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SPARK INTRODUCTION




MapReduce issues

MapReduce let users write programs for parallel computations using a set of
high-level operators:

* without having to worry about:

— distribution

— fault tolerance
* giving abstractions for accessing a cluster’s computational resources
* but lacks abstractions for leveraging distributed memory

* between two MR jobs writes results to an external stable storage system, e.g.,
HDFS

* Inefficient for an important class of emerging applications:
— iterative algorithms

* those that reuse intermediate results across multiple computations
* e.g. Machine Learning and graph algorithms

— interactive data mining

* where a user runs multiple ad-hoc queries on the same subset of the data
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The Spark Solution

Spark handles current computing frameworks’ inefficiency (iterative algorithms
and interactive data mining tools)

How!?
* keeping data in memory can improve performance by an order of magnitude

— Resilient Distributed Datasets (RDDs)
* up to 20x/40x faster than Hadoop for iterative applications

o Spa

RDDs provide a restricted form of shared memory:
* based on coarse-grained transformations

* RDDs are expressive enough to capture a wide class of computations

— including recent specialized programming models for iterative jobs, such as Pregel
(Giraph)
— and new applications that these models do not capture




PageRank Performance
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Other Iterative Algorithms
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Goals

Support batch, streaming, and

interactive computations in a unified

Batch U]
framework [ ] |
S
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Easy to combine batch, streaming, and interactive computations
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Easy to develop sophisticated algorithms

Compatible with existing open source ecosystem (Hadoop/HDFS)



Spark Ecosystem

MLlib
Streaming Gm(?::_rcco%ahbn User-friendly machine S ;::i?L Hive Storm MPI

Stream processing learning

Fast memory-optimized execution engine (i n/Java/Scala APIs) Hadoop MR

Tachyon Distributed Memory-Centric Storage System

Hadoop Distributed File System (HDFS)

Mesos Cluster resource manager, mutti-fenanc

. Supported Release . In Development D Related External Project
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Language Support

Section #Scala Java & P‘Jth‘J".
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Spark yes no yes
Spark SQL yes no yes
Tachyon no ves no
MLIIb yes no Vves
GraphX yes no no
Pipelines yes no no
SparkR R only R only R only
ADAM yes no | no
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RDDs

RDDs are fault-tolerant, parallel data structures:

* let users to explicitly
— persist intermediate results in memory
— control their partitioning to optimize data placement
— manipulate them using a rich set of operators

* RDDs provide an interface based on coarse-grained transformations
(e.g., map, filter and join) that apply the same operation to many
data items

— This allows them to efficiently provide fault tolerance by logging
the transformations used to build a dataset (its lineage)
e If a partition of an RDD is lost

— the RDD has enough information about how it was derived from
other RDDs to re-compute just that partition




Key Concepts

Write programs in terms of
transformations on distributed
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datasets
Resilient Distributed Datasets Operations
* Collections of objects spread across a cluster, * Transformations
stored in RAM or on Disk (e.g. map, filter, groupBy)
* Built through parallel transformations * Actions
* Automatically rebuilt on failure (e.g. count, collect, save)




Working With RDDs

textFile = sc.textFile('SomeFile.txt')
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Transfor

\

\

\

mations ‘|
1

linesWithSpark.count()
74

linesWithSpark_first()
# Apache Spark

linesWithSpark = textFile filter(lambda line: 'Spark' in line)

W SCA
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Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns
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Base RDD

lines = spark.textFile('hdfs://...") Cache 1
errors = lines.filter(lambda s: s.startswith("ERROR"'))
messages = errors.map(lambda s: s.split('\t"')[2])

messages.cache() Transformed RDD

Action: here is launched the computation (Lazy
Evaluaziont)
messages.filter(lambda s: 'mysgl' in s).count()

messages.filter(lambda s: 'php' in s).count()

Block 2

(-

Block 3




Scaling Down

if you don’t have enough memory, Spark degrade gracefully
* User can define custom policies to allocate memory to RDDs
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100,

HP

.
-

68.841405 Example of a task execution
" 80 - 988 58 061375 with different percentage of
: . - 03 cache available
E 60 | 40.740740
c 244 29747077
g 40 Lo 791
E I 11.530431
=
LU

902
b

Cache 25% 50% 5% Fully
disabled cached

% of working set in cache
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Fault Recovery
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RDDs track lineage information that can be used to efficiently re-compute lost
data

msgs = textFile.filter(lambda s: s.startsWith("ERROR"))
.map(lambda s: s.split('\t')[2])

[ HDFS File W { Filtered RDD} {Mapped RDDJ

J filter map
(func = startsWith (func = split(...))

(...))




Language Support

Python

lines = sc.textFile(...)
lines.filter(lambda s: 'ERROR' in s).count()

Scala

val lines = sc.textFile(...)
lines.filter(x => x.contains('ERROR')).count()

Java

JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {
Boolean call(String s) {
return s.contains('error');

})%count();

CINECA S C AI
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Standalone Programs
*Python, Scala, & Java

Interactive Shells
* Python & Scala

Performance

* Java & Scala are faster
due to static typing

e ...but Python is often
fine
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Data Frames

A DataFrame is a distributed collection of data organized
into named columns. It is conceptually equivalent to a table
in a relational database or a data frame in R/Python, but with
richer optimizations under the hood.

DataFrames can be constructed from a wide array of
sources such as: structured data files, tables in Hive, external
databases, or existing RDD:s.




Data Frames (samples)

# Constructs a DataFrame from the users table in Hive.
users = context.table("users")
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# from JSON files in S3
logs = context.load("s3n://path/to/data.json", "json")

# Create a new DataFrame that contains “young users” only
young = users.filter(users.age < 21)

# Alternatively, using Pandas-like syntax
young = users[users.age < 21]

# Increment everybody’'s age by 1
young.select(young.name, young.age + 1)

# Count the number of young users by gender
young.groupBy("gender").count()

# Join young users with another DataFrame called logs
young.join(logs, logs.userId == users.userld, "left outer")
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Interactive Shell
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* The Fastest Way to Learn Spark

[root@ip-172-31-11-254 ~]# fopt/cloudera/parcels/SPARK/pyspark

 Available in Python and Scala

AV T
. . f__ N A0 I version B.B.0
* Runs as an application on an /s
eXiSti ng Spark ClUSter. .. g:::g ::;::;tv:;:isgli.g;ﬁsilrzss:ﬂﬂgz, Sep 11 2812 @B8:34:23)

»»» file = sc.textFile{"hdfs://ip-172-31-11-254.us-west-2.compute.internal: 8020 /user/
hdfs/ec2-data/pageviews/20087/2007-12/pagecounts-20071280-180008. 2" )

=»» file.count()

* OR Can run locally
E:i?igle.filter(lambda line: "Holiday" in line).count()

o1
-
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JOB EXECUTION

# SCA
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Software Components

e Spark runs as a library in your Your application
program
(1 instance per app)

SparkContext

Cluster Local

* Runs tasks locally or on cluster manager threads
— Mesos, YARN or standalone
mode Worker Worker

Spark Spark
i executor executor
* Accesses storage systems via

Hadoop InputFormat API

HDFS or other storage
— Can use HBase, HDFS, S3, ...
# SCAl B




Task Scheduler

* General task graphs (

* Automatically pipelines
functions

* Data locality aware

* Partitioning aware
to avoid shuffles

NARROW/WIDE
DEPENDENCIES \

=RDD () = cached partition
CCCCCC XIN B



Advanced Features

* Controllable partitioning
— Speed up joins against a dataset

* Controllable storage formats

— Keep data serialized for efficiency, replicate to multiple
nodes, cache on disk

* Shared variables: broadcasts, accumulators
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SPARK INTERNALS

Pri0s
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RDD Are Interfaces

Partitions:

— set of partitions (e.g. one per block in
HDFS)

Dependencies:
— dependencies on parent RDDs

Iterator(/compute):
— given a parent partitions, apply a function

and return the new partition as iterator (e.

g. read the input split of a HDFS block)

PreferredLocactions (optional):

— define the preferred location for the
partitions

Partitioner (optional):
— partition schema for the RDD

—  Lineage

Optimized
Execution




Local Execution

 Just pass 1local or local[k] as master URL
* Debug using local debuggers
— For Java / Scala, just run your program in a debugger

— For Python, use an attachable debugger (e.g. PyDev)

* Great for development & unit tests
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WORKING WITH SPARK




Using the Shell

B

[root@ip-172-31-11-254 ~]# fopt/cloudera/parcels/SPARK/pyspark

Launching: i
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NAL Npmp gy

Spark-She” # Scala !_!i!._!\_._!_! /_\_\  version 0.8.0
pyspa rk # python g:;:g ::;:::tv:\r’ﬁ:&:.2;65£r266:84292, Sep 11 2012 98:34:23)

ss» file = sc.textFile("hdfs://ip-172-31-11-254.us-west-2.compute.internal:Be20/user/
hdfs/ec2-data/pageviews/2087/2007-12/pagecounts-20071209-180000. g2" )

=»» file.count()

856769

=== file.filter{lambda line: "Holiday" in line).count()

in

Modes:

MASTER=local ./spark-shell # local, 1 thread
MASTER-=local[2] ./spark-shell # local, 2 threads
MASTER=spark://host:port ./spark-shell # cluster

CINECA E C AI
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SparkContext
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* Main entry point to Spark functionality
* Available in shell as variable "sc

* In standalone programs, you’d make your own (see later for
details)




Creating RDDs
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# Turn a Python collection into an RDD
sc.parallelize([1, 2, 3])

# Load text file from local FS, HDFS, or S3
sc.textFile('file.txt")
sc.textFile('directory/*.txt")
sc.textFile('hdfs://namenode:9000/path/file")

# Use existing Hadoop InputFormat (Java/Scala only)
sc.hadoopFile(keyClass, valClass, inputFmt, conf)




Basic Transformations
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nums = sc.parallelize([1, 2, 3])

# Pass each element through a function
squares = nums.map(lambda x: x*x) #{1, 4, 9}

# Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) # {4}

# Map each element to zero or more others
nums.flatMap(lambda x: range(x)) # {0, 0, 1, 0, 1, 2}

# Lazy Evaluation!

even.collect() Range object (sequence of

numbers 0, 1, ..., x-1)

CCCCCC E C AI
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Basic Actions

nums = sc.parallelize([1, 2, 3])
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# Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

# Return first K elements
nums.take(2) # => [1, 2]

# Count number of elements
nums.count() # => 3

# Merge elements with an associative function
nums.reduce(lambda x, y: x + vy) # =>6

# Write elements to a text file
nums.saveAsTextFile('hdfs://file.txt")
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Working with Key-Value Pairs

Spark’s 'distributed reduce' transformations operate on RDDs of key-value

airs:
Python: pair = (a, b) P
pair[@] # => a
pair[1] # => b Java: Tuple2 pair = new Tuple2(a, b);
pair. 1 // => a
Scala: val pair = (a, b) pair. 2 // => b

pair. 1 // => a
pair. 2 // => b

Some Key-Value Operations:

pets = sc.parallelize([('cat, 1), (‘dog’, 1), (‘cat’, 2)])
pets.reduceByKey(lambda x, y: x +y) #{(cat, 3), (dog, 1)}
pets.groupByKey() # {(cat, [1, 2]), (dog, [1])}
pets.sortByKey() # {(cat, 1), (cat, 2), (dog, 1)}

reduceByKey also automatically implements combiners on the map side

CCCCCC E C AI
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Example: Word Count

# create file 'hnamlet.txt’
$ echo -e 'to be\nor not to be' > /usr/local/spark/hamlet.txt
$ IPYTHON=1 pyspark

lines = sc.textFile('file:///usr/local/spark/hamlet.txt’)

words = lines.flatMap(lambda line: line.split(" *))

w_counts = words.map(lambda word: (word, 1))

counts = w_counts.reduceByKey(lambda x, y: x + y)

counts.collect()

# descending order:

counts.sortBy(lambda (word,count): count, ascending=False).take(3)

'to' (to, 1) (be, 2)
'tobeor’ —p P& —p (be 1) (no:c 1)
‘or' (or, 1) ’
'not’ (not, 1)
1 1 ! ! (Orl 1)
notto be'’ — 'to' __ (to,1) (to, 2)
'be’ (be, 1) °

CCCCCC E C AI
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Other Key-Value Operations

visits = sc.parallelize([ ('index.html', '1.2.3.4'),
('about.html', '3.4.5.6"),
('index.html', "1.3.3.1") 1)

pageNames = sc.parallelize([ ('index.html', 'Home'),
('about.html', 'About') 1)

visits.join(pageNames)

# ('index.html', ('1.2.3.4', 'Home'))
# ('index.html', ('1.3.3.1"', 'Home'))
# ('about.html', ('3.4.5.6', 'About'))

visits.cogroup(pageNames)
# ('index.html', (['1.2.3.4"', "1.3.3.1'], ['Home']))
# ('about.html', (['3.4.5.6'], ["About']))



Setting the Level of Parallelism
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All the pair RDD operations take an optional second parameter
for number of tasks:

words.reduceByKey(lambda x, y: x + vy, 5)
words. groupByKey(5)
visits.join(pageNames,5)




Using Local Variables

Any external variables you use in a closure will automatically be
shipped to the cluster:

query = sys.stdin.readline()

pages.filter(lambda x: query 1in x).
count()

Some caveats:

* Each task gets a new copy (updates aren’t sent back)
* Variable must be Serializable / Pickle-able
* Don’t use fields of an outer object (ships all of it!)

CINECA S C AI
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More RDD Operators

map
filter

groupBy

sort

union

join
leftOuterJoin
rightOuterJoin

reduce
count

fold
reduceByKey
groupByKey
cogroup
Cross

Z1p

sample

take

first
partitionBy
mapWith
pipe

save



CREATING SPARK APPLICATIONS
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Add Spark to Your Project
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* Scala / Java: add a Maven dependency on

groupld:  org.spark-project
artifactld: spark-core_2.9.3
version:  0.8.0

* Python: run program with pyspark script




Create a SparkContext

import org.apache.spark.SparkContext

{% import org.apache.spark.SparkContext._

Q

Y val sc = new SparkContext('url', 'name', 'sparkHome', Seq('app.jar'))
Cluster URL, or local App Spark install List of JARs with

/ local[N] name  path on cluster app code (to ship)
import org.apache.spark.api.java.JavaSparkContext;

©

% JavaSparkContext sc = new JavaSparkContext(

- 'masterUrl', 'name', 'sparkHome', new String[] {'app.jar'}));

S from pyspark import SparkContext

N

E% sc = SparkContext('masterUrl', 'name', 'sparkHome', ['library.py'l))

CINECA E C AI
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Complete App
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import sys
from pyspark import SparkContext

if _name_ == "' main__':
sc = SparkContext( 'local', 'WordCount', sys.argv[0], None)
lines = sc.textFile(sys.argv[1])
counts = lines.flatMap(lambda s: s.split(" ")) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda x, y: x + y)

counts.saveAsTextFile(sys.argv[2])
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CONCLUSION

# SCA
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Conclusion

* Spark offers a rich APl to make data analytics fast
both fast to write and fast to run

* Achieves |00x speedups in real applications

* Growing community with 25+ companies
contributing




Time for Exercises
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Hive on Spark, and more...

SPARK SQL

#SCA
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Data Model

Tables: unit of data with the same schema
Partitions: e.g. range-partition tables by date
Data Types:
— Primitive types
* TINYINT, SMALLINT, INT, BIGINT
« BOOLEAN
* FLOAT, DOUBLE
* STRING
 TIMESTAMP
- Complex types
o Structs: STRUCT {a INT; b INT}
* Arrays: ['a', 'b’, 'c’]
* Maps (key-value pairs): M['key’]




Hive QL

e Subset of SQL
— Projection, selection
— Group-by and aggregations
— Sort by and order by
— Joins
— Sub-query, unions
— Supports custom map/reduce scripts (TRANSFORM)

CREATE EXTERNAL TABLE wiki

(id BIGINT, title STRING, last_modified STRING, xml STRING, text STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t'

LOCATION 's3n://spark-data/wikipedia-sample/';

SELECT COUNT(*) FROM wiki WHERE TEXT LIKE '%Berkeley%";

CCCCCC E C AI
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Caching Data in Shark

* Creates a table cached in a cluster’s memory using RDD.cache ()
* ‘' cached’ suffix is reserved from Spark, and guarantees caching of
the table

CREATE TABLE mytable cached AS SELECT *
FROM mytable WHERE count > 10;

* Unified table naming:

CACHE mytable; UNCACHE mytable;

SuperComputing Applications and Innovation



Spark Integration

From Scala:

val points = sc.runSql[Double, Double](
'select latitude, longitude from historic_ tweets')

val model = KMeans.train(points, 10)

sc.twitterStream(...)
.map(t => (model.closestCenter(t.location), 1))
.reduceByWindow('5s', _ + )

From Spark SQL:

GENERATE KMeans(tweet locations) AS TABLE tweet clusters
// Scala table generating function (TGF):
object KMeans {

@Schema(spec 'x double, y double, cluster int')

def apply(points: RDD[ (Double, Double)]) = {




Tuning Degree of Parallelism

SparkSQL relies on Spark to infer the number of map task
— automatically based on input size

Number of 'reduce’ tasks needs to be specified

Out of memory error on slaves if too small

Automated process soon (?)




Columnar Memory Store

* Column-oriented storage for in-memory tables

— when we cache in spark, each element of an RDD is maintained in
memory as java object

o
1S
)
£
€
5
®
o
3
0
1 9
O
[+1]
(a]

— with column-store (spark sql) each column is serialized as a single byte
array (single java object)

* Yahoo! contributed CPU-efficient compression
— e.g. dictionary encoding, run-length encoding

3 — 20X reduction in data size
Row Storage Column Storage
B




Spark SQL example (1)

# Import SQLContext and data types
from pyspark.sqgl import *
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# sc is an existing SparkContext
sqlContext = SQLContext(sc)

# Load a text file and convert each line in a tuple. ‘file://’ for local files
fname = *file:///usr/local/spark/examples/src/main/resources/people.txt’

lines = sc.textFile(fname)
# Count number of elements
parts = lines.map(lambda |: |.split(","))
people = parts.map(lambda p: (p[0], p[1].strip()))

# The schema is encoded in a string
schemaString = 'name age'

# Write elements to a text file
fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split()]




Spark SQL example (2)

schema = StructType(fields)

# Apply the schema to the RDD
schemaPeople = sqlContext.applySchema(people, schema)

# Register the SchemaRDD as a table
schemaPeople.registerTempTable('people')

# SQL can be run over SchemaRDDs that have been registered as a table
results = sqlContext.sql('SELECT name FROM people')

# The results of SQL queries are RDDs and support all the normal RDD operations
results = sqlContext.sql('SELECT name FROM people') # return a RDD
names = results.map(lambda p: 'Name: ' + p.name)

for name in names.collect():
print name
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Optimizing with Rules

Original
Plan

Project
name

Fllter
|d 1 >

Pro;ect
id, name

Filter
Push-Down

Project
na me o .

Pro;ect
id, name ______
Fllter
|d 1
id=1
( People ) ( People ) ( People ) retum: name

Combine P hysical
Projection Plan
Project
name ‘.
Fllter \\
|d 1 '
IndexLookup
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SPARK STREAMING
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What is Spark Streaming?

* Framework for large scale stream processing
— Scales to 100s of nodes
— Can achieve second scale latencies
— Integrates with Spark’s batch and interactive processing

— Provides a simple batch-like APl for implementing complex
algorithm

— Can absorb live data streams from Kafka, Flume, ZeroMQ, etc.

CINECA E C AI
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Motivation

* Many important applications must process large streams of live data
and provide results in near-real-time

— Social network trends

Browse categories - Find friends

~ Website statistics S = m——————

Worldwide Trends - Change I

#ollowmemegatron

— Intrusion detection systems = ..

lyikiDogdun RecepTayyipErdogan

I

W
i\ "‘LJ"I\'\/ Yy
U\ heas Iy e as o

=y Y BT VYT
WA ""A.”L"\f".‘.\/f“/\ A MM MY y ¥

#eentopnolshowcase

- etc #NigerianBloggers
L]

#HocaliSoykinminiUnutma

FC Twente

Toni Cantd B
Dec

David Bowie
B

T

s
Fe!

* Require latencies of few seconds
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Need for a framework ...

... for building such complex stream processing applications
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But what are the requirements from such a framework?

* Scalable to large clusters
* Second-scale latencies

* Simple programming model




Case study: XYZ, Inc.

If you want to process live streaming data with current tools (e.g.
MapReduce and Storm), you have this problem:

Twice the effort to implement any new function

Twice the number of bugs to solve

Twice the headache

New Requirement:

Scalable to large clusters

Second-scale latencies

Simple programming model

Integrated with batch & interactive processing




Stateful Stream Processing
mutable state

* Traditional streaming systems have a
event-driven record-at-a-time
processing model input
— Each node has mutable state records-> -
— For each record, update state & send =

new records

o State is lost if node dies!

input > .ﬁ,.
_ . records g
* Making stateful stream processing be S5
fault-tolerant is challenging




Spark Streaming: Discretized Stream Processing (1)
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Run a streaming computation as a series of
very small, deterministic batch jobs

live data stream

Spark
= Chop up the live stream into batches of X Streaming
seconds
= Spark treats each batch of data as RDDs batches of X
and processes them using RDD operations seconds

= Finally, the processed results of the RDD
operations are returned in batches . R N

processed
results
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Spark Streaming: Discretized Stream Processing (2)
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Run a streaming computation as a series of
very small, deterministic batch jobs

live data stream

‘ Spark
= Batch sizes as low as /2 second, latency ~ | Streaming

second
= Potential for combining batch processing batches of X

and streaming processing in the same seconds

system

== -
processed
results




Example | — Get hashtags from Twitter
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val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

DStream: a sequence of RDD representing a stream
of data

Triter STETIE AN mage  ogel  ma@er
=i = il il s : =T

stored in memory as an RDD
(immutable, distributed)
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Example | — Get hashtags from Twitter
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val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

transformation: modify data in one J

new DStream Dstream to create another DStream

T -

tweets DStream

hashTags Dstrea
[#cat, #dog, ... ]

new RDDs created
for every batch
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Example | — Get hashtags from Twitter
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val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external
storage

tweets DStream

flatMap
hashTags DStream

every batch
saved to HDFS




Java Example
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Scala

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

Java
JavaDStream<Status> tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
JavaDstream<String> hashTags = tweets.flatMap(new Function<...>{ })

hashTags.saveAsHadoopFiles("hdfs://...")

Function object to define the
transformation

CINECA E C AI
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Fault-tolerance

input data
| replicated
in memory

* RDDs are remember the tweets
sequence of operations that RDD
created it from the original fault-
tolerant input data
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* Batches of input data are
replicated in memory of multiple
worker nodes, therefore fault-

hashTags
tolerant RDD

lost partitions
recomputed on

 Data lost due to worker failure, other workers

can be recomputed from input
data
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Example — Counting HashTags
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Count the (e.g. most |10 popular) hashtags over last 10 mins
1. Count HashTags from a stream

2. Count HashTags in a time windows from a stream
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Count the hashtags over last 10 mins (1)
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val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.window(Minutes(10), Seconds(l)).countByValue()

sliding Wlﬁ window length sliding interval
operation
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Example — Count the hashtags over last 10 mins (2)

o
1S
)

£
€
5

®
o
3
o

O

[+1]

(a]

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

hashTags {

window

countByValue

\

. . count over all

| the data in the
window

tagCounts

)
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Smart window-based countByValue
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val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1))

t-1 t t+1 t+2 t+3
hashTag
S countByValue
\
add the counts
from the new
batch in the
subtract the window y
. - counts from
tagCounts Lo ' 1 | batch before
i ===" | the window

\_




Spark Streaming Conclusion

* Stream processing framework that is ...
— Scalable to large clusters
— Achieves second-scale latencies
— Has simple programming model
— Integrates with batch & interactive workloads
— Ensures efficient fault-tolerance in stateful computations

* For more information, checkout the paper:
www.cs.berkeley.
edu/~matei/papers/2012/hotcloud_spark_streaming.pdf
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GRAPHX

# SCA
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Difficult to Program and Use

* Having separate systems for each view is:

— difficult to use
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— inefficient
* Users must Learn, Deploy, and Manage multiple systems

S TRCOIE
."bﬁﬁ"".l \
ORI S8

N
(7 L .
Foiaw (S \
Fack Gra a
O O

Leads to brittle and often
complex interfaces




Inefficient

Extensive data movement and duplication across
the network and file system

LT 11
—> — — —
N
@ r GraphlLa b\
-
Limited reuse internal data-structures

across stages

C-L‘J-P
HDFS




Solution: The GraphX Unified Approach

New API New System
Blurs the distinction between Combines Data-Parallel
Tables and Graphs Graph-Parallel Systems

e
%

< NS
) 1]
s S, J\z
TrRRBRII 4 S
& Spar
R ]

A C H E
RAPH (Q

TSy
)

(1

A

099,
X
S's
’
te

QERTY

Enabling users to easily and efficiently express
the entire graph analytics pipeline
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GraphX
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Table
View

Tables and Graphs are composable
views of the same physical data

GraphX Unified Graph
Representation View

Each view has its own operators that
exploit the semantics of the view
to achieve efficient execution
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Machine Learning on Spark

MLLIB

= SCAl

s peC mputing Applications and Innovation




Short Intro to Machine Learning (1)

* Classification
— ldentifying to which category an object belongs to.
— Applications: Spam detection, Image recognition.
* Regression
— Predicting a continuous-valued attribute associated with an object.
— Applications: Drug response, Stock prices.
* Clustering
— Automatic grouping of similar objects into sets.
— Applications: Customer segmentation, Grouping experiment outcomes
* Dimensionality reduction
— Reducing the number of random variables to consider.
— Applications: Visualization, Increased efficiency
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Short Intro to Machine Learning (1)
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* Model selection
— Comparing, validating and choosing parameters and models.
— Goal: Improved accuracy via parameter tuning

* Preprocessing
— Feature extraction and normalization.

— Application: Transforming input data such as text for use with machine learning
algorithms.




(How to) Learning Machine Learning

« MOOC:
— https://www.coursera.org/course/ml (Stanford) - General
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— https://www.edx.org/course/scalable-machine-learning-uc-berkeleyx-cs |1 90- | x#.
VSbqlxOUdp8 (berkley) — Spark

* Tools
— http://scikit-learn.org/stable/ (Python)

— http://www.cs.waikato.ac.nz/ml/weka/ (Java)



https://www.coursera.org/course/ml
https://www.coursera.org/course/ml
https://www.edx.org/course/scalable-machine-learning-uc-berkeleyx-cs190-1x%23.VSbqlxOUdp8
https://www.edx.org/course/scalable-machine-learning-uc-berkeleyx-cs190-1x%23.VSbqlxOUdp8
https://www.edx.org/course/scalable-machine-learning-uc-berkeleyx-cs190-1x%23.VSbqlxOUdp8
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/

scikit-learn
algorithm cheat-sheet

classification
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regression

dimensionality
reduction

http://scikit-learn.org/stable/tutorial/machine learning map/

#SCA

SuperComputing Applications and Innovation


http://scikit-learn.org/stable/tutorial/machine_learning_map/
http://scikit-learn.org/stable/tutorial/machine_learning_map/

What is MLIib?

Algorithms:

* classification: logistic regression, linear support vector
machine

* (SVM), naive Bayes, classification tree

* regression: generalized linear models (GLMs), regression
tree collaborative filtering: alternating least squares (ALS)
clustering: k-means

* decomposition: singular value decomposition (SVD),
principal component analysis (PCA)

CCCCCC E C AI
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Machine Learning on Spark

Algorithms
MLIib I.l contains the following algorithms:

* linear SVM and logistic regression

* classification and regression tree

* k-means clustering

* recommendation via alternating least squares
 singular value decomposition

* linear regression with LI- and L2-regularization
* multinomial naive Bayes

* Dbasic statistics

» feature transformations

Usable in Java, Scala and Python
MLIib fits into Spark’s APIs and interoperates with NumPy in Python

points = spark.textFile("hdfs://...")
.map(parsePoint)

model = KMeans.train(points, k=10) spark.apache.
org/mllib/

CINECA S C AI
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https://spark.apache.org/mllib/
https://spark.apache.org/mllib/
https://spark.apache.org/mllib/

Mahout

In theory, Mahout is a project open to implementations of all kinds of
machine learning techniques

In practice, it’s a project that focuses on three key areas of machine
learning at the moment. These are recommender engines (collaborative
filtering), clustering, and classification

Recommendation

* For a given set of input, make a recommendation
* Rank the best out of many possibilities

Clustering

* Finding similar groups (based on a definition of similarity)
* Algorithms do not require training
* Stopping condition: iterate until close enough

Classification
* identifying to which of a set of (predefined)categories a new observation

belongs

* Algorithms do require training




Mahout goes to Spark

Mahout News

25 April 2014 - Goodbye MapReduce

The Mahout community decided to move its codebase onto modern data processing systems that offer a richer programming model
and more efficient execution than Hadoop MapReduce. Mahout will therefore reject new MapReduce algorithm
implementations from now on. We will however keep our widely used MapReduce algorithms in the codebase and maintain

them.

We are building our future implementations on top of a DSL for linear algebraic operations which has been developed over the last
months. Programs written in this DSL are automatically optimized and executed in parallel on Apache Spark.

Furthermore, there is an experimental contribution undergoing which aims to integrate the hZ20 platform into Mahout.

Scala & Spark Bindings for Mahout:
* Scala DSL and algebraic optimizer
— The main idea is that a scientist writing algebraic expressions cannot care
less of distributed operation plans and works entirely on the logical level
just like he or she would do with R.
— Another idea is decoupling logical expression from distributed back-end.
As more back-ends are added, this implies "write once, run everywhere".
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Mahout Algorithm (1)
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Single MapReduce  Spark
Machine

Collaborative Filtering with CL! Drivers

User-Based Collaborative Filtering X -7

ltem-Based Collaborative Filtering X X X

Matrix Factorization with ALS X X

Matrix Factorization with ALS on Implicit X X

Feedback

Weighted Matrix Factorization, SVD++ X

Classification with CL/ Drivers

Logistic Regression - trained via SGD X

Naive Bayes / Complementary Naive Bayes X in

development

Random Forest X

Hidden Markov Models X

Multilayer Perceptron X

Clustering with CLf Drivers

Canopy Clustering deprecated deprecated

k-Means Clustering X X

Fuzzy k-Means X X

Streaming k-Means % X

Spectral Clustering X

http://mahout.apache.org/users/basics/algorithms.
html
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Mahout Algorithm (2)
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Single MapReduce  Spark
Machine
Dimensionality Reduction with CL/ Drivers
- note: most scala-based dimensionality
reduction algorithms are available through
the Mahout Math-Scala Core Library for all
engines
Singular Value Decomposition X x
Lanczos Algorithm X x
Stochastic SVD x x
PCA (via Stochastic SVD) X x
QR Decomposition X X
Topic Models
Latent Dirichlet Allocaticn X x
Miscellaneous
RowSimilarityJob x X
ConcatMatrices x
Collocations x
Sparse TF-IDF Vectors from Text x
XML Parsing %
Email Archive Parsing x
Lucene Integration x
Evolutionary Processes x

http://mahout.apache.org/users/basics/algorithms.
html
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Mahout Algorithm (3)
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Single MapReduce  Spark
Machine

Collaborative Filtering with CL! Drivers

User-Based Collaborative Filtering X -7

ltem-Based Collaborative Filtering X X X

Matrix Factorization with ALS X X

Matrix Factorization with ALS on Implicit X X

Feedback

Weighted Matrix Factorization, SVD++ X

Classification with CL/ Drivers

Logistic Regression - trained via SGD X

Naive Bayes / Complementary Naive Bayes X in

development

Random Forest X

Hidden Markov Models X

Multilayer Perceptron X

Clustering with CLf Drivers

Canopy Clustering deprecated deprecated

k-Means Clustering X X

Fuzzy k-Means X X

Streaming k-Means % X

Spectral Clustering X

http://mahout.apache.org/users/basics/algorithms.
html
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Okapi

Machine Learning library for Giraph

* Collaborative Filtering
— Alternating Least Squares (ALS)
— Bayesian Personalized Ranking (BPR) —beta-
— Collaborative Less-is-More Filtering (CLiMF) —beta-
— Singular Value Decomposition (SVD++)
— Stochastic Gradient Descent (SGD)

* Graph Analytics
— Graph partitioning

— Similarity
— SybilRank
* Clustering 4
http://grafos.
— Kmeans ml/#Okapi
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SPARK REAL CASES
APPLICATIONS
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Thunder: Neural Data Analysis in Spark

thunder 0.4.1 Tutorials APl Site +  Page ~ Search

thunder: neural data analysis in spark

Thunder is a library for analyzing large-scale neural data. It's fast to run, easy to develop for, and can be used interactively. It is built on
Spark, a new framework for cluster computing.

Thunder includes utilties for loading and saving different formats, classes for working with distributed spatial and temporal data, and
modular functions for time series analysis, factorization, and model fitting. Analyses can easily be scripted or combined. It is written in
Spark's Python API (Pyspark), making use of scipy, numpy, and scikit-learn.

Project Homepage: thefreemanlab.com/thunder/docs/
Youtube: www.youtube.com/watch?v=Gg 5fWIlfgA&list=UURzsq7k4-kT-h3TDUBQS82-
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http://thefreemanlab.com/thunder/docs/
https://www.youtube.com/watch?v=Gg_5fWllfgA&list=UURzsq7k4-kT-h3TDUBQ82-w
https://www.youtube.com/watch?v=Gg_5fWllfgA&list=UURzsq7k4-kT-h3TDUBQ82-w
https://www.youtube.com/watch?v=Gg_5fWllfgA&list=UURzsq7k4-kT-h3TDUBQ82-w

Big Data Genomics

Big Data Genomics Blog  Archives  Projects  MailingList  CLAs
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i@ MAR 4TH, 2014

Projects

Thanks to advances in both the cost and speed of sequencing technology, the amount of genomic data available for

processing is growing exponentially. As a project, our goal is to build scalable pipelines for processing genomic data
on top of high performance distributed computing frameworks.

Variant Call Format

From Wikipedia, the free encyclopedia

Projects

At the moment, we

The Variant Call Format (VCF) specifies the format of a text file used in bicinformatics for storing gene sequence variations.
+ ADAM: A scalable API & CLI for genome processing '
+ bdg-formats: Schemas for genomic data

« avocado:|A Variant Caller, Distributed

The source for these projects is available at Github.

Project Homepage: _Homepage: http://bdgenomics.org/projects/
Youtube: www.youtube.com/watch?v=RwyEEMw-NR8&list=UURzsq7k4-kT-h3TDUBQ82-w
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Spark

ADDENDUM

# SCA
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Administrative GUIs
http://<Standalone Master>:8080 (by default)
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P A
i e .D. 0 ; ,fx D Spark Master at spark://r * \\ i LS
€ - C [} localhost:8080 = = |
- O_VO 64/ " Spark shell - Spark Stages X\D ' —— - — RPRETSUOUOo S ‘
xoﬁ sPark Master at spa (- = c ‘D I0ca|host:4040/stages/
iz Stages  Storage  Environment  Executors
URL: spark://mbp-2.local:7077 SpOf
Workers: 3
Cores: 24 Total| 24 Used
rk St
Memory: 45.0 5B Total, 1536.0 MB Used Spa S ages
Applications: §| Running, 0 Completed Total Duration: 3.8 m
Scheduling Mode: FIFO
Workers Active Stages: 0
Completed Stages: 2
Id Failed Stages: 0
worker-20131§02231645-192.168.1.106-56789 Active Stages (0)
worker-20131002231657-192.168.1.106-56801 Stage Id Description Submitted Duration Tasks: Succeeded/Total Shuffle Read
worker-20131802231705-192.168.1.106-56806
Completed Stages (2)
Stage Id Description Submitted Duration Tasks: Succeeded/Total Shuffle
Running Agplications 0 count at <console>:13 2013/12/02 21:07:55 83 ms O 7540
Name i reduceByKey at <console>:13 2013/12/02 21:07:55 345 ms _
app-20131202231712-0000 Spark shell .
Failed Stages (0)
Irss SC A Stage Id Description Submitted Duration Tasks: Succeeded/Total Shuffle Read
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EXAMPLE APPLICATION:
PAGERANK

SuperComputing Applications and Innovation



Example: PageRank
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* Good example of a more complex algorithm
— Multiple stages of map & reduce

* Benefits from Spark’s in-memory caching
— Multiple iterations over the same data




Basic Idea

Give pages ranks (scores)
based on links to them

* Links from many pages =
high rank

* Link from a high-rank page
—> high rank

cccccc




Algorithm

1. Start each page at a rank of |
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2. On each iteration, have page p contribute
rankP / |neighborsp| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 X contribs
1.0
1.0 1.0
1.0
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Algorithm
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1. Start each page at a rank of |

2. On each iteration, have page p contribute
rankP / |neighborsp| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 X contribs
1.0
1 0.5
1
1.0 0.5 1.0
0.5 0-5
1.0
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Algorithm

1. Start each page at a rank of |
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2. On each iteration, have page p contribute
rankP / |neighborsp| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 X contribs
1.85
0.58 1.0
0.58
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Algorithm
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1. Start each page at a rank of |

2. On each iteration, have page p contribute
rankP / |neighborsp| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 X contribs
1.85
0.58 0-5
1.85
0.58 0.29 1.0
0.29 0-5
0.58




Algorithm
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1. Start each page at a rank of |

2. On each iteration, have page p contribute
rankP / |neighborsp| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 X contribs
1.3
1
0.39 [ ] 1.7
e o o 2
0.58
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Algorithm
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1. Start each page at a rank of |

2. On each iteration, have page p contribute
rankP / |neighborsp| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 X contribs

Final state: 1.44

0.46 1.3

0.7




Scala Implementation
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val links = // load RDD of (url, neighbors) pairs
var ranks = // load RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
val contribs = links.join(ranks).flatMap {
case (url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))
}
ranks = contribs.reduceByKey( + )
.mapValues(0.15 + 0.85* )
}

ranks.saveAsTextFile(...)
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