
Mirko Cestari – m.cestari@cineca.it

Alessandro Marani – a.marani@cineca.it
SuperComputing Applications and Innovation Department

Introduction to GALILEO
Parallel & production environment

November 27, 2016

mailto:m.cestari@cineca.it
mailto:a.marani@cineca.it

GOALS

You will learn:

•basic concepts of the system architecture that directly affects

your work during the school

•how to explore and interact with the software installed on the

system

•how to launch a simulation exploiting the computing resources

provided by the GALILEO system

OUTLINE
•A first step:

–System overview

–Login

–Work environment

•Production environment

–Our first job!!

–Creating a job script

–Accounting and queue system

–PBS commands

•Programming environment

–Module system

–Serial and parallel compilation

–Interactive session

•Graphical session with RCM

•For further info...

–Useful links and documentation

GALILEO CHARACTERISTICS

Model: IBM NeXtScale

Architecture: Linux Infiniband Cluster

Processors Type: 8-cores Intel Haswell 2.40

GHz (2 per node)

Number of nodes: 516 Compute

Number of cores: 8256

Accelerators: 2 Intel Phi 7120p per node on

384 nodes (768 in total)

4 nVIDIA Tesla K40 on 40 nodes (160 in

total)

RAM: 128 GB/node, 8 GB/core

OS: RedHat CentOS release 7.0, 64 bit

GALILEO CHARACTERISTICS
•Compute Nodes: 516 16-core compute cards (nodes).

•384 nodes contain 2 Intel Phi 7120p processors

•40 nodes contain 2 nVIDIA Tesla K80 "Kepler" per node (being 4 the total number of

K40 visible devices)

–The nodes have 16GB of memory, but the allocatable memory on the node is 120

GB.

–Not all nodes are available for all the users. A partition of the cluster (including 30

out of the 40 nVIDIA nodes) is reserved to industrial users, and the rest is available

for academical users.

•Login node: 8 Login & Viz node NX360M5 are available, equipped with 2 nVidia

K40 GPU each.

•Network: all the nodes are interconnected through a custom Infiniband network with

4x QDR switches, allowing for a low latency/high bandwidth interconnection.

A LOOK AT THE (NEAR) FUTURE:

MARCONI
PHASE A1 (July 2016)

Model: Lenovo NeXtScale

Processor Type: Intel Broadwell, 2.3GHz

Peak Performance: 2 PFlop/s (presumed)

PHASE A2 (Fall 2016)

Model: Lenovo Adam Pass

Processor Type: Intel Knights Landing BIN1, 1.4GHz

Computing Nodes: 3.600 with 68 cores each

Peak Performance: 11 PFlop/s (presumed)

PHASE A3 (Spring 2017)

Model: Lenovo Stark

Processor Type: Intel SkyLake, 2.3GHz

Computing Nodes: 1512 with 40 cores each

Peak Performance: 4,5 PFlop/s (presumed)

How to log in

•Establish a ssh connection

ssh a08tra75@login.galileo.cineca.it

….ssh a08tra89@login.galileo.cineca.it

•Remarks:

–ssh available on all linux distros

–Putty (free) or Tectia ssh on Windows

–secure shell plugin for Google Chrome!

–login nodes are swapped to keep the load balanced

–important messages can be found in the message of the day

•Check the user guide!

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.2%3A+GALILEO+UserGuide

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.2:+GALILEO+UserGuide

WORK ENVIRONMENT

$HOME:
Permanent, backed-up, and local to GALILEO.

50 Gb of quota. For source code or important input files.

$CINECA_SCRATCH:
Large, parallel filesystem (GPFS).

No quota. Run your simulations and calculations here.

use the command cindata to get info on your disk occupation

https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.4%3A+Data+storage+and+FileSystem

$WORK:
Similar to $CINECA_SCRATCH, but the content is shared among all the users of the same

account.

1 Tb of quota. Stick to $CINECA_SCRATCH for the school exercises!

https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.4:+Data+storage+and+FileSystem

OUTLINE
•A first step:

–System overview

–Login

–Work environment

•Production environment

–Our first job!!

–Creating a job script

–Accounting and queue system

–PBS commands

•Programming environment

–Module system

–Serial and parallel compilation

–Interactive session

•Graphical session with RCM

•For further info...

–Useful links and documentation

LAUNCHING JOBS

As in every HPC cluster, GALILEO allows you to run your

simulations by submitting “jobs” to the compute nodes

Your job is then taken in consideration by a scheduler, that adds

it to a queuing line and allows its execution when the resources

required are available

The operative scheduler in GALILEO is PBS

PBS JOB SCRIPT SCHEME

The scheme of a PBS job script is as follows:

#!/bin/bash

#PBS keywords

variables environment

execution line

PBS JOB SCRIPT EXAMPLE

#!/bin/bash

#PBS -N myname

#PBS -o job.out

#PBS -e job.err

#PBS -m abe

#PBS -M user@email.com

#PBS -l walltime=00:30:00

#PBS -l select=1:ncpus=16:mpiprocs=8:mem=10GB

#PBS -q R1322811

#PBS -A <my_account>

#PBS -W group_list=<my_account>

echo “I’m working on GALILEO!”

PBS KEYWORD ANALYSIS - 1
#PBS -N myname

Defines the name of your job

#PBS -o job.out

Specifies the file where the standard output is directed (default=jobname.o<jobID>)

#PBS -e job.err

Specifies the file where the standard error is directed (default=jobname.e<jobID>)

#PBS -m abe (optional)

Specifies e-mail notification. An e-mail will be sent to you when something happens to your

job, according to the keywords you specified (a=aborted, b=begin, e=end, n=no email)

#PBS -M user@email.com (optional)

Specifies the e-mail address for the keyword above

mailto:user@email.com

PBS KEYWORD ANALYSIS - 2
#PBS -l walltime=00:30:00

Specifies the maximum duration of the job. The maximum time allowed depends on the

queue used (more about this later)

#PBS -l select=1:ncpus=16:mpiprocs=8:mem=10GB

Specifies the resources needed for the simulation.

select – number of compute nodes (“chunks”)

ncpus – number of cpus per node (max. 16)

mpiprocs – number of MPI tasks per node (max=ncpus)

mem – memory allocated for each node (default=8GB, max.=120 GB)

ACCOUNTING SYSTEM
#PBS -A <my_account>

Specifies the account to use the CPU hours from.

As an user, you have access to a limited number of CPU hours to spend. They are not

assigned to users, but to projects and are shared between the users who are working

on the same project (i.e. your research partners). Such projects are called accounts
and

are a different concept from your username.
You can check the status of your account with the command “saldo -b”, which tells you

how many CPU hours you have already consumed for each account you’re assigned at

(a more detailed report is provided by “saldo -r”).

ACCOUNT FOR THE COURSE

The account provided for this school is

“train_cmatsc16”

(you have to specify it on your job scripts).

It will expire two days after the end of the school

and is shared between all the students; there

are plenty of hours for everybody, but don’t

waste them!

#PBS -A train_cmatsc16

PBS COMMANDS
After the job script is ready, all there is left to do is to submit it:

qsub
qsub <job_script>

Your job will be submitted to the PBS scheduler and executed
when there will be nodes available (according to your priority and
the queue you requested)

qstat -u
qstat -u <username>

Shows the list of all your scheduled jobs, along with their status
(idle, running, closing, …) Also, shows you the job id required for
other PBS commands.

PBS COMMANDS

qstat -f
qstat -f <job_id>

Provides a long list of informations for the job requested.
In particular, if your job isn’t running yet, you'll be notified about its
estimated start time or, if you made an error on the job script, you
will learn that the job won’t ever start

qdel

qdel <job_id>

Removes the job from the scheduled jobs by killing it

EXERCISE 01
1) Write a job script with "walltime" of 3 minutes that asks for 1 node and 1 core.

Copy-paste the following in the execution section

hostname

echo 'Hello World'

sleep 4

Now add the automatic sending of the email in case of ending and abort of the job.

2) Launch the job with qsub

3) Check its state with qstat

4) Check its state again with "qstat -f jobid" after having increased the sleep to 60,

namely:

hostname

echo 'Hello World'

sleep 60

5) Add a memory request to the "select" line in the job script (rember that each

processor has a quota of 850 MB of memory). Please check the new requirements with

"qstat -f jobid"

OUTLINE
•A first step:

–System overview

–Login

–Work environment

•Production environment

–Our first job!!

–Creating a job script

–Accounting and queue system

–PBS commands

•Programming environment

–Module system

–Serial and parallel compilation

–Interactive session

•Graphical session with RCM

•For further info...

–Useful links and documentation

AN EXAMPLE OF A PARALLEL JOB

#!/bin/bash

#PBS -l walltime=1:00:00

#PBS -l select=2:ncpus=16:mpiprocs=4

#PBS -o job.out

#PBS -e job.err

#PBS -q <queuename>

#PBS -A <my_account>

#PBS -W group_list=<my_account>

cd $PBS_O_WORKDIR # points to the folder you are actually working into

module load autoload openmpi

mpirun –np 8 ./myprogram

MODULE SYSTEM
•All the optional software on the system is made available through the

"module" system

•provides a way to rationalize software and its environment variables

•Modules are divided in 2 profiles

•profile/base (default - stable and tested modules)

•profile/advanced (software not yet tested or not well optimized)

•Each profile is divided in 4 categories

•compilers (GNU, intel, openmpi)

•libraries (e.g. LAPACK, BLAS, FFTW, ...)

•tools (e.g. Scalasca, GNU make, VNC, ...)

•applications (software for chemistry, physics, ...)

MODULE SYSTEM

•CINECA’s work environment is organized in modules, a set of

installed libraries, tools and applications available for all users.

•“loading” a module means that a series of (useful) shell

environment variables will be set

•E.g. after a module is loaded, an environment variable of the form

“<MODULENAME>_HOME” is set

MODULE COMMANDS

COMMAND DESCRIPTION

module av list all the available modules

module load <module_name(s)> load module <module_name>

module list list currently loaded modules

module purge unload all the loaded modules

module unload <module_name> unload module <module_name>

module help <module_name> print out the help (hints)

module show <module_name> print the env. variables set when

loading the module

MODULE PREREQS AND CONFLICTS

Some modules need to be loaded after other modules they

depend from (e.g.: parallel compiler depends from basic

compiler). You can load both compilers at the same time

with “autoload”

You may also get a “conflict error” if you load a module not

suited for working together with other modules you already

loaded (e.g. different compilers). Unload the previous module

with “module unload”

COMPILING ON GALILEO

•On EURORA you can choose between three different

compiler families: gnu, intel and pgi

•You can take a look at the versions available with “module av”

and then load the module you want.

module load intel # loads default intel compilers suite

module load intel/pe-xe-2016--binary # loads specific

compilers suite

GNU INTEL PGI

Fortran gfortran ifort pgf77

C gcc icc pgcc

C++ g++ icpc pgcc

Get a list of the

compilers flags with

the command man

PARALLEL COMPILING ON GALILEO

PARALLEL COMPILING ON GALILEO

OPENMPI/INTELMPI

Fortran90 mpif90

C mpicc

C++ mpiCC

Compiler flags are the same of the basic compiler (since

they are basically MPI wrappers of those compilers)

OpenMP is provided with following compiler flags:

gnu: -fopenmp

intel : -openmp

pgi: -mp

Let’s take a step back…

#PBS -l select=2:ncpus=16:mpiprocs=4

This example line means “allocate 2 nodes with 16 CPUs each, and 4 of

them should be considered as MPI tasks”

So a total of 32 CPUs will be available. 8 of them will be MPI tasks, the

others will be OpenMP threads (4 threads for each task).

In order to run a pure MPI job, ncpus must be equal to mpiprocs.

EXECUTION LINE IN JOB SCRIPT

mpirun –np 8 ./myprogram

Your parallel executable is launched on the compute nodes via the

command “mpirun”.

With the “–np” flag you can set the number of MPI tasks used for the

execution. The default is the maximum number allowed by the

resources requested.

WARNING:

In order to use mpirun, openmpi-intelmpi has to be loaded.

module load autoload openmpi

Be sure to load the same version of the compiler that you used to

compile your code.

DEVELOPING IN COMPUTE NODES:

INTERACTIVE SESSION
It may be easier to compile and develop directly in the compute nodes,

without recurring to a batch job.

For this purpose, you can launch an interactive job to enter inside a compute node by

using PBS.

The node will be reserved to you as it was requested by a regular batch job

Basic interactive submission line:
qsub –I –l select=1 –A <account_name> -q <queue_name> -W

group_list=...

Other PBS keyword can be added to the line as well (walltime, resources,…)

Keep in mind that you are using computing nodes, and by consequence you are

consuming computing hours!

To exit from an interactive session, just type

“exit”

EXERCISE 02

1) Compile "test.c" with the compiler (mpicc) in the module

intelmpi/4.1.1--binary

2) Check with:

$ ldd <executable>

the list of required dynamic libraries.

3) Write "job.sh" (you can copy it from exercise 1), modifying the

"select" line with the following requests:

#PBS -l select=2:ncpus=16:mpiprocs=16:mem=12gb

#PBS -l select=2:ncpus=16:mpiprocs=1:mem=12gb

Run first 32 processes and then 2 processes for each select.

EXERCISE 03

1) Launch an interactive job. You just need to write the same PBS

directives,

without "#PBS" and on the same line, as arguments of "qsub -I"

$ qsub -I ... <arguments>

2) Check whether you are on a different node

3) Check that there's an interactive job running

OUTLINE
•A first step:

–System overview

–Login

–Work environment

•Production environment

–Our first job!!

–Creating a job script

–Accounting and queue system

–PBS commands

•Programming environment

–Module system

–Serial and parallel compilation

–Interactive session

•Graphical session with RCM

•For further info...

–Useful links and documentation

It is possible to login in GALILEO and work with a Graphical

User Interface, in a more user-friendly environment

GRAPHICAL SESSION: RCM

In this environment,

some of the most

common tools for post-

processing and

visualization are

available

This is done thanks to

RCM!

RCM (Remote Connection Manager) is a tool developed by an

internal CINECA staff for allowing a graphical session inside

our HPC clusters.

REMOTE CONNECTION MANAGER

You can download here:

https://hpc-forge.cineca.it/svn/RemoteGraph/branch/multivnc/build/dist/Releases/?p=817

the version suited for your OS

It runs by submitting a job on the budget-free “visual” queue,

and starting an interactive session on special visual nodes

Login on the cluster via the proper RCM button (credentials: same as regular login)

REMOTE CONNECTION MANAGER

Open a new session by creating a new display. This will reserve some resources on the

visual nodes (depending on the options selected). GALILEO has 2 nodes dedicated to

visualization, if they are full the new display won't open (because the visualization job

would be in queue)

This windows opens together with your display and is for displays

management. You can kill a graphical session with the “kill” button (this will

also kill the job)

OUTLINE
•A first step:

•System overview

•Login

•Work environment

•Production environment

•Our first job!!

•Creating a job script

•Accounting and queue system

•PBS commands

•Programming environment

•Module system

•Serial and parallel compilation

•Interactive session

•Graphical session with RCM

•For further info...

•Useful links and documentation

Useful links and documentation

•Reference guide:https://wiki.u-

gov.it/confluence/display/SCAIUS/UG3.2%3A+GALILEO+UserGuidehttps://wiki.u-

gov.it/confluence/display/SCAIUS/UG2.5.2%3A+Batch+Scheduler+PBShttps://wiki.u-

gov.it/confluence/display/SCAIUS/UG2.4%3A+Data+storage+and+FileSystemhttps://wiki.u-

gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide

https://wiki.u-gov.it/confluence/display/SCAIUS/Remote+Visualisation

•GPU computing http://www.nvidia.com/object/GPU_Computing.html

•MIC programming http://software.intel.com/en-us/mic-developer

•Stay tuned with the HPC news: http://www.hpc.cineca.it/content/stay-tuned

•HPC CINECA User Support: mail to superc@cineca.it

•HPC Courses: corsi@cineca.it

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.2:+GALILEO+UserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.5.2:+Batch+Scheduler+PBS
https://wiki.u-gov.it/confluence/display/SCAIUS/UG2.4:+Data+storage+and+FileSystem
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.1:+MARCONI+UserGuide
http://www.nvidia.com/object/GPU_Computing.html
http://software.intel.com/en-us/mic-developer
http://www.hpc.cineca.it/content/stay-tuned

