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Why this school?

● Data are becoming more and more 
important

● Processing large data sets has become 
an issue for young researchers

● Many interesting technologies are 
emerging and entering the HPC domain

● HPC common technologies, although are 
the only viable solutions in many cases, 
have a steep learning curve which limits 
their wide adoption
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Goals

During this course, you will learn:
● the trends and challenges surrounding the 
BigData definition

● how the most relevant technologies and 
methods in this domain work

● Map-Reduce
● Apache Hadoop
● Apache Spark, Apache SparkSQL
● Apache Spark MLLIB (Machine Learning Library)
● Python/R

● how to structure and program your code 
using Python/Scala/R
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General notes

● Each participant will receive personal credentials 
to access Cineca resources for a limited amount of 
time 

● requests for extensions are possible
● There is one workstation every two 

participants:
● U: corsi P: corsi_2013!

● Course web site:
● https://goo.gl/3G8Tu5

● Feel free to ask questions at any time  do not be →
shy!
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Agenda
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Quick poll

● How many of you already know part of the mentioned Big 
Data technologies?

● How many of you know any HPC methods (MPI, OpenMP, 
etc.)?

● How many of you know Python?
● Scala?
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Before starting



School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

 Size of computational applications 

Computational Dimension:   
number of operations  needed to solve the problem, 

in general is a function of the size of the involved
data structures (n, n2 , n3 , n log n, etc.) 

flop - Floating point operations
 indicates an arithmetic floating point operation.

flop/s - Floating points operations per second
 is a unit to measure  the speed of a computer.

    
Computational problems today: 1015 – 1022 flop

One year has about 3 x 107 seconds!

Most powerful computers today have reach a 
sustained  performance is of the order of Tflop/s - 
Pflop/s (1012 - 1015 flop/s).
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  Example: Weather Prediction

Forecasts on a global scale:
● 3D Grid to represent the Earth

✔ Earth's circumference:      40000 km
✔ radius:    6370 km
✔ Earth's surface:      4πr2      5•108  km2

● 6 variables:  
✔ temperature
✔ pressure
✔ humidity 
✔ wind speed in the 3 Cartesian directions

● cells of 1 km on each side
● 100 slices to see how the variables evolve on the 

different levels of the atmosphere 
● a 30 seconds time step is required for the simulation 

with such resolution
● Each cell requires about 1000 operations per time step 

(Navier-Stokes turbulence and various phenomena)
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Example: Weather Prediction / 1

Grid: 5 •108  • 100  = 5 • 1010  cells
●   each cell is represented with 8 Byte  
●   Memory space: 

➔ (6 var)•(8 Byte)•(5•1010 cells)  2 • 1012 Byte = 2TB 

A 24 hours  forecast  needs:
➔ 24 • 60 • 2  3•103   time-step
➔ (5•1010 cells) • (103 oper.) • (3•103 time-steps) = 1.5•1017 operations !

 

A computer with a power of 1Tflop/s will take 1.5•105 sec.
➔ 24 hours  forecast will  need 2days to run ... but we shall obtain a very 

accurate forecast
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Von Neumann Model

Control

Input Memory Output

Arithm. Logic Unit

     ……… Data

Control

➔ A single instruction is loaded 
from memory (fetch) and 
decoded

➔ Compute the addresses of 
operands

➔ Fetch the operands from 
memory; 

➔ Execute the instruction ;
➔ Write the result in memory 

(store).

Instructions are 
processed sequentially
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Speed of Processors: Clock Cycle and 
Frequency

The clock cycle  is defined as the time 

between two adjacent pulses of oscillator 
that sets the time of the processor. 

The number of these pulses per second is 
known as clock speed or clock frequency, 
generally measured in GHz (gigahertz, or 
billions of pulses per second).  

The clock cycle controls the 
synchronization of operations in a 
computer: All the  operations inside the 

processor last a multiple of  .

Processor  (ns) freq (MHz)

CDC 6600 100   10

Cyber 76 27.5   36,3

IBM ES 9000 9 111

Cray Y-MP C90 4.1 244

Intel i860 20   50

PC Pentium < 0.5 > 2 GHz

Power PC 1.17 850

IBM Power 5 0.52     1.9 GHz

IBM Power 6 0.21     4.7 GHz

Increasing the clock frequency:

The speed of light sets an upper limit to the speed 

with which electronic components can operate .

Propagation velocity of a signal in a vacuum:   
300.000 Km/s = 30 cm/ns

Heat dissipation problems inside the processor. 
Also Quantum tunelling expected to become 

important.
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Other factors that affect Performance

In addition to processor power, other 
factors affect the performance of 
computers:

➔ Size of memory
➔ Bandwidth between processor and 

memory
➔ Bandwidth toward the I/O system
➔ Size and bandwidth of the cache
➔ Latency between processor, 

memory, and I/O system

Data

Addresses

Arithmetic-Logical 

Unit ALU
Control  

Unit

Central 

Memory

Devices
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Memory hierarchies

Memory access time: the time required 
by the processor to access data or to 
write data from / to memory

The hierarchy exists because :
• fast memory is expensive and small
• slow memory is cheap and big

Latency
– how long do I have to wait for the 

data?
– (cannot do anything while waiting)

Throughput
– how many bytes/second. but not 

important if waiting.

Total time = latency + (amount of data / throughput) 

Time to run code = clock cycles running code + clock cycles waiting for 
memory
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Memory access

• Important problem for the 
performance of any computer is 
access to main memory. Fast 
processors are useless if memory 
access is slow!

• Over the years the difference in 
speed between processors and 
main memory has been growing.

Time

Processors

Memory

Gap
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Cache Memory

• High speed, small size memory used as a 
buffer between the main memory and the 
processor. When used correctly, reduces the 
time spent waiting for data from main 
memory.

• Present as various “levels” (e.g. L1, L2, L3, 
etc) according to proximity to the functional 
units of the processor. 

• Cache efficiency depends on the locality of 
the data references:
– Temporal locality refers to the re-use of data 

within relatively small time frame.
– Spatial locality refers to the use of data within 

close storage locations (e.g. one dimensional 
array).

• Cache can contain Data, Instructions or 
both.
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Aspects of parallelism

• It has been recognized for a long time that constant performance 
improvements cannot be obtained just by increasing factors such 
as processor clock speed – parallelism is needed.

• Parallelism can be present at many levels:
– Functional parallelism within the CPU
– Pipelining and vectorization
– Multi-processor and multi-core
– Accelerators
– Parallel I/O
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Big Data

A buzz word!
● With different meanings depending on your 
perspective - e.g. 100 TBs is big for a transaction 
processing system, but small for a world-wide search 
engine

A simple “definition” (Wikipedia)
● Consists of data sets that grow so large that 
they become awkward to work with using on-
hand database management tools

➔Difficulties: capture, storage, search, sharing, 
analytics, visualizing

How big is big?
● Moving target: terabyte (1012 bytes), petabyte 
(1015 bytes), exabyte (1018), zetabyte (1021)

Scale is only one dimension of the problem!
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Operate without models
forward problem

m
od

el

params

algor.

theory

Outputs

Before...Before...
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Operate without models
inverse problem

model

params

algor.

DATA

O
utputs

Now, future...Now, future...
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Operate without models (Big Data)

model

params

algor.

DATA

outputsm
od
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params

algor.

theory

Outputs
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Where all began...a decade ago!

http://research.microsoft.com/en-

us/collaboration/fourthparadigm/4th_paradigm_book_complete_lr.pdf
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Dimensions of the problem

● Volume
● Refers to massive amounts of data
● Makes it hard to store and manage, but also to 

analyze (big analytics)
● Velocity

● Continuous data streams are being captured (e.g. 
from sensors or mobile devices) and produced

● Makes it hard to perform online processing
● Variety

● Different data formats (sequences, graphs, arrays, 
…), different semantics, uncertain data (because of 
data capture), multiscale data (with lots of 
dimensions)

● Makes it hard to integrate and analyze
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What do we do when there is too 
much data to process?
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Parallel data processing!

● Exploit a massively parallel computer
● A computer that interconnects lots of CPUs, RAM 
and disk units

● To obtain
● High performance through data-based parallelism

➔High throughput for transaction-oriented (OLTP) 
loads

➔Low response time for decision-support (OLAP) 
queries

● High availability and reliability through data 
replication

● Extensibility with the ideal goals
➔Linear speed-up
➔Linear scale-up
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Speed-up

● Linear increase in performance for a 
constant database size and load, and 
proportional increase of the system 
components (CPU, memory, disk)
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Scale-up

● Sustained performance for a linear 
increase of database size and load, and 
proportional increase of components



School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Parallel Architectures 
for Data Processing

● Three main alternatives, depending on 
how processors,memory and disk are 
interconnected

● Shared-memory computer
● Shared-disk cluster
● Shared-nothing cluster

DeWitt, D. and Gray, J. “Parallel database systems: the 
future of high performance database systems”. ACM 
Communications, 35(6), 85-98, 1992.
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Shared Memory
● All memory and disk are 
shared

● Symmetric Multiprocessor 
(SMP)

● Recent: Non Uniform 
Memory

+ Simple for apps, fast 
com., load balancing
- Complex interconnect 
limits extensibility, cost

● For write-intensive workloads, 
not for big data
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Shared Disk

● Disk is shared, memory is 
private

● Storage Area Network (SAN) 
to interconnect memory 
and disk (block level)

● Needs distributed lock 
manager (DLM) for cache 
coherence

+ Simple for apps, 
extensibility
- Complex DLM, cost
● For write-intensive workloads or 
big data
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Shared Nothing

● No sharing of memory or 
disk across nodes

● No need for DLM
● But needs data 

partitioning
+ highest extensibility, 
cost
- updates, distributed 
trans

● For big data (read 
intensive)
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Example networks

MESH Topology

 Some variations of the mesh 
model have wrap-around type 
connections between the nodes 
to the edges of the mesh (torus 
topology).
The Cray T3E adopts a 3D torus 
topology

IBM BG/Q adopts a 5D torus 
topology

Toroidal Topology
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Commodity Interconnects
Gig Ethernet

Myrinet

Infiniband

QsNet

SCI

Toru
s

Clos

Fat tree
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Simple Model for Parallel Data
Shared-nothing architecture

● The most general and scalable
Set-oriented

● Each dataset D is represented by a table of rows
Key-value

● Each row is represented by a <key, value> pair 
where
➔Key uniquely identifies the value in D
➔Value is a list of (attribute name : attribute value)

Can represent structured (relational) data or 
NoSQL data

● But graph is another story (see Pregel, DEX or Spark)
Examples

● <row-id#5, (part-id:5, part-name:iphone5, supplier:Apple)>
● <doc-id#10, (content:<html> html text … </html>)>
● <akeyword, (doc-id:id1, doc-id:id2, doc-id:id10)>
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Data Partitioning

Vertical partitioning
● Basis for column 

stores (e.g. 
MonetDB): efficient 
for OLAP queries

● Easy to compress, 
e.g. using Bloom 
filters

Horizontal partitioning 
(sharding)

● Shards can be stored 
(and replicated) at 
different nodes
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Sharding Schemes
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Different classes of applications

● MPI (Message Passing Interface)
● A shared disk infrastructure for 

processing large data sets with a 
parallel algorithm on clusters

● OpenMP (Open MultiProcessing)
● A shared memory infrastructure for 

processing large data sets with a 
parallel algorithm on a node

● Map Reduce (Hadoop)
● A shared nothing architecture for 

processing large data sets with a 
distributed algorithm on clusters
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Parallel Architectures 

Map Reduce/Hadoop MPI OpenMP
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http://www.mpi-forum.org/
http://forum.stanford.edu/events/2007/plenary/slides/Olukotun.ppt
http://www.tbray.org/ongoing/When/200x/2006/05/24/On-Grids

Programming Models: What is 
MPI?

• Message Passing Interface (MPI)
– World’s most popular distributed API
– MPI is “de facto standard” in scientific computing
– C and FORTRAN, ver. 2 in 1997

• What is MPI good for?
– Abstracts away common network communications
– Allows lots of control without bookkeeping
– Freedom and flexibility come with complexity

• 300 subroutines, but serious programs with fewer than 10
 

• Basics:
– One executable run on every node
– Each node process has a rank ID number assigned
– Call API functions to send messages
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Challenges with MPI

• Deadlock is possible…
– Blocking communication can cause deadlock

• "crossed" calls when trading information 
• example: 
• Proc1: MPI_Receive(Proc2, A);  
MPI_Send(Proc2, B);

• Proc2: MPI_Receive(Proc1, B);  
MPI_Send(Proc1, A);

• There are some solutions - MPI_SendRecv()
• Large overhead from comm. mismanagement

– Time spent blocking is wasted cycles
– Can overlap computation with non-blocking comm.

• Load imbalance is possible! Dead machines?
• Things are starting to look hard to code!
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Let’s play with Apache Hadoop...
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Brief recap  
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Map Reduce flow

• Programmers must specify:
map (k, v)  list(<k’, v’>)→
reduce (k’, list(v’))  <k’’, v’’>→
– All values with the same key are reduced together

• Optionally, also:
partition (k’, number of partitions)  partition for k’→
– Often a simple hash of the key, e.g., hash(k’) mod n
– Divides up key space for parallel reduce operations
combine (k’, v’)  <k’, v’>*→
– Mini-reducers that run in memory after the map phase
– Used as an optimization to reduce network traffic

• The execution framework handles everything else…
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“Everything Else”

• The execution framework handles everything else…
– Scheduling: assigns workers to map and reduce tasks
– “Data distribution”: moves processes to data
– Synchronization: gathers, sorts, and shuffles intermediate 

data
– Errors and faults: detects worker failures and restarts

• Limited control over data and execution flow
– All algorithms must expressed in m, r, c, p

• You don’t know:
– Where mappers and reducers run
– When a mapper or reducer begins or finishes
– Which input a particular mapper is processing
– Which intermediate key a particular reducer is processing



  

(1) Map Only(1) Map Only
(4) Point to Point or 

Map-Communication

(4) Point to Point or 

Map-Communication
(3) Iterative Map Reduce 

or Map-Collective

(3) Iterative Map Reduce 
or Map-Collective

(2) Classic 
MapReduce

(2) Classic 
MapReduce

     

InputInput

      

mapmap
   

     
     

reducereduce

  

InputInput

      

mapmap

   

     
     reducereduce

IterationsIterations
InputInput

 

OutputOutput

     

mapmap

    Local

Graph

BLAST Analysis
Local Machine 
Learning
Pleasingly 
Parallel

High Energy 
Physics (HEP) 
Histograms
Distributed search
Recommender 
Engines

Expectation 
maximization 
Clustering e.g. K-
means
Linear Algebra, 
PageRank

Classic MPI
PDE Solvers and 
Particle Dynamics
Graph Problems

MapReduce and Iterative Extensions (Spark, Twister) MPI, Giraph

Integrated Systems such as Hadoop + Harp with 
Compute and Communication model separated
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Are emerging data analytics 
techniques the new El Dorado?  



Parallel I/O and management of large 
scientific data

Where and When using 
Apache Hadoop

WhenWhere

● Batch data processing, not 
real-time

● Highly parallel data 
intensive distributed 
applications

● Very large production 
deployments

● Process lots of unstructured 
data

● When your processing can 
easily be made parallel

● Running batch jobs is 
acceptable

● When you have access to 
lots of cheap hardware
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 Advantages/Disadvantages
• Now it’s easy to program for many CPUs

– Communication management effectively gone
• I/O scheduling done for us

– Fault tolerance, monitoring
• machine failures, suddenly-slow machines, etc are handled

– Can be much easier to design and program!

• But … it further restricts solvable problems
– Might be hard to express problem in MapReduce
– Data parallelism is key
– Need to be able to break up a problem by data chunks
– MapReduce is closed-source (to Google) C++
– Hadoop is open-source Java-based rewrite
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Parallel Computing Model

MapReduce can be classified as a SIMD (single-instruction, 
multiple-data) problem.

✔ Indeed, the map step is highly scalable because the same instructions 
are carried out over all data. Parallelism arises by breaking the data into 
independent parts with no forward or backward dependencies (side 
effects) within a Map step; that is, the Map step may not change any 
data (even its own). 

✔ The reducer step is similar, in that it applies the same reduction process 
to a different set of data (the results of the Map step).

✔ In general, the MapReduce model provides a functional, rather 
than procedural, programing model. Similar to a functional 
language, MapReduce cannot change the input data as part of 
the mapper or reducer process, which is usually a large file. Such 
restrictions can at first be seen as inefficient; however, the lack 
of side effects allows for easy scalability and redundancy.

An HPC cluster, on the other hand, can run SIMD and MIMD 
(multiple-instruction, multiple-data) jobs. 

✔ The programmer determines how to execute the parallel algorithm. 
Users, however, are not restricted when creating their own MapReduce 
application within the framework of a typical HPC cluster.

A Tale of Two Data-Intensive Paradigs: Applications, Abstractions, and Architectures
Shantenu Jha , Judy Qiu, Andre Luckow , Pradeep Mantha , Geoffrey C.Fox
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When to use Apache Hadoop
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When to use Apache Hadoop

• Your Data Sets Are Really Big
– Don’t even think about Hadoop if the data you want to 

process is measured in MBs or GBs. If the data driving the 
main problem you are hoping to use Hadoop to solve is 
measured in GBs, save yourself the hassle and use Excel, 
a SQL BI tool on Postgres, or some similar combination. 
On the other hand, if it’s several TB or (even better) 
measured in petabytes, Hadoop’s superior scalability will 
save you a considerable amount of time and money

• You Celebrate Data Diversity
– One of the advantages of the Hadoop Distributed File 

System (HDFS) is it’s really flexible in terms of data types. 
It doesn’t matter whether your raw data is structured, 
semi-structured (like XML and log files), unstructured (like 
video files). 
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When to use MapReduce

• You Find Yourself Throwing Away Perfectly Good 
Data

– One of the great things about Hadoop is its capability to 
store petabytes of data. If you find that you are throwing 
away potentially valuable data because its costs too much 
to archive, you may find that setting up a Hadoop cluster 
allows you to retain this data, and gives you the time to 
figure out how to best make use of that data.
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When to NOT use 
MapReduce

• You Need Answers in a Hurry
– Hadoop is probably not the ideal solution if you need 

really fast access to data. The various SQL engines for 
Hadoop have made big strides in the past year, and will 
likely continue to improve. But if you’re using Map-Reduce 
to crunch your data, expect to wait days or even weeks to 
get results back.

• Your Queries Are Complex and Require Extensive 
Optimization

– Hadoop is great because it gives you a massively parallel 
cluster for low-cost Lintel servers and scads of cheap hard 
disk capacity. While the hardware and scalability is 
straightforward, getting the most out of Hadoop typically 
requires a hefty investment in the technical skills required 
to optimize queries. 
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When to NOT use 
MapReduce

• You Require Random, Interactive Access to Data
– The pushback from the limitations of the batch-oriented 

MapReduce paradigm in early Hadoop led the community to 
improve SQL performance and boost its capability to serve 
interactive queries against random data. While SQL on Hadoop 
is getting better, in most cases it’s not a reason in of itself to 
adopt Hadoop.

• You Want to Store Sensitive Data
– Hadoop is evolving quickly and is able to do a lot of things 

that it couldn’t do just a few years ago. But one of the things 
that it’s not particularly good at today is storing sensitive 
data. Hadoop today has basic data and use access security. 
And while these features are improving by the month, the 
risks of accidentally losing personally identifiable information 
due to Hadoop’s less-than-stellar security capabilities is 
probably not worth the risk.
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 Advantages/Disadvantages
• Now it’s easy to program for many CPUs

– Communication management effectively gone
• I/O scheduling done for us

– Fault tolerance, monitoring
• machine failures, suddenly-slow machines, etc are handled

– Can be much easier to design and program!
– Can cascade several (many?) Map-Reduce tasks

• But … it further restricts solvable problems
– Might be hard to express problem in Map-Reduce
– Data parallelism is key
– Need to be able to break up a problem by data chunks
– Map-Reduce is closed-source (to Google) C++
– Hadoop is open-source Java-based rewrite
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Advanced Exercises
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Matrix-matrix product v1 
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Matrix-matrix product

• Basic matrix multiplication on a 2-D grid

• Matrix multiplication is an important application in 
HPC and appears in many areas (linear algebra)

• C = A * B where A, B, and C are matrices (two-
dimensional arrays)

• A restricted case is when B has only one column, 
matrix-vector product, which appears in 
representation of linear equations and partial 
differential equations
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C = A x B
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Matrix-matrix product
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Matrix-matrix product
A is stored by row ($ head data/mat/smat_10x5_A)
0 0 0.599560659528 4 -1.53589644057

1

2 2 0.260564861569

3

4 0 0.26719729583 1 0.839470246524

5 2 -1.49761307371

6 0 0.558321894518 1 1.22774377511

7 2 -1.09283410126

8 1 -0.912374571316 3 1.40678001003

9 0 -0.402945890763

B is stored by row ($ head data/mat/smat_5x5_B)
0 0 0.12527732342 3 1.02407852061 4 0.121151207685

1 0 0.597062100484

2 2 1.24708888756

3 4 -1.45057798535

4 2 0.0618772663296
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Matrix-matrix product

Map 1
Align on 
columns

Reduce 1
Output A

ik
B

kj
 

keyed on (i,j)

Reduce 2
Output 
sum(A

ik
, B

kj
)
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Joinmap

Map 1
Align on 
columns

Reduce 1
Output A

ik
B

kj
 

keyed on (i,j)

Reduce 2
Output 
sum(A

ik
, B

kj
)

def joinmap(self, key, line):
        mtype = self.parsemat()
        vals = [float(v) for v in  line.split()]
        row = int(vals[0])
        rowvals = [(int(vals[i]),vals[i+1]) for i 
in xrange(1,len(vals),2)]
        if mtype==1:
            # rowvals are the entries in the row
            # we output the entire row for each 
column
            for val in rowvals:
                # reorganize data by columns
                yield (val[0], (row, val[1]))
        else:
            yield (row, (rowvals,)) 



School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Joinred

Map 1
Align on 
columns

Reduce 1
Output A

ik
B

kj
 

keyed on (i,j)

Reduce 2
Output 
sum(A

ik
, B

kj
)

def joinred(self, key, vals):
        # each key is a column of the matrix.
        # and there are two types of values:
        #  len == 2 (1, row, A_row,key) # a column of A
        #  len == 1 rowvals # a row of B
        
        # load the data into memory       
        brow = []
        acol = []
        for val in vals:
            if len(val) == 1:
                brow.extend(val[0])
            else:
                acol.append(val)
        
        for (bcol,bval) in brow:
            for (arow,aval) in acol:
                yield ((arow,bcol), aval*bval)
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Sumred

Map 1
Align on 
columns

Reduce 1
Output A

ik
B

kj
 

keyed on (i,j)

Reduce 2
Output 
sum(A

ik
, B

kj
)

def sumred(self, key, vals):
        yield (key, sum(vals))
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from mrjob.job import MRJob
from mrjob.compat import get_jobconf_value
import itertools
import sys

class SparseMatMult(MRJob):
    
    def configure_options(self):
        super(SparseMatMult,self).configure_options()
        self.add_passthrough_option('--A-
matrix',default='A',
            dest='Amatname')
    
    def parsemat(self):
        """ Return 1 if this is the A matrix, otherwise 
return 2"""
        fn = get_jobconf_value('map.input.file')
        if self.options.Amatname in fn: 
            return 1
        else:
            return 2
    
    def joinmap(self, key, line):
        mtype = self.parsemat()
        vals = [float(v) for v in  line.split()]
        row = int(vals[0])
        rowvals = [(int(vals[i]),vals[i+1]) for i in 
xrange(1,len(vals),2)]
        if mtype==1:
            # rowvals are the entries in the row
            # we output the entire row for each column
            for val in rowvals:
                # reorganize data by columns
                yield (val[0], (row, val[1]))
        else:
            yield (row, (rowvals,))            

sparse_matmat.py
def joinred(self, key, vals):     

        brow = []

        acol = []

        for val in vals:

            if len(val) == 1:

                brow.extend(val[0])

            else:

                acol.append(val)

        for (bcol,bval) in brow:

            for (arow,aval) in acol:

                yield ((arow,bcol), aval*bval)

    

    def sumred(self, key, vals):

        yield (key, sum(vals))

        

    def rowgroupmap(self, key, val):

        yield key[0], (key[1], val)

        

    def appendred(self, key, vals):

        yield key, list(itertools.chain.from_iterable(vals))

        

    def steps(self):

        return [self.mr(mapper=self.joinmap, 
reducer=self.joinred),

            self.mr(mapper=None, reducer=self.sumred),

            self.mr(mapper=self.rowgroupmap, 
reducer=self.appendred)]

if __name__=='__main__':

    SparseMatMult.run() 
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Matrix-matrix product v2
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Matrix-matrix product v2
We can think of a matrix as a relation with three attributes:

● the row number, the column number, and the value in that row and 
column. 

● M as a relation M (I, J, V), with tuples (i, j, mij) 
● N as a relation N (J, K, W), with tuples (j, k, njk)
● The product M N is almost the natural join of M (I, J, V ) and N 

(J, K, W), having only attribute J in common, would produce 
tuples (i, j, k, v, w) from each tuple (i, j, v) in M and tuple (j, k, w) 
in N 

● This five-component tuple represents the pair of matrix elements 
(mij,njk). What we want instead is the product of these elements, 
that is, the four-component tuple (i, j, k, v × w), because that 
represents the product mijnjk 

● Once we have this relation as the result of one Map Reduce 
operation, we can perform grouping and aggregation, with I and K 
as the grouping attributes and the sum of V × W as the 
aggregation.
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Matrix-matrix product v2
The Map Function: 
● For each matrix element mij, produce the key value pair j, (M, i, mij) . 

Likewise, for each matrix element njk, produce the key value pair j, (N, k, 
njk) . Note that M and N in the values are not the matrices themselves but 
rather a bit indicating whether the element comes from M or N

The Reduce Function: 
● For each key j, examine its list of associated values. For each value that 

comes from M , say (M, i, mij) , and each value that comes from N , say (N, k, 
njk), produce a key-value pair with key equal to (i, k) and value equal to the 
product of these elements, mijnjk

The Map Function: 
● This function is just the identity. That is, for every input element with key (i, 

k) and value v, produce exactly this key-value pair
The Reduce Function: 
● For each key (i, k), produce the sum of the list of values associated with this 

key. The result is a pair (i, k), v , where v is the value of the element in row i 
and column k of the matrix P = MN
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import sys

import random

import numpy

import pickle

from mrjob.job import MRJob

from mrjob.compat import get_jobconf_value

import os

class MatMult(MRJob):

    def configure_options(self):

        super(MatMult, self).configure_options()

        self.add_passthrough_option('--A-matrix', default='A', 

            dest='Amatname')

    def parsemat(self):

        """ Return 1 if this is the A matrix, otherwise return 2"""

        fn = get_jobconf_value('map.input.file')

        if self.options.Amatname in fn:

            return 1

        else:

            return 2

    def emit_values(self, _, line):

        mtype = self.parsemat() 

        a, b, v = line.split()

        v = float(v)

        

        if mtype == 1:

            i = int(a)

            j = int(b)

            yield j, (0, i, v)

        else:

            j = int(a)

            k = int(b)

            yield j, (1, k, v)

matmat.py
    def multiply_values(self, j, values):

   values_from1 = []

        values_from2 = []

        for v in values:

            if v[0] == 0:

                values_from1.append(v)

            elif v[0] == 1:

                values_from2.append(v)

   

        for (m, i, v1) in values_from1:

            for (m, k, v2) in values_from2:

                yield (i, k), v1*v2

    def identity(self, k, v):

        yield k, v

    def add_values(self, k, values):

        yield k, sum(values)

    def steps(self):

        return [self.mr(mapper=self.emit_values,

                        reducer=self.multiply_values),

                self.mr(mapper=self.identity,

                        reducer=self.add_values)]

if __name__ == '__main__':

    MatMult.run()
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Matrix-matrix product v2

Matrix is stored by value ($ head matmat_3x2_A)
0 0 1

0 1 2

1 0 2

1 1 3

2 0 4

2 1 5
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Log based debug

● Python
sys.stderr(out).write("REDUCER INPUT: ({0},{1})\n".format(j, 
values))

● Java
System.err.println("Temperature over 100 degrees for input: " + 
value);



School on Data Analytics and Visualization - 20/24 June 2016 - Giuseppe Fiameni

Debugging
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Debug mechanisms

● The Web Interface
● Runtime monitor
● Log based debug
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The Web User Interface

● Hadoop comes with a web UI for viewing information about 
your jobs. It is useful for following a job’s progress while it 
is running, as well as finding job statistics and logs after the 
job has completed. 

● You can find the UI at http://127.0.0.1:50030/

● $ docker run -p 127.0.0.1:50030:50030 -p 
127.0.0.1:50070:50070 -i -t  cineca/hadoop-
mrjob:1.2.1 /etc/bootstrap.sh -bash
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Hadoop Reporter

● The fastest way of debugging programs is via print statements, 
and this is certainly possible in Hadoop. 

● However, there are complications to consider: with programs 
running on tens, hundreds, or thousands of nodes, how do we 
find and examine the output of the debug statements, 
which may be scattered across these nodes?

● For a particular case, where we are looking for (what we think 
is) an unusual case, we can use a debug statement to log 
to standard error, in conjunction with a message to 
update the task’s status message to prompt us to look in 
the error log. The web UI makes this easy, as you will see.
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Hadoop Reporter

“A facility for Map-Reduce applications to report progress and 
update counters, status information etc.”

if (temperature > 1000) {

System.err.println("Temperature over 100 degrees 
for input: " + value);

reporter.setStatus("Detected possibly corrupt 
record: see logs.");

reporter.incrCounter(Temperature.OVER_100, 1);

}
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Hadoop Reporter
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Runtime monitor

● The Java Platform Debugger Architecture is a collection of 
APIs to debug Java code.

● Java Debugger Interface (JDI) - defines a high-level Java 
language interface that developers can easily use to write 
remote debugger application tools.

$ export HADOOP_OPTS="-
agentlib:jdwp=transport=dt_socket,server=y,suspend=
y, address=8000"

http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/
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Log based debug

● Python
sys.stderr(out).write("REDUCER INPUT: ({0},{1})\n".format(j, 
values))

● Java
System.err.println("Temperature over 100 degrees for input: " + 
value);
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Debugging/profiling
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Profiling

● Like debugging, profiling a job running on a distributed system 
like MapReduce presents some challenges. Hadoop allows you 
to profile a fraction of the tasks in a job, and, as each task 
completes, pulls down the profile information to your machine 
for later analysis with standard profiling tools.

● HPROF is a profiling tool that comes with the JDK that, 
although basic, can give valuable information about a program’s 
CPU and heap usage.

conf.setProfileEnabled(true);

conf.setProfileParams("-
agentlib:hprof=cpu=samples,heap=sites,depth=6," +

"force=n,thread=y,verbose=n,file=%s");

conf.setProfileTaskRange(true, "0-2");

https://docs.oracle.com/javase/7/docs/technotes/samples/hprof.html
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Profiling

● Set mapred.task.profile to true
● Profile a small range of maps/reduces

● mapred.task.profile.{maps|reduces}
● hprof support is built-in
● Use mapred.task.profile.params to set options for the 

debugger
● Possibly DistributedCache for the profiler’s agent
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Cluster optimizations

The problem:
 Out of the box configuration not friendly 
 Difficult to debug 
 Performance – tuning/optimizations is a black art
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Hadoop basic options

All hadoop commands are invoked by the bin/hadoop script. 
Running the hadoop script without any arguments prints 
the description for all commands.

Usage: hadoop [--config confdir] [COMMAND] 
[GENERIC_OPTIONS] [COMMAND_OPTIONS]

Hadoop has an option parsing framework that employs 
parsing generic options as well as running classes.
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Hadoop basic options

-conf <configuration file> Specify an application 
configuration file.

-D <property=value> Use value for given property.

-fs <local|namenode:port> Specify a namenode.

-jt <local|jobtracker:port> Specify a job tracker. 
Applies only to job.

-files <comma separated list of files> Specify comma 
separated files to be copied to the map reduce cluster. 
Applies only to job.

-libjars <comma seperated list of jars> Specify comma 
separated jar files to include in the classpath. Applies 
only to job.

-archives <comma separated list of archives> Specify comma 
separated archives to be unarchived on the compute 
machines. Applies only to job.
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Configuration parameters

Compression mapred.compress.map.output → Map Output 
Compression 

 Default: False 
 Pros: Faster disk writes, lower disk space usage, lesser 

time spent on data transfer (from mappers to 
reducers). 

 Cons: Overhead in compression at Mappers and 
decompression at Reducers. 

 Suggestions: For large cluster and large jobs this 
property should be set true.

$ hadoop -Dmapred.compress.map.output=<false|true>
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Speculative Execution

Speculative Execution mapred.map/reduce.speculative.execution 
 Enable/Disable task (map/reduce) speculative Execution →

 Default: True 
 Pros: Reduces the job time if the task progress is slow due 

to memory unavailability or hardware degradation. 
 Cons: Increases the job time if the task progress is slow due 

to complex and large calculations. On a busy cluster 
speculative execution can reduce overall throughput, since 
redundant tasks are being executed in an attempt to bring 
down the execution time for a single job. 

 Suggestions: In large jobs where average task completion 
time is significant (> 1 hr) due to complex and large 
calculations and high throughput is required the speculative 
execution should be set to false. 

$ bin/hadoop jar -Dmapred.map.tasks.speculative.execution=false \
                 -Dmapred.reduce.tasks.speculative.execution=false
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Speculative execution

● It is possible for one Map task to run more slowly than the 
others (perhaps due to faulty hardware, or just a very slow 
machine)

● It would appear that this would create a bottleneck
● The reduce method in the Reducer cannot start until every 

Mapper has finished

● Hadoop uses speculative execution to mitigate against this
● If a Mapper appears to be running significantly more slowly than 

the others, a new instance of the Mapper will be started on 
another machine, operating on the same data

● The results of the first Mapper to finish will be used
● Hadoop will kill off the Mapper which is still running
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Number of Maps/Reducers

Number of Maps/Reducers 
mapred.tasktracker.map/reduce.tasks.maximum  Maximum →
tasks (map/reduce) for a tasktracker 

 Default: 2 
 Suggestions: Recommended range - 

(cores_per_node)/2 to 2x(cores_per_node), especially 
for large clusters. This value should be set according to 
the hardware specification of cluster nodes and resource 
requirements of tasks (map/reduce).
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File block size

File block size dfs.block.size  → File system block size 
 Default: 67108864 (bytes) 
 Suggestions: 

– Small cluster and large data set: default block size will create a 
large number of map tasks. e.g. Input data size = 160 GB and 
dfs.block.size = 64 MB then the minimum no. of maps= 
(160*1024)/64 = 2560 maps. 

– If dfs.block.size = 128 MB minimum no. of maps= 
(160*1024)/128 = 1280 maps. 

– If dfs.block.size = 256 MB minimum no. of maps= 
(160*1024)/256 = 640 maps.  

– In a small cluster (6-10 nodes) the map task creation overhead is 
considerable. So dfs.block.size should be large in this case but 
small enough to utilize all the cluster resources.  The block size 
should be set according to size of the cluster, map task 
complexity, map task capacity of cluster and average size of 
input files.
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Sort size

Sort size io.sort.mb  → Buffer size (MBs) for sorting 
 Default: 100 
 Suggestions: For Large jobs (the jobs in which map 

output is very large), this value should be increased 
keeping in mind that it will increase the memory 
required by each map task. So the increment in this 
value should be according to the available memory at 
the node. Greater the value of io.sort.mb, lesser will be 
the spills to the disk, saving write to the disk
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Sort factor

Sort factor io.sort.factor  Stream merge factor →
 Default: 10 
 Suggestions: For Large jobs (the jobs in which map 

output is very large and number of maps are also large) 
which have large number of spills to disk, value of this 
property should be increased. The number of input 
streams (files) to be merged at once in the map/reduce 
tasks, as specified by io.sort.factor, should be set to a 
sufficiently large value (for example, 100) to minimize 
disk accesses. Increment in io.sort.factor, benefits in 
merging at reducers since the last batch of streams 
(equal to io.sort.factor) are sent to the reduce function 
without merging, thus saving time in merging.
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JVM Reuse

JVM reuse mapred.job.reuse.jvm.num.tasks  Reuse single →
JVM

 Default: 1 
 Suggestions: The minimum overhead of JVM 

creation for each task is around 1 second. So for the 
tasks which live for seconds or a few minutes and 
have lengthy initialization, this value can be increased 
to gain performance.
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Reduce parallel copies

Reduce parallel copies mapred.reduce.parallel.copies  →
Threads for parallel copy at reducer 
 Default: 5 
 Description: The number of threads used to copy map 

outputs to the reducer. 
 Suggestions: For Large jobs (the jobs in which map 

output is very large), value of this property can be 
increased keeping in mind that it will increase the total 
CPU usage.
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Thank you!


