
School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Welcome!

2nd School on Data Analytics and Visualization
20/24 June 2016

Giuseppe Fiameni
June 20th 2016

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Why this school?

● Data are becoming more and more
important

● Processing large data sets has become
an issue for young researchers

● Many interesting technologies are
emerging and entering the HPC domain

● HPC common technologies, although are
the only viable solutions in many cases,
have a steep learning curve which limits
their wide adoption

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Goals

During this course, you will learn:
● the trends and challenges surrounding the
BigData definition

● how the most relevant technologies and
methods in this domain work

● Map-Reduce
● Apache Hadoop
● Apache Spark, Apache SparkSQL
● Apache Spark MLLIB (Machine Learning Library)
● Python/R

● how to structure and program your code
using Python/Scala/R

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

General notes

● Each participant will receive personal credentials
to access Cineca resources for a limited amount of
time

● requests for extensions are possible
● There is one workstation every two

participants:
● U: corsi P: corsi_2013!

● Course web site:
● https://goo.gl/3G8Tu5

● Feel free to ask questions at any time do not be →
shy!

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Agenda

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Quick poll

● How many of you already know part of the mentioned Big
Data technologies?

● How many of you know any HPC methods (MPI, OpenMP,
etc.)?

● How many of you know Python?
● Scala?

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Before starting

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

 Size of computational applications

Computational Dimension:
number of operations needed to solve the problem,

in general is a function of the size of the involved
data structures (n, n2 , n3 , n log n, etc.)

flop - Floating point operations
 indicates an arithmetic floating point operation.

flop/s - Floating points operations per second
 is a unit to measure the speed of a computer.

Computational problems today: 1015 – 1022 flop

One year has about 3 x 107 seconds!

Most powerful computers today have reach a
sustained performance is of the order of Tflop/s -
Pflop/s (1012 - 1015 flop/s).

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

 Example: Weather Prediction

Forecasts on a global scale:
● 3D Grid to represent the Earth

✔ Earth's circumference: 40000 km
✔ radius: 6370 km
✔ Earth's surface: 4πr2 5•108 km2

● 6 variables:
✔ temperature
✔ pressure
✔ humidity
✔ wind speed in the 3 Cartesian directions

● cells of 1 km on each side
● 100 slices to see how the variables evolve on the

different levels of the atmosphere
● a 30 seconds time step is required for the simulation

with such resolution
● Each cell requires about 1000 operations per time step

(Navier-Stokes turbulence and various phenomena)

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Example: Weather Prediction / 1

Grid: 5 •108 • 100 = 5 • 1010 cells
● each cell is represented with 8 Byte
● Memory space:

➔ (6 var)•(8 Byte)•(5•1010 cells) 2 • 1012 Byte = 2TB

A 24 hours forecast needs:
➔ 24 • 60 • 2 3•103 time-step
➔ (5•1010 cells) • (103 oper.) • (3•103 time-steps) = 1.5•1017 operations !

A computer with a power of 1Tflop/s will take 1.5•105 sec.
➔ 24 hours forecast will need 2days to run ... but we shall obtain a very

accurate forecast

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Von Neumann Model

Control

Input Memory Output

Arithm. Logic Unit

 ……… Data

Control

➔ A single instruction is loaded
from memory (fetch) and
decoded

➔ Compute the addresses of
operands

➔ Fetch the operands from
memory;

➔ Execute the instruction ;
➔ Write the result in memory

(store).

Instructions are
processed sequentially

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Speed of Processors: Clock Cycle and
Frequency

The clock cycle is defined as the time

between two adjacent pulses of oscillator
that sets the time of the processor.

The number of these pulses per second is
known as clock speed or clock frequency,
generally measured in GHz (gigahertz, or
billions of pulses per second).

The clock cycle controls the
synchronization of operations in a
computer: All the operations inside the

processor last a multiple of .

Processor (ns) freq (MHz)

CDC 6600 100 10

Cyber 76 27.5 36,3

IBM ES 9000 9 111

Cray Y-MP C90 4.1 244

Intel i860 20 50

PC Pentium < 0.5 > 2 GHz

Power PC 1.17 850

IBM Power 5 0.52 1.9 GHz

IBM Power 6 0.21 4.7 GHz

Increasing the clock frequency:

The speed of light sets an upper limit to the speed

with which electronic components can operate .

Propagation velocity of a signal in a vacuum:
300.000 Km/s = 30 cm/ns

Heat dissipation problems inside the processor.
Also Quantum tunelling expected to become

important.

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Other factors that affect Performance

In addition to processor power, other
factors affect the performance of
computers:

➔ Size of memory
➔ Bandwidth between processor and

memory
➔ Bandwidth toward the I/O system
➔ Size and bandwidth of the cache
➔ Latency between processor,

memory, and I/O system

Data

Addresses

Arithmetic-Logical

Unit ALU
Control

Unit

Central

Memory

Devices

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Memory hierarchies

Memory access time: the time required
by the processor to access data or to
write data from / to memory

The hierarchy exists because :
• fast memory is expensive and small
• slow memory is cheap and big

Latency
– how long do I have to wait for the

data?
– (cannot do anything while waiting)

Throughput
– how many bytes/second. but not

important if waiting.

Total time = latency + (amount of data / throughput)

Time to run code = clock cycles running code + clock cycles waiting for
memory

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Memory access

• Important problem for the
performance of any computer is
access to main memory. Fast
processors are useless if memory
access is slow!

• Over the years the difference in
speed between processors and
main memory has been growing.

Time

Processors

Memory

Gap

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Cache Memory

• High speed, small size memory used as a
buffer between the main memory and the
processor. When used correctly, reduces the
time spent waiting for data from main
memory.

• Present as various “levels” (e.g. L1, L2, L3,
etc) according to proximity to the functional
units of the processor.

• Cache efficiency depends on the locality of
the data references:
– Temporal locality refers to the re-use of data

within relatively small time frame.
– Spatial locality refers to the use of data within

close storage locations (e.g. one dimensional
array).

• Cache can contain Data, Instructions or
both.

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Aspects of parallelism

• It has been recognized for a long time that constant performance
improvements cannot be obtained just by increasing factors such
as processor clock speed – parallelism is needed.

• Parallelism can be present at many levels:
– Functional parallelism within the CPU
– Pipelining and vectorization
– Multi-processor and multi-core
– Accelerators
– Parallel I/O

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Big Data

A buzz word!
● With different meanings depending on your
perspective - e.g. 100 TBs is big for a transaction
processing system, but small for a world-wide search
engine

A simple “definition” (Wikipedia)
● Consists of data sets that grow so large that
they become awkward to work with using on-
hand database management tools

➔Difficulties: capture, storage, search, sharing,
analytics, visualizing

How big is big?
● Moving target: terabyte (1012 bytes), petabyte
(1015 bytes), exabyte (1018), zetabyte (1021)

Scale is only one dimension of the problem!

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Operate without models
forward problem

m
od

el

params

algor.

theory

Outputs

Before...Before...

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Operate without models
inverse problem

model

params

algor.

DATA

O
utputs

Now, future...Now, future...

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Operate without models (Big Data)

model

params

algor.

DATA

outputsm
od

el

params

algor.

theory

Outputs

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Where all began...a decade ago!

http://research.microsoft.com/en-

us/collaboration/fourthparadigm/4th_paradigm_book_complete_lr.pdf

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Dimensions of the problem

● Volume
● Refers to massive amounts of data
● Makes it hard to store and manage, but also to

analyze (big analytics)
● Velocity

● Continuous data streams are being captured (e.g.
from sensors or mobile devices) and produced

● Makes it hard to perform online processing
● Variety

● Different data formats (sequences, graphs, arrays,
…), different semantics, uncertain data (because of
data capture), multiscale data (with lots of
dimensions)

● Makes it hard to integrate and analyze

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

What do we do when there is too
much data to process?

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Parallel data processing!

● Exploit a massively parallel computer
● A computer that interconnects lots of CPUs, RAM
and disk units

● To obtain
● High performance through data-based parallelism

➔High throughput for transaction-oriented (OLTP)
loads

➔Low response time for decision-support (OLAP)
queries

● High availability and reliability through data
replication

● Extensibility with the ideal goals
➔Linear speed-up
➔Linear scale-up

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Speed-up

● Linear increase in performance for a
constant database size and load, and
proportional increase of the system
components (CPU, memory, disk)

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Scale-up

● Sustained performance for a linear
increase of database size and load, and
proportional increase of components

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Parallel Architectures
for Data Processing

● Three main alternatives, depending on
how processors,memory and disk are
interconnected

● Shared-memory computer
● Shared-disk cluster
● Shared-nothing cluster

DeWitt, D. and Gray, J. “Parallel database systems: the
future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Shared Memory
● All memory and disk are
shared

● Symmetric Multiprocessor
(SMP)

● Recent: Non Uniform
Memory

+ Simple for apps, fast
com., load balancing
- Complex interconnect
limits extensibility, cost

● For write-intensive workloads,
not for big data

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Shared Disk

● Disk is shared, memory is
private

● Storage Area Network (SAN)
to interconnect memory
and disk (block level)

● Needs distributed lock
manager (DLM) for cache
coherence

+ Simple for apps,
extensibility
- Complex DLM, cost
● For write-intensive workloads or
big data

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Shared Nothing

● No sharing of memory or
disk across nodes

● No need for DLM
● But needs data

partitioning
+ highest extensibility,
cost
- updates, distributed
trans

● For big data (read
intensive)

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Example networks

MESH Topology

 Some variations of the mesh
model have wrap-around type
connections between the nodes
to the edges of the mesh (torus
topology).
The Cray T3E adopts a 3D torus
topology

IBM BG/Q adopts a 5D torus
topology

Toroidal Topology

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Commodity Interconnects
Gig Ethernet

Myrinet

Infiniband

QsNet

SCI

Toru
s

Clos

Fat tree

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Simple Model for Parallel Data
Shared-nothing architecture

● The most general and scalable
Set-oriented

● Each dataset D is represented by a table of rows
Key-value

● Each row is represented by a <key, value> pair
where
➔Key uniquely identifies the value in D
➔Value is a list of (attribute name : attribute value)

Can represent structured (relational) data or
NoSQL data

● But graph is another story (see Pregel, DEX or Spark)
Examples

● <row-id#5, (part-id:5, part-name:iphone5, supplier:Apple)>
● <doc-id#10, (content:<html> html text … </html>)>
● <akeyword, (doc-id:id1, doc-id:id2, doc-id:id10)>

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Data Partitioning

Vertical partitioning
● Basis for column

stores (e.g.
MonetDB): efficient
for OLAP queries

● Easy to compress,
e.g. using Bloom
filters

Horizontal partitioning
(sharding)

● Shards can be stored
(and replicated) at
different nodes

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Sharding Schemes

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Different classes of applications

● MPI (Message Passing Interface)
● A shared disk infrastructure for

processing large data sets with a
parallel algorithm on clusters

● OpenMP (Open MultiProcessing)
● A shared memory infrastructure for

processing large data sets with a
parallel algorithm on a node

● Map Reduce (Hadoop)
● A shared nothing architecture for

processing large data sets with a
distributed algorithm on clusters

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Parallel Architectures

Map Reduce/Hadoop MPI OpenMP

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

http://www.mpi-forum.org/
http://forum.stanford.edu/events/2007/plenary/slides/Olukotun.ppt
http://www.tbray.org/ongoing/When/200x/2006/05/24/On-Grids

Programming Models: What is
MPI?

• Message Passing Interface (MPI)
– World’s most popular distributed API
– MPI is “de facto standard” in scientific computing
– C and FORTRAN, ver. 2 in 1997

• What is MPI good for?
– Abstracts away common network communications
– Allows lots of control without bookkeeping
– Freedom and flexibility come with complexity

• 300 subroutines, but serious programs with fewer than 10

• Basics:
– One executable run on every node
– Each node process has a rank ID number assigned
– Call API functions to send messages

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Challenges with MPI

• Deadlock is possible…
– Blocking communication can cause deadlock

• "crossed" calls when trading information
• example:
• Proc1: MPI_Receive(Proc2, A);
MPI_Send(Proc2, B);

• Proc2: MPI_Receive(Proc1, B);
MPI_Send(Proc1, A);

• There are some solutions - MPI_SendRecv()
• Large overhead from comm. mismanagement

– Time spent blocking is wasted cycles
– Can overlap computation with non-blocking comm.

• Load imbalance is possible! Dead machines?
• Things are starting to look hard to code!

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Let’s play with Apache Hadoop...

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Brief recap

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Map Reduce flow

• Programmers must specify:
map (k, v) list(<k’, v’>)→
reduce (k’, list(v’)) <k’’, v’’>→
– All values with the same key are reduced together

• Optionally, also:
partition (k’, number of partitions) partition for k’→
– Often a simple hash of the key, e.g., hash(k’) mod n
– Divides up key space for parallel reduce operations
combine (k’, v’) <k’, v’>*→
– Mini-reducers that run in memory after the map phase
– Used as an optimization to reduce network traffic

• The execution framework handles everything else…

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

“Everything Else”

• The execution framework handles everything else…
– Scheduling: assigns workers to map and reduce tasks
– “Data distribution”: moves processes to data
– Synchronization: gathers, sorts, and shuffles intermediate

data
– Errors and faults: detects worker failures and restarts

• Limited control over data and execution flow
– All algorithms must expressed in m, r, c, p

• You don’t know:
– Where mappers and reducers run
– When a mapper or reducer begins or finishes
– Which input a particular mapper is processing
– Which intermediate key a particular reducer is processing

(1) Map Only(1) Map Only
(4) Point to Point or

Map-Communication

(4) Point to Point or

Map-Communication
(3) Iterative Map Reduce

or Map-Collective

(3) Iterative Map Reduce
or Map-Collective

(2) Classic
MapReduce

(2) Classic
MapReduce

InputInput

mapmap

reducereduce

InputInput

mapmap

 reducereduce

IterationsIterations
InputInput

OutputOutput

mapmap

 Local

Graph

BLAST Analysis
Local Machine
Learning
Pleasingly
Parallel

High Energy
Physics (HEP)
Histograms
Distributed search
Recommender
Engines

Expectation
maximization
Clustering e.g. K-
means
Linear Algebra,
PageRank

Classic MPI
PDE Solvers and
Particle Dynamics
Graph Problems

MapReduce and Iterative Extensions (Spark, Twister) MPI, Giraph

Integrated Systems such as Hadoop + Harp with
Compute and Communication model separated

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Are emerging data analytics
techniques the new El Dorado?

Parallel I/O and management of large
scientific data

Where and When using
Apache Hadoop

WhenWhere

● Batch data processing, not
real-time

● Highly parallel data
intensive distributed
applications

● Very large production
deployments

● Process lots of unstructured
data

● When your processing can
easily be made parallel

● Running batch jobs is
acceptable

● When you have access to
lots of cheap hardware

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

 Advantages/Disadvantages
• Now it’s easy to program for many CPUs

– Communication management effectively gone
• I/O scheduling done for us

– Fault tolerance, monitoring
• machine failures, suddenly-slow machines, etc are handled

– Can be much easier to design and program!

• But … it further restricts solvable problems
– Might be hard to express problem in MapReduce
– Data parallelism is key
– Need to be able to break up a problem by data chunks
– MapReduce is closed-source (to Google) C++
– Hadoop is open-source Java-based rewrite

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Parallel Computing Model

MapReduce can be classified as a SIMD (single-instruction,
multiple-data) problem.

✔ Indeed, the map step is highly scalable because the same instructions
are carried out over all data. Parallelism arises by breaking the data into
independent parts with no forward or backward dependencies (side
effects) within a Map step; that is, the Map step may not change any
data (even its own).

✔ The reducer step is similar, in that it applies the same reduction process
to a different set of data (the results of the Map step).

✔ In general, the MapReduce model provides a functional, rather
than procedural, programing model. Similar to a functional
language, MapReduce cannot change the input data as part of
the mapper or reducer process, which is usually a large file. Such
restrictions can at first be seen as inefficient; however, the lack
of side effects allows for easy scalability and redundancy.

An HPC cluster, on the other hand, can run SIMD and MIMD
(multiple-instruction, multiple-data) jobs.

✔ The programmer determines how to execute the parallel algorithm.
Users, however, are not restricted when creating their own MapReduce
application within the framework of a typical HPC cluster.

A Tale of Two Data-Intensive Paradigs: Applications, Abstractions, and Architectures
Shantenu Jha , Judy Qiu, Andre Luckow , Pradeep Mantha , Geoffrey C.Fox

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

When to use Apache Hadoop

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

When to use Apache Hadoop

• Your Data Sets Are Really Big
– Don’t even think about Hadoop if the data you want to

process is measured in MBs or GBs. If the data driving the
main problem you are hoping to use Hadoop to solve is
measured in GBs, save yourself the hassle and use Excel,
a SQL BI tool on Postgres, or some similar combination.
On the other hand, if it’s several TB or (even better)
measured in petabytes, Hadoop’s superior scalability will
save you a considerable amount of time and money

• You Celebrate Data Diversity
– One of the advantages of the Hadoop Distributed File

System (HDFS) is it’s really flexible in terms of data types.
It doesn’t matter whether your raw data is structured,
semi-structured (like XML and log files), unstructured (like
video files).

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

When to use MapReduce

• You Find Yourself Throwing Away Perfectly Good
Data

– One of the great things about Hadoop is its capability to
store petabytes of data. If you find that you are throwing
away potentially valuable data because its costs too much
to archive, you may find that setting up a Hadoop cluster
allows you to retain this data, and gives you the time to
figure out how to best make use of that data.

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

When to NOT use
MapReduce

• You Need Answers in a Hurry
– Hadoop is probably not the ideal solution if you need

really fast access to data. The various SQL engines for
Hadoop have made big strides in the past year, and will
likely continue to improve. But if you’re using Map-Reduce
to crunch your data, expect to wait days or even weeks to
get results back.

• Your Queries Are Complex and Require Extensive
Optimization

– Hadoop is great because it gives you a massively parallel
cluster for low-cost Lintel servers and scads of cheap hard
disk capacity. While the hardware and scalability is
straightforward, getting the most out of Hadoop typically
requires a hefty investment in the technical skills required
to optimize queries.

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

When to NOT use
MapReduce

• You Require Random, Interactive Access to Data
– The pushback from the limitations of the batch-oriented

MapReduce paradigm in early Hadoop led the community to
improve SQL performance and boost its capability to serve
interactive queries against random data. While SQL on Hadoop
is getting better, in most cases it’s not a reason in of itself to
adopt Hadoop.

• You Want to Store Sensitive Data
– Hadoop is evolving quickly and is able to do a lot of things

that it couldn’t do just a few years ago. But one of the things
that it’s not particularly good at today is storing sensitive
data. Hadoop today has basic data and use access security.
And while these features are improving by the month, the
risks of accidentally losing personally identifiable information
due to Hadoop’s less-than-stellar security capabilities is
probably not worth the risk.

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

 Advantages/Disadvantages
• Now it’s easy to program for many CPUs

– Communication management effectively gone
• I/O scheduling done for us

– Fault tolerance, monitoring
• machine failures, suddenly-slow machines, etc are handled

– Can be much easier to design and program!
– Can cascade several (many?) Map-Reduce tasks

• But … it further restricts solvable problems
– Might be hard to express problem in Map-Reduce
– Data parallelism is key
– Need to be able to break up a problem by data chunks
– Map-Reduce is closed-source (to Google) C++
– Hadoop is open-source Java-based rewrite

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Advanced Exercises

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Matrix-matrix product v1

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Matrix-matrix product

• Basic matrix multiplication on a 2-D grid

• Matrix multiplication is an important application in
HPC and appears in many areas (linear algebra)

• C = A * B where A, B, and C are matrices (two-
dimensional arrays)

• A restricted case is when B has only one column,
matrix-vector product, which appears in
representation of linear equations and partial
differential equations

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

C = A x B

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Matrix-matrix product

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Matrix-matrix product
A is stored by row ($ head data/mat/smat_10x5_A)
0 0 0.599560659528 4 -1.53589644057

1

2 2 0.260564861569

3

4 0 0.26719729583 1 0.839470246524

5 2 -1.49761307371

6 0 0.558321894518 1 1.22774377511

7 2 -1.09283410126

8 1 -0.912374571316 3 1.40678001003

9 0 -0.402945890763

B is stored by row ($ head data/mat/smat_5x5_B)
0 0 0.12527732342 3 1.02407852061 4 0.121151207685

1 0 0.597062100484

2 2 1.24708888756

3 4 -1.45057798535

4 2 0.0618772663296

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Matrix-matrix product

Map 1
Align on
columns

Reduce 1
Output A

ik
B

kj

keyed on (i,j)

Reduce 2
Output
sum(A

ik
, B

kj
)

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Joinmap

Map 1
Align on
columns

Reduce 1
Output A

ik
B

kj

keyed on (i,j)

Reduce 2
Output
sum(A

ik
, B

kj
)

def joinmap(self, key, line):
 mtype = self.parsemat()
 vals = [float(v) for v in line.split()]
 row = int(vals[0])
 rowvals = [(int(vals[i]),vals[i+1]) for i
in xrange(1,len(vals),2)]
 if mtype==1:
 # rowvals are the entries in the row
 # we output the entire row for each
column
 for val in rowvals:
 # reorganize data by columns
 yield (val[0], (row, val[1]))
 else:
 yield (row, (rowvals,))

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Joinred

Map 1
Align on
columns

Reduce 1
Output A

ik
B

kj

keyed on (i,j)

Reduce 2
Output
sum(A

ik
, B

kj
)

def joinred(self, key, vals):
 # each key is a column of the matrix.
 # and there are two types of values:
 # len == 2 (1, row, A_row,key) # a column of A
 # len == 1 rowvals # a row of B

 # load the data into memory
 brow = []
 acol = []
 for val in vals:
 if len(val) == 1:
 brow.extend(val[0])
 else:
 acol.append(val)

 for (bcol,bval) in brow:
 for (arow,aval) in acol:
 yield ((arow,bcol), aval*bval)

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Sumred

Map 1
Align on
columns

Reduce 1
Output A

ik
B

kj

keyed on (i,j)

Reduce 2
Output
sum(A

ik
, B

kj
)

def sumred(self, key, vals):
 yield (key, sum(vals))

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

from mrjob.job import MRJob
from mrjob.compat import get_jobconf_value
import itertools
import sys

class SparseMatMult(MRJob):

 def configure_options(self):
 super(SparseMatMult,self).configure_options()
 self.add_passthrough_option('--A-
matrix',default='A',
 dest='Amatname')

 def parsemat(self):
 """ Return 1 if this is the A matrix, otherwise
return 2"""
 fn = get_jobconf_value('map.input.file')
 if self.options.Amatname in fn:
 return 1
 else:
 return 2

 def joinmap(self, key, line):
 mtype = self.parsemat()
 vals = [float(v) for v in line.split()]
 row = int(vals[0])
 rowvals = [(int(vals[i]),vals[i+1]) for i in
xrange(1,len(vals),2)]
 if mtype==1:
 # rowvals are the entries in the row
 # we output the entire row for each column
 for val in rowvals:
 # reorganize data by columns
 yield (val[0], (row, val[1]))
 else:
 yield (row, (rowvals,))

sparse_matmat.py
def joinred(self, key, vals):

 brow = []

 acol = []

 for val in vals:

 if len(val) == 1:

 brow.extend(val[0])

 else:

 acol.append(val)

 for (bcol,bval) in brow:

 for (arow,aval) in acol:

 yield ((arow,bcol), aval*bval)

 def sumred(self, key, vals):

 yield (key, sum(vals))

 def rowgroupmap(self, key, val):

 yield key[0], (key[1], val)

 def appendred(self, key, vals):

 yield key, list(itertools.chain.from_iterable(vals))

 def steps(self):

 return [self.mr(mapper=self.joinmap,
reducer=self.joinred),

 self.mr(mapper=None, reducer=self.sumred),

 self.mr(mapper=self.rowgroupmap,
reducer=self.appendred)]

if __name__=='__main__':

 SparseMatMult.run()

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Matrix-matrix product v2

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Matrix-matrix product v2
We can think of a matrix as a relation with three attributes:

● the row number, the column number, and the value in that row and
column.

● M as a relation M (I, J, V), with tuples (i, j, mij)
● N as a relation N (J, K, W), with tuples (j, k, njk)
● The product M N is almost the natural join of M (I, J, V) and N

(J, K, W), having only attribute J in common, would produce
tuples (i, j, k, v, w) from each tuple (i, j, v) in M and tuple (j, k, w)
in N

● This five-component tuple represents the pair of matrix elements
(mij,njk). What we want instead is the product of these elements,
that is, the four-component tuple (i, j, k, v × w), because that
represents the product mijnjk

● Once we have this relation as the result of one Map Reduce
operation, we can perform grouping and aggregation, with I and K
as the grouping attributes and the sum of V × W as the
aggregation.

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Matrix-matrix product v2
The Map Function:
● For each matrix element mij, produce the key value pair j, (M, i, mij) .

Likewise, for each matrix element njk, produce the key value pair j, (N, k,
njk) . Note that M and N in the values are not the matrices themselves but
rather a bit indicating whether the element comes from M or N

The Reduce Function:
● For each key j, examine its list of associated values. For each value that

comes from M , say (M, i, mij) , and each value that comes from N , say (N, k,
njk), produce a key-value pair with key equal to (i, k) and value equal to the
product of these elements, mijnjk

The Map Function:
● This function is just the identity. That is, for every input element with key (i,

k) and value v, produce exactly this key-value pair
The Reduce Function:
● For each key (i, k), produce the sum of the list of values associated with this

key. The result is a pair (i, k), v , where v is the value of the element in row i
and column k of the matrix P = MN

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

import sys

import random

import numpy

import pickle

from mrjob.job import MRJob

from mrjob.compat import get_jobconf_value

import os

class MatMult(MRJob):

 def configure_options(self):

 super(MatMult, self).configure_options()

 self.add_passthrough_option('--A-matrix', default='A',

 dest='Amatname')

 def parsemat(self):

 """ Return 1 if this is the A matrix, otherwise return 2"""

 fn = get_jobconf_value('map.input.file')

 if self.options.Amatname in fn:

 return 1

 else:

 return 2

 def emit_values(self, _, line):

 mtype = self.parsemat()

 a, b, v = line.split()

 v = float(v)

 if mtype == 1:

 i = int(a)

 j = int(b)

 yield j, (0, i, v)

 else:

 j = int(a)

 k = int(b)

 yield j, (1, k, v)

matmat.py
 def multiply_values(self, j, values):

 values_from1 = []

 values_from2 = []

 for v in values:

 if v[0] == 0:

 values_from1.append(v)

 elif v[0] == 1:

 values_from2.append(v)

 for (m, i, v1) in values_from1:

 for (m, k, v2) in values_from2:

 yield (i, k), v1*v2

 def identity(self, k, v):

 yield k, v

 def add_values(self, k, values):

 yield k, sum(values)

 def steps(self):

 return [self.mr(mapper=self.emit_values,

 reducer=self.multiply_values),

 self.mr(mapper=self.identity,

 reducer=self.add_values)]

if __name__ == '__main__':

 MatMult.run()

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Matrix-matrix product v2

Matrix is stored by value ($ head matmat_3x2_A)
0 0 1

0 1 2

1 0 2

1 1 3

2 0 4

2 1 5

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Log based debug

● Python
sys.stderr(out).write("REDUCER INPUT: ({0},{1})\n".format(j,
values))

● Java
System.err.println("Temperature over 100 degrees for input: " +
value);

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Debugging

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Debug mechanisms

● The Web Interface
● Runtime monitor
● Log based debug

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

The Web User Interface

● Hadoop comes with a web UI for viewing information about
your jobs. It is useful for following a job’s progress while it
is running, as well as finding job statistics and logs after the
job has completed.

● You can find the UI at http://127.0.0.1:50030/

● $ docker run -p 127.0.0.1:50030:50030 -p
127.0.0.1:50070:50070 -i -t cineca/hadoop-
mrjob:1.2.1 /etc/bootstrap.sh -bash

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Hadoop Reporter

● The fastest way of debugging programs is via print statements,
and this is certainly possible in Hadoop.

● However, there are complications to consider: with programs
running on tens, hundreds, or thousands of nodes, how do we
find and examine the output of the debug statements,
which may be scattered across these nodes?

● For a particular case, where we are looking for (what we think
is) an unusual case, we can use a debug statement to log
to standard error, in conjunction with a message to
update the task’s status message to prompt us to look in
the error log. The web UI makes this easy, as you will see.

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Hadoop Reporter

“A facility for Map-Reduce applications to report progress and
update counters, status information etc.”

if (temperature > 1000) {

System.err.println("Temperature over 100 degrees
for input: " + value);

reporter.setStatus("Detected possibly corrupt
record: see logs.");

reporter.incrCounter(Temperature.OVER_100, 1);

}

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Hadoop Reporter

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Runtime monitor

● The Java Platform Debugger Architecture is a collection of
APIs to debug Java code.

● Java Debugger Interface (JDI) - defines a high-level Java
language interface that developers can easily use to write
remote debugger application tools.

$ export HADOOP_OPTS="-
agentlib:jdwp=transport=dt_socket,server=y,suspend=
y, address=8000"

http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Log based debug

● Python
sys.stderr(out).write("REDUCER INPUT: ({0},{1})\n".format(j,
values))

● Java
System.err.println("Temperature over 100 degrees for input: " +
value);

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Debugging/profiling

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Profiling

● Like debugging, profiling a job running on a distributed system
like MapReduce presents some challenges. Hadoop allows you
to profile a fraction of the tasks in a job, and, as each task
completes, pulls down the profile information to your machine
for later analysis with standard profiling tools.

● HPROF is a profiling tool that comes with the JDK that,
although basic, can give valuable information about a program’s
CPU and heap usage.

conf.setProfileEnabled(true);

conf.setProfileParams("-
agentlib:hprof=cpu=samples,heap=sites,depth=6," +

"force=n,thread=y,verbose=n,file=%s");

conf.setProfileTaskRange(true, "0-2");

https://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Profiling

● Set mapred.task.profile to true
● Profile a small range of maps/reduces

● mapred.task.profile.{maps|reduces}
● hprof support is built-in
● Use mapred.task.profile.params to set options for the

debugger
● Possibly DistributedCache for the profiler’s agent

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Cluster optimizations

The problem:
 Out of the box configuration not friendly
 Difficult to debug
 Performance – tuning/optimizations is a black art

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Hadoop basic options

All hadoop commands are invoked by the bin/hadoop script.
Running the hadoop script without any arguments prints
the description for all commands.

Usage: hadoop [--config confdir] [COMMAND]
[GENERIC_OPTIONS] [COMMAND_OPTIONS]

Hadoop has an option parsing framework that employs
parsing generic options as well as running classes.

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Hadoop basic options

-conf <configuration file> Specify an application
configuration file.

-D <property=value> Use value for given property.

-fs <local|namenode:port> Specify a namenode.

-jt <local|jobtracker:port> Specify a job tracker.
Applies only to job.

-files <comma separated list of files> Specify comma
separated files to be copied to the map reduce cluster.
Applies only to job.

-libjars <comma seperated list of jars> Specify comma
separated jar files to include in the classpath. Applies
only to job.

-archives <comma separated list of archives> Specify comma
separated archives to be unarchived on the compute
machines. Applies only to job.

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Configuration parameters

Compression mapred.compress.map.output → Map Output
Compression

 Default: False
 Pros: Faster disk writes, lower disk space usage, lesser

time spent on data transfer (from mappers to
reducers).

 Cons: Overhead in compression at Mappers and
decompression at Reducers.

 Suggestions: For large cluster and large jobs this
property should be set true.

$ hadoop -Dmapred.compress.map.output=<false|true>

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Speculative Execution

Speculative Execution mapred.map/reduce.speculative.execution
 Enable/Disable task (map/reduce) speculative Execution →

 Default: True
 Pros: Reduces the job time if the task progress is slow due

to memory unavailability or hardware degradation.
 Cons: Increases the job time if the task progress is slow due

to complex and large calculations. On a busy cluster
speculative execution can reduce overall throughput, since
redundant tasks are being executed in an attempt to bring
down the execution time for a single job.

 Suggestions: In large jobs where average task completion
time is significant (> 1 hr) due to complex and large
calculations and high throughput is required the speculative
execution should be set to false.

$ bin/hadoop jar -Dmapred.map.tasks.speculative.execution=false \
 -Dmapred.reduce.tasks.speculative.execution=false

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Speculative execution

● It is possible for one Map task to run more slowly than the
others (perhaps due to faulty hardware, or just a very slow
machine)

● It would appear that this would create a bottleneck
● The reduce method in the Reducer cannot start until every

Mapper has finished

● Hadoop uses speculative execution to mitigate against this
● If a Mapper appears to be running significantly more slowly than

the others, a new instance of the Mapper will be started on
another machine, operating on the same data

● The results of the first Mapper to finish will be used
● Hadoop will kill off the Mapper which is still running

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Number of Maps/Reducers

Number of Maps/Reducers
mapred.tasktracker.map/reduce.tasks.maximum Maximum →
tasks (map/reduce) for a tasktracker

 Default: 2
 Suggestions: Recommended range -

(cores_per_node)/2 to 2x(cores_per_node), especially
for large clusters. This value should be set according to
the hardware specification of cluster nodes and resource
requirements of tasks (map/reduce).

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

File block size

File block size dfs.block.size → File system block size
 Default: 67108864 (bytes)
 Suggestions:

– Small cluster and large data set: default block size will create a
large number of map tasks. e.g. Input data size = 160 GB and
dfs.block.size = 64 MB then the minimum no. of maps=
(160*1024)/64 = 2560 maps.

– If dfs.block.size = 128 MB minimum no. of maps=
(160*1024)/128 = 1280 maps.

– If dfs.block.size = 256 MB minimum no. of maps=
(160*1024)/256 = 640 maps.

– In a small cluster (6-10 nodes) the map task creation overhead is
considerable. So dfs.block.size should be large in this case but
small enough to utilize all the cluster resources. The block size
should be set according to size of the cluster, map task
complexity, map task capacity of cluster and average size of
input files.

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Sort size

Sort size io.sort.mb → Buffer size (MBs) for sorting
 Default: 100
 Suggestions: For Large jobs (the jobs in which map

output is very large), this value should be increased
keeping in mind that it will increase the memory
required by each map task. So the increment in this
value should be according to the available memory at
the node. Greater the value of io.sort.mb, lesser will be
the spills to the disk, saving write to the disk

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Sort factor

Sort factor io.sort.factor Stream merge factor →
 Default: 10
 Suggestions: For Large jobs (the jobs in which map

output is very large and number of maps are also large)
which have large number of spills to disk, value of this
property should be increased. The number of input
streams (files) to be merged at once in the map/reduce
tasks, as specified by io.sort.factor, should be set to a
sufficiently large value (for example, 100) to minimize
disk accesses. Increment in io.sort.factor, benefits in
merging at reducers since the last batch of streams
(equal to io.sort.factor) are sent to the reduce function
without merging, thus saving time in merging.

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

JVM Reuse

JVM reuse mapred.job.reuse.jvm.num.tasks Reuse single →
JVM

 Default: 1
 Suggestions: The minimum overhead of JVM

creation for each task is around 1 second. So for the
tasks which live for seconds or a few minutes and
have lengthy initialization, this value can be increased
to gain performance.

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Reduce parallel copies

Reduce parallel copies mapred.reduce.parallel.copies →
Threads for parallel copy at reducer
 Default: 5
 Description: The number of threads used to copy map

outputs to the reducer.
 Suggestions: For Large jobs (the jobs in which map

output is very large), value of this property can be
increased keeping in mind that it will increase the total
CPU usage.

School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Thank you!

