
Machine learning with Spark

Giorgio Pedrazzi

School of Scientific Data Analytics and

Visualisation

Bologna, 21/06/2016

Agenda

• An introduction to Spark

• Examples with Spark MLlib in Scala and Python

• Unsupervised learning: Clustering
– Distance measures

– K-means

– Clustering validation

• Supervised learning: Classification
– Training and test

– Evaluation metrics

– Decision tree

– Naïve Bayes

• Spark is an open source in-memory computing

framework for distributed data processing and iterative

analysis on massive data volumes providing the ability to

develop applications in Java, Scala, Python and R.

• It has an advanced DAG execution engine that supports

cyclic data flow and in-memory computing.

• It has numerous advantages over Hadoop's MapReduce

execution engine, in both the speed with which it carries

out batch processing jobs and the wider range of

computing workloads it can handle.

• It integrates with the Hadoop ecosystem and data sources

(HDFS, Amazon S3, Hive, HBase, Cassandra, etc.)

Spark Ecosystem
Engineers use Spark’s

programming API to

develop systems that

implement business use

cases.

Data Scientists use

Spark for their ad-hoc

analysis that give

them results

immediately. Data

Scientists use SQL,

statistics and machine

learning.

Spark Ecosystem
• Spark SQL is designed to work with the Spark via SQL

and HiveQL. It allows developers to intermix SQL with

Spark’s programming languages.

• Spark Streaming provides processing of live streams of

data. It also provides the same degree of fault tolerance,

throughput, and scalability that the Spark Core provides.

• MLlib is the machine learning library that provides

multiple types of machine learning algorithms. All of these

algorithms are designed to scale out across the cluster as

well.

• GraphX is a graph processing library with APIs to

manipulate graphs and performing graph-parallel

computations.

Running Spark
Spark runs in five modes:

• The standalone local mode, where all Spark processes

are run within the same Java Virtual Machine (JVM)

process*

• The standalone cluster mode, using Spark's own built-in

job-scheduling framework

• Using Mesos, a popular open source cluster-

computing framework

• Using YARN (commonly referred to as NextGen

MapReduce), a Hadoop-related cluster-computing and

resource-scheduling framework

• On a HPC traditional environment with PBS installing the

spark package spark-on-hpc
 * Used during exercises with all-spark-notebook. The system is also

configurable to use Mesos

http://spark-packages.org/package/ekasitk/spark-on-hpc
http://spark-packages.org/package/ekasitk/spark-on-hpc
http://spark-packages.org/package/ekasitk/spark-on-hpc
http://spark-packages.org/package/ekasitk/spark-on-hpc
http://spark-packages.org/package/ekasitk/spark-on-hpc
https://github.com/jupyter/docker-stacks/tree/master/all-spark-notebook
https://github.com/jupyter/docker-stacks/tree/master/all-spark-notebook
https://github.com/jupyter/docker-stacks/tree/master/all-spark-notebook
https://github.com/jupyter/docker-stacks/tree/master/all-spark-notebook
https://github.com/jupyter/docker-stacks/tree/master/all-spark-notebook

Running Spark

A Spark program is two programs: a driver program and a

workers program

Worker programs run on cluster nodes or in local threads

Spark shell
• The Spark shell is a tool for rapid prototyping with

Spark. It helps to be familiar with Scala, but that

isn't necessary. The Spark shell works with

Scala, Python and R. The Spark shell allows you

to interactively query and communicate with the

Spark cluster. It can be invocated by these

commands

• ./bin/spark-shell (Scala)

• ./bin/pyspark (Python)

• ./bin/sparkR (R)

Notebook

Notebook-style development provides a more exploratory way to write code

than with traditional IDEs. Their interfaces are comprised of code blocks (cells),

which can stand alone or act in unison. It is a discovery process, where a

researcher experiments in one cell, then can continue to write code in a

subsequent cell depending on results from the first. When analyzing large

datasets, this conversational approach allows researchers to quickly discover

patterns or other artifacts of the data.

Jupyter Notebook

– Jupyter Notebook 4.0.x

– https://github.com/jupyter/docker-stacks/tree/master/all-spark-notebook

– Conda Python 3.x and Python 2.7.x environments

– Conda R 3.2.x environment

– Scala 2.10.x

– pyspark, pandas, matplotlib, scipy, seaborn, scikit-learn pre-installed for Python

– ggplot2, rcurl preinstalled for R

– Spark 1.5.1 for use in local mode or to connect to a cluster of Spark workers

– Mesos client 0.22 binary that can communicate with a Mesos master

– Unprivileged user jovyan (uid=1000, configurable, see options) in group users

(gid=100) with ownership over /home/jovyan and /opt/conda

– tini as the container entrypoint and start-notebook.sh as the default command

– Options for HTTPS, password auth, and passwordless sudo

Motivation

Current popular programming models for
clusters transform data flowing from stable
storage to stable storage

e.g., MapReduce:

Map

Map

Map

Reduce

Reduce

Input Output

Motivation
• Acyclic data flow is a powerful abstraction, but is

not efficient for applications that repeatedly reuse a

working set of data:

– Iterative algorithms (many in machine learning)

– Interactive data mining tools (R, Excel, Python)

• Spark makes working sets a first-class concept to

efficiently support these apps

Programming Model

• Spark introduces the concept of RDD (Resilient

Distributed Dataset), an immutable fault-tolerant,

distributed collection of objects that can be operated on in

parallel. An RDD can contain any type of object and is

created by loading an external dataset or distributing a

collection from the driver program.

• RDDs support two types of operations:
– Transformations are operations (such as map, filter, join, union, and so

on) that are performed on an RDD and which yield a new RDD containing

the result.

– Actions are operations (such as reduce, count, first, and so on) that return

a value after running a computation on an RDD.

http://spark.apache.org/docs/1.2.1/programming-guide.html
http://spark.apache.org/docs/1.2.1/programming-guide.html
http://spark.apache.org/docs/1.2.1/programming-guide.html
http://spark.apache.org/docs/1.2.1/programming-guide.html
http://spark.apache.org/docs/1.2.1/programming-guide.html
http://spark.apache.org/docs/1.2.1/programming-guide.html
http://spark.apache.org/docs/1.2.1/programming-guide.html
http://spark.apache.org/docs/1.2.1/programming-guide.html
http://spark.apache.org/docs/1.2.1/programming-guide.html
http://spark.apache.org/docs/1.2.1/programming-guide.html
http://spark.apache.org/docs/1.2.1/programming-guide.html

• Transformations in Spark are “lazy”, meaning that they do

not compute their results right away. Instead, they just

“remember” the operation to be performed and the dataset

(e.g., file) to which the operation is to be performed.

• The transformations are only actually computed when an

action is called and the result is returned to the driver

program. This design enables Spark to run more efficiently.

• By default, each transformed RDD may be recomputed

each time you run an action on it. However, you may also

persist an RDD in memory using the persist or cache

method, in which case Spark will keep the elements around

on the cluster for much faster access the next time you

query it.

Programming Model

RDD Operations

Transformations

(define a new RDD)

map

filter

sample

union

groupByKey

reduceByKey

join

cache

…

Parallel operations (Actions)

(return a result to driver)

reduce

collect

count

save

lookupKey

…

SparkSQL

• SparkSQL is a Spark component that supports querying

data either via SQL or via the Hive Query Language. It

originated as the Apache Hive port to run on top of Spark

(in place of MapReduce) and is now integrated with the

Spark stack. In addition to providing support for various

data sources, it makes it possible to weave SQL queries

with code transformations which results in a very

powerful tool.

https://spark.apache.org/sql/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual

DataFrames
• DataFrames have been introduced in Spark 1.3 as

extension to RDDs

• A DataFrame is a distributed collection of data organized

into named columns. It is conceptually equivalent to a

table in a relational database or a data frame in R/Python.

• DataFrames can be constructed from a wide array of

sources such as: structured data files, tables in Hive,

external databases, or existing RDDs.

• What you can do in Spark SQL, you can do in

DataFrames and vice versa.

• The DataFrame API is available in Scala, Java, Python,

and R.

http://spark.apache.org/docs/latest/api/scala/index.html
http://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/sql/DataFrame.html
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html
http://spark.apache.org/docs/latest/api/R/index.html

