})$


```
def joinred(self, key, vals):
    # each key is a column of the matrix.
    # and there are two types of values:
    # len == 2 (1, row, A_row,key) # a column of A
    # len == 1 rowvals # a row of B

# load the data into memory
brow = []
    acol = []
    for val in vals:
        if len(val) == 1:
            brow.extend(val[0])
        else:
            acol.append(val)

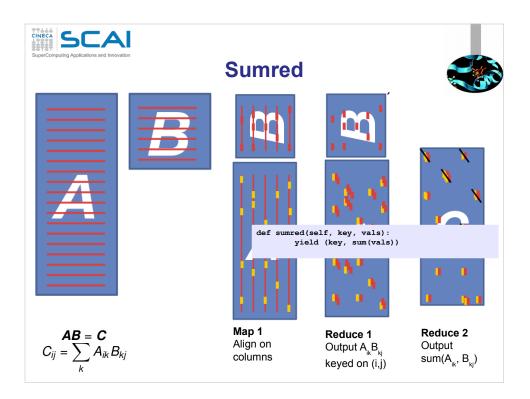
for (bcol,bval) in brow:
    for (arow,aval) in acol:
            yield ((arow,bcol), aval*bval)
```

$$AB = C$$

$$C_{ij} = \sum_{k} A_{ik} B_{kj}$$

Map 1 Align on columns

Reduce 1 Output A_{ik}B_{kj} keyed on (i,j) $\begin{aligned} & \textbf{Reduce 2} \\ & \text{Output} \\ & \text{sum}(\textbf{A}_{_{ik}}, \, \textbf{B}_{_{kj}}) \end{aligned}$



sparse_matmat.py

```
def joinred(self, key, vals):
from mrjob.job import MRJob
from mrjob.compat import get_jobconf_value
import itertools
                                                                              brow = []
                                                                              aco1 = []
                                                                              for val in vals:
                                                                                 if len(val) == 1:
class SparseMatMult(MRJob):
                                                                                    brow.extend(val[0])
     def configure_options(self):
         super(SparseMatMult,self).configure_options()
self.add_passthrough_option('--A-matrix',default='A',
                                                                              for (bcol,bval) in brow:
              dest='Amatname')
                                                                                    yield ((arow,bcol), aval*bval)
def parsemat(self):
    """ Return 1 if this is the A matrix, otherwise
return 2"""
                                                                          def sumred(self, key, vals):
                                                                             yield (key, sum(vals))
        fn = get_jobconf_value('map.input.file')
         if self.options.Amatname in fn:
                                                                          def rowgroupmap(self, key, val):
                                                                              yield key[0], (key[1], val)
         else:
              return 2
                                                                          def appendred(self, key, vals):
                                                                             yield key, list(itertools.chain.from_iterable(vals))
    def joinmap(self, key, line):
         mtype = self.parsemat()
vals = [float(v) for v in line.split()]
                                                                          def steps(self):
                                                                      return [self.mr(mapper=self.joinmap,
reducer=self.joinred),
         row = int(vals[0])
         rowvals = [(int(vals[i]),vals[i+1]) for i in
xrange(1,len(vals),2)]
                                                                                self.mr(mapper=None, reducer=self.sumred),
                                                                      self.mr(mapper=self.rowgroupmap,
reducer=self.appendred)]
        if mtype==1:
              # rowvals are the entries in the row
              # we output the entire row for each column
              for val in rowvals:
                                                                      if __name__='__main__':
                                                                                                                                      A
                  # reorganize data by columns
                                                                         SparseMatMult.run()
                  yield (val[0], (row, val[1]))
              yield (row, (rowvals,))
```


We can think of a matrix as a relation with three attributes:

- the row number, the column number, and the value in that row and column.
- M as a relation M (I, J, V), with tuples (i, j, m_{ii})
- N as a relation N (J, K, W), with tuples (j, k, n_{ik})
- The product M N is almost the natural join of M (I, J, V) and N (J, K, W), having only attribute J in common, would produce tuples (i, j, k, v, w) from each tuple (i, j, v) in M and tuple (j, k, w) in N
- This five-component tuple represents the pair of matrix elements $(\mathbf{m}_{ij}, \mathbf{n}_{jk})$. What we want instead is the product of these elements, that is, the four-component tuple $(\mathbf{i}, \mathbf{j}, \mathbf{k}, \mathbf{v} \times \mathbf{w})$, because that represents the product $\mathbf{m}_{ii}\mathbf{n}_{ik}$
- Once we have this relation as the result of one Map Reduce operation, we can perform grouping and aggregation, with I and K as the grouping attributes and the sum of $V \times W$ as the aggregation.

The Map Function:

• For each matrix element m_{ij} , produce the key value pair j, (M, i, m_{ij}) . Likewise, for each matrix element n_{jk} , produce the key value pair j, (N, k, n_{jk}) . Note that M and N in the values are not the matrices themselves but rather a bit indicating whether the element comes from M or N

The Reduce Function:

• For each key j, examine its list of associated values. For each value that comes from M , say (M, i, m_{ij}) , and each value that comes from N , say (N, k, n_{jk}), produce a key-value pair with key equal to (i, k) and value equal to the product of these elements, $m_{ij}n_{ik}$

The Map Function:

This function is just the identity. That is, for every input element with key (i, k) and value v, produce exactly this key-value pair

The Reduce Function:

 For each key (i, k), produce the sum of the list of values associated with this key. The result is a pair (i, k), v, where v is the value of the element in row i and column k of the matrix P = MN

matmat.py

import random import numpy import pickle from mrjob.job import MRJob from mrjob.compat import get_jobconf_value
import os class MatMult(MRJob): def configure_options(self): super(MatMult, self).configure_options()
self.add_passthrough_option('--A-matrix', default='A', dest='Amatname') fn = get_jobconf_value('map.input.file')
if self.options.Amatname in fn: return 1 else: return 2 def emit_values(self, _, line): mtype = self.parsemat()
a, b, v = line.split() v = float(v) if mtype == 1: i = int(a)
j = int(b) yield j, (0, i, v)
else:
 j = int(a)
 k = int(b)

yield j, (1, k, v)

```
def multiply_values(self, j, values):
       values_from1 = []
        values_from2 = []
       for v in values:
          if v[0] == 0:
              values_from1.append(v)
           elif v[0] == 1:
               values_from2.append(v)
       for (m, i, v1) in values from1:
          for (m, k, v2) in values_from2:
              yield (i, k), v1*v2
   def identity(self, k, v):
       yield k, v
    def add_values(self, k, values):
       yield k, sum(values)
   def steps(self):
       return [self.mr(mapper=self.emit_values,
                      reducer=self.multiply_values),
               self.mr(mapper=self.identity,
                      reducer=self.add_values)]
if __name__ == '__main__':
   MatMult.run()
```

CA

Matrix is stored by value (\$ head matmat_3x2_A)

- 0 0 1
- **0** 1 2
- **1** 0 2
- **1** 1 3
- **2** 0 4
- **2** 1 5

Log based debug

• Python

• Java

```
System.err.println("Temperature over 100 degrees for input: " + value);
```


Debugging

CINECA

Debug mechanisms

- The Web Interface
- Runtime monitor
- Log based debug

The Web User Interface

- **Hadoop** comes with a web UI for viewing information about your jobs. It is useful for following a job's progress while it is running, as well as finding job statistics and logs after the job has completed.
- You can find the UI at http://127.0.0.1:50030/
- \$ docker run -p 127.0.0.1:50030:50030 -p 127.0.0.1:50070:50070 -i -t cineca/hadoop-mrjob:1.2.1 /etc/bootstrap.sh -bash

db75867f9e2c Hadoop Map/Reduce Administration

State: RUNNING Started: Sun Nov 30 11:13:55 UTC 2014 Version: 1.21, r1503152 Compiled: Mon Jul 22 15:23:09 PDT 2013 by mattf Identifier: 201411301113 SafeMode: OFF

Cluster Summary (Heap Size is 72 MB/889 MB)

Running Map Tasks	Running Reduce Tasks		Nodes	Occupied Map Slots	Occupied Reduce Slots	Reserved Map Slots	Reserved Reduce Slots	Map Task Capacity	Reduce Task Capacity	Avg. Tasks/Node	Blacklisted Nodes	Graylisted Nodes	Excluded Nodes
0	0	1	1	0	0	0	0	2	2	4.00	<u>0</u>	<u>0</u>	<u>o</u>

Scheduling Information

Queue Name	State	Scheduling Information	
default	running	N/A	

Filter (Jobid, Priority, User, Name)

Example: 'user:smith 3200' will filter by 'smith' only in the user field and '3200' in all fields

Running Jobs

none

33737

User: root
Job Name: streamjob5169397935625686158.jar
Job File: https://doi.org/10.2014/1301113-0001/job.xml
Job File: https://doi.org/10.2014/1301113-0001/job.xml
Submit Host: https://doi.org/10.2014/1301113-0001/job.xml
Job-ACLis: https://doi.org/10.2014/1301113-0001/job.xml
Status: Succeeded
St

Kind	% Complete	Num Tasks	Pending	Running	Complete	Killed	Failed/Killed Task Attempts
<u>map</u>	100.00%	2	0	0	2	0	0/0
reduce	100.00%	1	0	0	1	0	0/0

	Counter	Мар	Reduce	Total
File Input Format Counters	Bytes Read	0	0	554,451
	SLOTS_MILLIS_MAPS	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12,887
	Launched reduce tasks	0	0	1
	Total time spent by all reduces waiting after reserving slots (ms)	0	0	0
Job Counters	Total time spent by all maps waiting after reserving slots (ms)	0	0	0
	Launched map tasks	0	0 0	2
	Data-local map tasks	0		2
	SLOTS_MILLIS_REDUCES	0	0	10,031
File Output Format Counters	Bytes Written	0	0	43
	FILE_BYTES_READ	0	545,621	545,621
FileSystemCounters	HDFS_BYTES_READ	554,781	0	554,781
rilesystemoduliters	FILE_BYTES_WRITTEN	667,327	606,362	1,273,689
	HDFS_BYTES_WRITTEN	0	43	43

Hadoop Reporter

- The fastest way of debugging programs is via print statements, and this is certainly possible in Hadoop.
- However, there are complications to consider: with programs running on tens, hundreds, or thousands of nodes, how do we find and examine the output of the debug statements, which may be scattered across these nodes?
- For a particular case, where we are looking for (what we think
 is) an unusual case, we can use a debug statement to log
 to standard error, in conjunction with a message to
 update the task's status message to prompt us to look in
 the error log. The web UI makes this easy, as you will see.

}

Hadoop Reporter

"A facility for Map-Reduce applications to report progress and update counters, status information etc."

```
if (temperature > 1000) {
  System.err.println("Temperature over 100 degrees
  for input: " + value);
  reporter.setStatus("Detected possibly corrupt
  record: see logs.");
  reporter.incrCounter(Temperature.OVER_100, 1);
```


Hadoop Reporter

Hadoop map task list for job 200904110811 0003 on ip-10-250-110-47

Completed Tasks

Task	Complete	Status	Start Time	Finish Time	Errors	Counters
task 200904110811 0003 m 000043	100.00%	hdfs://ip- 10-250-110-47.ec2.internal /user/root/input/ncdc/all /1949.gz:0+220338475	11-Apr-2009 09:00:06	11-Apr-2009 09:01:25 (1mins, 18sec)		10
task 200904110811 0003 m 000044	100.00%	Detected possibly corrupt record: see logs.	11-Apr-2009 09:00:06	11-Apr-2009 09:01:28 (1mins, 21sec)		11
task 200904110811 0003 m 000045	100.00%	hdfs://ip- 10-250-110-47.ec2.internal /user/root/input/ncdc/all /1970.gz:0+208374610	11-Apr-2009 09:00:06	11-Apr-2009 09:01:28 (1mins, 21sec)		10

Runtime monitor

- The Java Platform Debugger Architecture is a collection of APIs to debug Java code.
- Java Debugger Interface (JDI) defines a high-level Java language interface that developers can easily use to write remote debugger application tools.

```
$ export HADOOP_OPTS="-
agentlib:jdwp=transport=dt_socket,server=y,suspend=
y, address=8000"
```

http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/

Log based debug

Python

sys.stderr(out).write("REDUCER INPUT: $(\{0\},\{1\})\n$ ".format(j, values))

• Java

System.err.println("Temperature over 100 degrees for input: " + value);

Debugging/profiling

Job Configuration: JobId - job_201411301113_0001

name	
job.end.retry.interval	30000
io.bytes.per.checksum	512
mapred.job.tracker.retiredjobs.cache.size	1000
mapreduce.jobhistory.cleaner.interval-ms	86400000
mapred.queue.default.acl-administer-jobs	*
dfs.image.transfer.bandwidthPerSec	0
mapred.task.profile.reduces	0-2
mapreduce.jobtracker.staging.root.dir	S {hadoop.tmp.dir}/mapred/staging
mapreduce.job.cache.files.visibilities	true,true
mapred.job.reuse.jvm.num.tasks	1
dfs.block.access.token.lifetime	600
mapred.reduce.tasks.speculative.execution	true
mapred.job.name	streamjob5169397935625686158.jar
hadoop.http.authentication.kerberos.keytab	S{user.home}/hadoop.keytab
dfs.permissions.supergroup	supergroup
io.seqfile.sorter.recordlimit	1000000
stream.reduce.output.reader.class	org.apache.hadoop.streaming.io.TextOutputReader
hadoop.relaxed.worker.version.check	false
mapred.task.tracker.http.address	0.0.0.0:50060
stream.reduce.input.writer.class	org.apache.hadoop.streaming.io.TextInputWriter
dfs.namenode.delegation.token.renew-interval	86400000
mapred.cache.archives.timestamps	1417346338423
fs.ramfs.impl	org.apache.hadoop.fs.InMemoryFileSystem
mapred.system.dir	S{hadoop.tmp.dir}/mapred/system
dfs.namenode.edits.toleration.length	0
mapred.task.tracker.report.address	127.0.0.1:0
mapreduce.reduce.shuffle.connect.timeout	180000
mapreduce.job.counters.max	120
dfs.datanode.readahead.bytes	4193404
mapred.healthChecker.interval	60000
mapreduce.job.complete.cancel.delegation.tokens	true
dfs.namenode.replication.work.multiplier.per.iteration	2
fs.trash.interval	0
hadoon letty logs serve alleses	TRUO.

Profiling

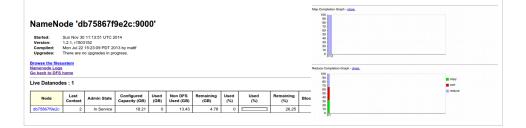
- Like debugging, profiling a job running on a distributed system like MapReduce presents some challenges. Hadoop allows you to profile a fraction of the tasks in a job, and, as each task completes, pulls down the profile information to your machine for later analysis with standard profiling tools.
- HPROF is a profiling tool that comes with the JDK that, although basic, can give valuable information about a program's CPU and heap usage.

```
conf.setProfileEnabled(true);
conf.setProfileParams("-
agentlib:hprof=cpu=samples,heap=sites,depth=6," +
"force=n,thread=y,verbose=n,file=%s");
conf.setProfileTaskRange(true, "0-2");
```

https://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html

Profiling

- Set mapred.task.profile to true
- Profile a small range of maps/reduces
 - mapred.task.profile.{maps|reduces}
- hprof support is built-in
- Use mapred.task.profile.params to set options for the debugger
- Possibly *DistributedCache* for the profiler's agent



Task	Complete	Status	Start Time	Finish Time	Errors	Counters
task 201411301113 0001 m 000000	100.00%	Records R/W=3586/1	30-Nov-2014 11:19:06	30-Nov-2014 11:19:11 (4sec)		<u>16</u>
task 201411301113 0001 m 000001	100.00%	Records R/W=3609/1	30-Nov-2014 11:19:06	30-Nov-2014 11:19:11 (4sec)		<u>16</u>

NameNode 'db75867f9e2c:9000'

Cluster Summary

Custer's summary

13 files and directories, 14 blocks = 27 total. Neap Size is 72 MB / 889 MB (8%)

Configured Capacity : 16,21 G8

OPS Used : 28.01 K8

Non DFS Used : 13.43 G8

DFS Remaining : 4.75 G8

DFS Remaining : 4.75 G8

DFS Remaining : 26,25 %

Lives Niedds : 1

Lives Niedds : 1

Lives Niedds : 0

Number of Under-Replicated Blocks : 0

Storage Directory	Туре	State
/tmp/hadoop-root/dfs/name	IMAGE_AND_EDITS	Active

Cluster optimizations

The problem:

- Out of the box configuration not friendly
- Difficult to debug
- Performance tuning/optimizations is a black art

Hadoop basic options

All hadoop commands are invoked by the bin/hadoop script. Running the hadoop script without any arguments prints the description for all commands.

Usage: hadoop [--config confdir] [COMMAND]
 [GENERIC_OPTIONS] [COMMAND_OPTIONS]

Hadoop has an option parsing framework that employs parsing generic options as well as running classes.

Hadoop basic options

- -conf <configuration file> Specify an application
 configuration file.
- -D property=value> Use value for given property.
- -fs <local|namenode:port> Specify a namenode.
- -jt <local|jobtracker:port> Specify a job tracker.
 Applies only to job.
- -files <comma separated list of files> Specify comma separated files to be copied to the map reduce cluster. Applies only to job.
- -libjars <comma seperated list of jars> Specify comma separated jar files to include in the classpath. Applies only to job.
- -archives <comma separated list of archives> Specify comma separated archives to be unarchived on the compute machines. Applies only to job.

Configuration parameters

Compression <u>mapred.compress.map.output</u> → Map Output Compression

- **Default**: False
- Pros: Faster disk writes, lower disk space usage, lesser time spent on data transfer (from mappers to reducers).
- **Cons**: Overhead in compression at Mappers and decompression at Reducers.
- **Suggestions**: For large cluster and large jobs this property should be set true.

\$ hadoop -Dmapred.compress.map.output=<false|true>

Speculative Execution

Speculative Execution <u>mapred.map/reduce.speculative.execution</u>
→ Enable/Disable task (map/reduce) speculative Execution

- Default: True
- **Pros**: Reduces the job time if the task progress is slow due to memory unavailability or hardware degradation.
- Cons: Increases the job time if the task progress is slow due
 to complex and large calculations. On a busy cluster
 speculative execution can reduce overall throughput, since
 redundant tasks are being executed in an attempt to bring
 down the execution time for a single job.
- **Suggestions**: In large jobs where average task completion time is significant (> 1 hr) due to complex and large calculations and high throughput is required the speculative execution should be set to false.

Speculative execution

- It is possible for one Map task to run more slowly than the others (perhaps due to faulty hardware, or just a very slow machine)
- It would appear that this would create a bottleneck
 - The reduce method in the Reducer cannot start until every Mapper has finished
- Hadoop uses speculative execution to mitigate against this
 - If a Mapper appears to be running significantly more slowly than the others, a new instance of the Mapper will be started on another machine, operating on the same data
 - The results of the first Mapper to finish will be used
 - · Hadoop will kill off the Mapper which is still running

Number of Maps/Reducers

Number of Maps/Reducers

<u>mapred.tasktracker.map/reduce.tasks.maximum</u> → Maximum tasks (map/reduce) for a tasktracker

- Default: 2
- **Suggestions**: Recommended range (cores_per_node)/2 to 2x(cores_per_node), especially for large clusters. This value should be set according to the hardware specification of cluster nodes and resource requirements of tasks (map/reduce).

File block size

File block size $\underline{dfs.block.size} \rightarrow$ File system block size

- **Default**: 67108864 (bytes)
- Suggestions:
 - Small cluster and large data set: default block size will create a large number of map tasks. e.g. Input data size = 160 GB and dfs.block.size = 64 MB then the minimum no. of maps= (160*1024)/64 = 2560 maps.
 - If dfs.block.size = 128 MB minimum no. of maps= (160*1024)/128 = 1280 maps.
 - If dfs.block.size = 256 MB minimum no. of maps= (160*1024)/256 = 640 maps.
 - In a small cluster (6-10 nodes) the map task creation overhead is considerable. So dfs.block.size should be large in this case but small enough to utilize all the cluster resources. The block size should be set according to size of the cluster, map task complexity, map task capacity of cluster and average size of input files.

Sort size

Sort size *io.sort.mb* → Buffer size (MBs) for sorting

- **Default**: 100
- **Suggestions**: For Large jobs (the jobs in which map output is very large), this value should be increased keeping in mind that it will increase the memory required by each map task. So the increment in this value should be according to the available memory at the node. Greater the value of io.sort.mb, lesser will be the spills to the disk, saving write to the disk

Sort factor

Sort factor *io.sort.factor* → Stream merge factor

• **Default**: 10

• **Suggestions**: For Large jobs (the jobs in which map output is very large and number of maps are also large) which have large number of spills to disk, value of this property should be increased. The number of input streams (files) to be merged at once in the map/reduce tasks, as specified by io.sort.factor, should be set to a sufficiently large value (for example, 100) to minimize disk accesses. Increment in io.sort.factor, benefits in merging at reducers since the last batch of streams (equal to io.sort.factor) are sent to the reduce function without merging, thus saving time in merging.

JVM Reuse

JVM reuse $\underline{mapred.job.reuse.jvm.num.tasks} \rightarrow \text{Reuse single}$ JVM

- Default: 1
- Suggestions: The minimum overhead of JVM creation for each task is around 1 second. So for the tasks which live for seconds or a few minutes and have lengthy initialization, this value can be increased to gain performance.

Reduce parallel copies

Reduce parallel copies $\underline{mapred.reduce.parallel.copies} \rightarrow$ Threads for parallel copy at reducer

- **Default**: 5
- **Description**: The number of threads used to copy map outputs to the reducer.
- **Suggestions**: For Large jobs (the jobs in which map output is very large), value of this property can be increased keeping in mind that it will increase the total CPU usage.

