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• Programming distributed systems has always been very difficult 

task, needing specialized techniques and experts 

• Moore’s Law has held for over 40 years: 

- Processing power double every two years 

- Processing speed is no longer the problem 

• Getting the data to the processor becomes the bottleneck 

– e.g.: Typical disk transfer rate: 75MB/sec 

  Time taken to transfer 100GB of data to the processor: 

  ~22minutes! (actual time is worse if servers have less than 100GB RAM) 

 

“End of the Moore’s low as we know it” 

• Increasing performance cannot be achieved just through 

increasing hardware speed, new approach is needed 

• Distributed computation must be exploited 

- Micro scale: multicore processing 

- Macro scale: cloud computing / distributed data parallel systems 
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Odersky M. : “Working hard to keep it simple”. Keynote at OSCON ’11. 

var x = 0 

async { x = x + 1} 

async { x = x * 2} 

One method to avoid ND output is to eliminate ND execution, for example by 

means of coordination method (e.g. locks) 

 

Non-deterministic Output  
Non-deterministic 

Execution 

Mutable  

State = + 
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• To overcome the Von Neumann bottleneck, a different programming 

style must then be embraced: instead of specifying how the 

computation flow should proceed sequentially in time, programmers 

must be pushed to think more in space: 

• Computation intended as a set of order-agnostic transformations 

applied in parallel to a collection of input data elements. 

• The output is then a new set of elements which can be used as new 

building block for the successive computations. 

Time  

(concurrent / imperative languages)  

S
p
a
c
e
  

(p
a

ra
lle

l)
  

Odersky M. : “Working hard to keep it simple”. Keynote at OSCON ’11. 
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• State is immutable by default.  As a consequence, the parallel nature of 

modern architectures can be fully exploited while maintaining a deterministic 

output. 

 

• Thanks to the immutability of states, not only the Von Neumann bottleneck 

is avoided and parallel programming becomes natural, but also fault-

tolerance concerns can be easily addressed: 

- if only deterministic operations are considered, and the evolution of the 

immutable states is logged, every time a state is lost because of a machine 

fault, it can be recomputed starting from the previous state, and replaying the 

proper set of operations. 

 

• Due to the above features, we are not surprised to see many data-

parallel frameworks embracing a functional programming style: 

- Exploited by modern data-parallel system “MapReduce-like” 

 mainly driven by industrial needs 

Non-deterministic Output  
Non-deterministic 

Execution 

Mutable  

State = + 
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What is needed to implement a functional programming approach on a 

distributed system? 

 

• Google File System (paper published in 2003) 

• Google MapReduce  (paper published in 2003 – implemented at Google in 

2002) 

 

• Hadoop (2006-2008) 

– HDFS 

– MapReduce 

– A whole ecosystem 

http://thebigdatablog.weebly.com/blog/the-hadoop-ecosystem-

overview 
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• Google File System 

• Design Assumption 

• Architecture 

• HDFS 
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• Goals (as previous distributed file systems): 

– performance, scalability, reliability, and availability 

However, its design has been driven by key observations of particular 

application work- loads and technological environment 

 

• Design assumptions 

– Hardware failures are common (commodity machines) 
• If medium-time-between-failure is 1 year – Then 10000 servers have one failure / hour  

– Files are huge (GB) and their number is limited (millions, not billions) 

– Sequential writes: typically most files are mutated by appending new 

data rather than overwriting existing data 

 Random writes within a file are typically non-existent (possible, but 

not efficient) 

– Sequential reads: once written, the files are only read, and often only 

sequentially 

 Random modification in files possible, though not efficient 

– High sustained bandwidth rather than low latency 

 Batch processing 
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• Files are divided into fixed-size chunks 

 
- Size: typically 64/128 MB (modifiable parameter) 

 

- Files are replicated (by default 3 times, remember: fault-

tolerance) 

 

- Advantages of (large) fixed-size chunks: 

 Disk seek time small compared to transfer time 

 A single file can be larger than a node’s disk space 

 Fixed size makes allocation computations easy 

 

o Why not increase the chunk size further? 

Maps task operate on one chunk at a time .... the increasing of 

the chunk size decreases the parallelism (see MapReduce) 
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• Single Master maintains all file system metadata: 
- the namespace, access control information, the mapping from 

files to chunks, and the current locations of chunks  

- All metadata is kept in master’s memory (fast random access)  

 

• Multiple Chunkservers store chunks on local disks as 

Linux files and read or write chunk data specified by a 

chunk handle and byte range. 
- chunkserver has the final word over what chunks it has  

 

• Heartbeat messages between master and 

chunkservers 
- Is the chunkserver still alive? What chunks are stored at the 

chunkserver? 

  

• Single Master can became the bottleneck 
- HDFS Federation in 2.X versions: several NameNodes share 

control (partition of filesystem namespace)  
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1) Client asks Master with filename and a 

chunk index (translated from the byte offset 

within the file). Sends request to master 
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2) The master replies with chunk handle and locations 
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3) Client caches the metadata. 

 

4) Client sends a data request to one of the replicas 

(the closest one). Byte range indicates wanted part of 

the chunk. More than one chunk can be requested 

within a single request. 
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5) Contacted chunkserver 

replies with the requested data 
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Replicas 

• One of the 3 replicas is designated as a prime replica 

– This information is stored on the master node 

– The master node continuously pings the replicas to be sure that they are 

alive 

– If one node is unreachable, a new replica is created 

 

Write Operation 

• When writing data, the client contacts all the 3 replicas and sends the data 

1. Once all the replicas have acknowledged receiving the data, the client 

sends a write request to the primary. 

2. If all the replicas succeed in writing the data, the operation is completed 

3. If some replica returns a failure, the offset value is changed and the 

write process is restarted with the new value. 

– In this way, multiple writes can be performed in parallel, and we are sure 

that at least 3 replicas exists every time 

– GFS very good in bulk writes at the end of files, not very good in random 

writes at the middle of a file. 

• We will see that GFS is a really important piece in MapReduce 
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• The File System (FS) shell includes various shell-like commands 

that directly interact with the Hadoop Distributed File System (HDFS) 

 

• The FS shell (Unix-like) is invoked by: 

bin/hadoop fs <args> 

• lsr 

• mkdir 

• moveFromLocal 

• moveToLocal 

• mv 

• put 

• rm 

• rmr 

• setfacl 

• setfattr 

• setrep 

• stat 

• tail 

• test 

• text 

• touchz 
 

• appendToFile 

• cat 

• chgrp 

• chmod 

• chown 

• copyFromLocal 

• copyToLocal 

• count 

• cp 

• du 

• dus 

• expunge 

• get 

• getfacl 

• getfattr 

• getmerge 

• ls 

 

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-

common/FileSystemShell.html 

GFS HDFS 

Master NameNode 

Chunkserver DataNode 

Chunk Block 
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• Data Model 

• Architecture 

• First Algorithms 

• Advanced optimization 
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• Developed by Google and first presented in: 

–  Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: simplified data 

processing on large clusters. In Proceedings of the 6th conference on 

Symposium on Opearting Systems Design \& Implementation - Volume 6 

(OSDI'04), Vol. 6. USENIX Association, Berkeley, CA, USA, 10-10. 

 

• Who use Map-Reduce? (Actually Hadoop, Map-Reduce open source 

implementation) 

– Amazon CloudSearch, Accela Communication, Adobe, AOL, adyard, 

Able Grape, Adknowledge, Aguja, Alibaba, AOL, ARA.COM.TR, 

Archive.is, Atbrox, BabaCar, Basenfasten, Benipal Technologies, 

Beebles, Bixo Labs, BrainPad, Brilig, Brockmann Consult GmbH, 

Caree.rs, CDU now!, Charleston, Cloudspace, Contestweb, Cooliris, 

Cornell University Web Lab, CRS4, crowdmedia, Datagraph, Dataium, 

Deepdyve, Detektei Berlin, Detikcom, devdaily.com, DropFire, eBay, 

eCircle, Enet, Enormo, Eyealike, Explore.To Yellow Pages, Facebook… 

– More at http://wiki.apache.org/hadoop/PoweredBy 

 

http://wiki.apache.org/hadoop/PoweredBy
http://wiki.apache.org/hadoop/PoweredBy
http://wiki.apache.org/hadoop/PoweredBy
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• MapReduce is an high-level programming model and implementation 

for large-scale parallel data processing. 

• A MapReduce program consists of two functions (inspired by 

primitives of functional programming language): 

– MAP function: 

• Input: (input key, value)  

• Output: bag of (intermediate key, value)  

 

– REDUCE function:  

• Input: (intermediate key, bag of values) 

• Output: bag of output (values)  

 

System executes the program in two steps: 

step 1) the map function is applied in parallel to all (input key, value) pairs in the 

input file   

step 2) the system will group all pairs with the same intermediate key (“shuffle”), 

and passes the bag of values to the REDUCE function 
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R file output 

Map Phase Shuffle 

(GroupByKey) 

Reduce Phase 
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http://blog.trifork.com//wp-

content/uploads/2009/08/MapReduceWordCountOverview1.png 
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• Consider the problem of counting the number of occurrences of each 

word in a large collection of documents: 

 

 map(String key, String value):  

    // key: document name 

    // value: document contents  

    for each word w in value: EmitIntermediate(w, "1"); 

 

 reduce(String key, Iterator values):  

    // key: a word  

    // values: a list of counts 

    int result = 0; 

    for each v in values: result += ParseInt(v); 

    Emit(AsString(result)); 

 

• The map function emits each word plus an associated count of 
occurrences (just ‘1’ in this simple example). 

• The reduce function sums together all counts emitted for a particular 

word. 
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Hadoop environment takes care of: 

 

• Partitioning the input data 

 

• Scheduling the program’s execution across a set of machines 

 

• Performing the group by key step 

 

• Handling node failures 

 

• Managing required inter-machine communication 
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Hadoop Daemons*: 
Each daemon runs in its own Java Virtual Machine (JVM) 

 

1. JobTracker 

– Manages MapReduce jobs, distribute individual tasks 

(map/reduce) to machines running the… 

 

2. TaskTracker 

– Instantiates and monitors individual Map and Reduce tasks 

– When a TaskTracker receives a request to run a task, it 

instantiates a separate JVM for that task 

• Can run multiple tasks at the same time depending on the hardware 

resources 

* For what concerns Map-Reduce “alone”, in total they are five: 

NameNode (HDFS), Secondary NameNode (HDFS - performs housekeeping to alleviate 

NameNode computations), DataNode (HDFS), JobTracker, and TaskTracker 
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• JobTracker takes care of: 

– task status: (idle, in-progress, completed) 

– scheduling idle tasks as resources (managed by taskTrackers) become 

available 

– gathering location and size of each intermediate file produced by the 

Map tasks 

– sending this info to the reducer tasks 

 

• JobTracker pings taskTrackers periodically to detect failures: 

– if a Map failure occurs: 

• Map tasks completed or in-progress are reset to idle 

• Reduce tasks are notified when the map task is rescheduled on 

another taskTracker 

– if Reduce failure occurs: 

• Only in-progress tasks are reset to idle 

– JobTracker failure 

• MapReduce task is aborted and client is notified 



Università degli Studi di Modena e Reggio Emilia 

 31 

D
B

G
ro

u
p

@
U

n
im

o
re

 '- 5'$*%0 #123*$4+*%



Università degli Studi di Modena e Reggio Emilia 

 32 

D
B

G
ro

u
p

@
U

n
im

o
re

 

• How to chose the number of Mappers and Reducers? 

 

– M map tasks, R reduce tasks 

 

– Rule of thumb: 

• Make M and R much larger than the number of nodes in cluster 

– One block (chunk) per map is common 

– Improves dynamic load balancing and speeds recovery from 

worker failure 

 

– Usually R is smaller than M, because output is spread across R 

files 
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• Whenever possible, Hadoop will attempt to assign a Map task to a node 

working on a block of data stored locally  (the chunk of file in HDFS) 

 

• If this is not possible, the Map task will have to transfer the data across the 

network as it process that data 

 

• Once the Map tasks have finished, data is then transferred across the 

network to the Reducers 

– Intermediate outputs of the Map tasks are written only on the local filesystem (on 

the node where it is running, not on HDFS); if the node fails, all computed data is 

lost, and the JobTracker reassign the computation to another worker. 

– Although the Reducers may run on the same physical machines as the Map 

tasks, there is no concept of data locality for the Reducers 

• All Mappers will, in general, have to communicate with all Reducers 

 

• It appears that the shuffle and sort phase is a bottleneck: 

– The reduce method cannot start until all Mapper have finished 

– In practice, Hadoop will start to transfer data from Mappers to Reducers as the 

Mappers finish work 
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• Often a map task will produce many pairs of the form (k,v1), (k,v2), 
… for the same key k (e.g. Word Count) 

 

• Can save network time by pre-aggregating at mapper 

– combine(k1, list(v1))  v2 

– Usually same as reduce function 

 

• Works only if reduce function is commutative and associative: 

– Sum 

– Average 

• if mapper emit (k, (partial_sum, num_of_instances_summed)) 

• reduce: compute sum([partial_sum])/sum([num_of_instances_summed]) 

– Median 

• not possible 

• Create a monoid out of the intermediate value emitted by the 
mapper: 
– A monoid is an algebraic structure with a single associative binary 

operation and an identity element. As a simple example, the natural 
numbers form a monoid under addition with the identity element 0 
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• Inputs to map tasks are created by contiguous splits of 
input file 

 

• For reduce, we need to ensure that records with the 
same intermediate key end up at the same worker 

 

• Hadoop uses a default partition function e.g., hash(key) 
mod R 

 

• Sometimes useful to override  
– E.g., hash(hostname(URL)) mod R ensures URLs from a host 

end up in the same output file 

 

• Custom Partitioners are also useful: 
– to  avoid potential performance issues, redistributing the workload 

across Reducers 

– to perform Secondary Sort (allow to customize shuffle and sort) 
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E.g. Find the most frequent word starting with “a” 

 

• How to perform secondary sort? 

– “natural key” vs “actual key”: 
e.g. (key =‘a#23’, value=‘apple’) 

  (key =‘a#9’, value=‘airplane’) 

  (key =‘a#22’, value=‘air’) 

• custom partitioner 

“group by” performed on a sub-set of the key 
e.g. all key starting with ‘a’ are sent to the same reducer 

 

• custom comparator 

record ordered according to a custom function 
e.g. sort by the second half of the key 
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Given a collection of textual documents, how to create an 

inverted index? 

input: 

tweet_01 “apple computers are …” 

tweet_02 “I  an apple today …” 

tweet_03 “todays computers are … ” 

desired output: 

“apple”, (tweet_01, tweet_02) 

“computers”, (tweet_01, 

tweet_03) 

“todays”, (tweet_02, tweet_03) 

… 

Map(k,val): 

 for word in val: 

  emit(w,k) 

Reduce(k,values): 

 emit(k, set(values)) 
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Order 

type orderid account date 

ord 001 john 14-12 

ord 002 sim 13-12 

ord 003 mary 09-12 

 

LineItem 

type orderid itemid qty 

line 001 i1 3 

line 001 i2 2 

line 002 i1 5 

line 002 i3 2 

line 003 i2 3 

desired output: 

 

001, john, 14-12, i1, 3 

001, john, 14-12, i2, 2 

002, sim,  13-12, i1, 5 

002, sim,  13-12, i3, 2 

003, mary,  09-12, i2, 3 
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Map(k,val): 

 orderid = val[1] 

 emit(orderid, val) 

Reduce(k,values): 

 lines = []  

 for val in values: 

  type = val[0] 

  if type == ‘ord’: 

   order = val 

  # if val[0] == ‘line’ 

  else:      

   lines.append(val) 

 for line in lines: 

  emit(order + line) 



Università degli Studi di Modena e Reggio Emilia 

 41 

D
B

G
ro

u
p

@
U

n
im

o
re

 

Yet Another Resource Negotiator 
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http://thegeekpa.wordpress.com/2013/09/14/a-birds-eye-view-of-hadoop-

cluster/ 

http://www.tomsitpro.com/articles/hadoop-2-vs-1,2-

718.html 

• HDFS Federation (Hadoop 2.x) 

addresses limitation of the prior 

architecture by adding support multiple 

Namenodes/namespaces to HDFS file 

system 

 

Hadoop v0.x 
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• ResourceManager has two main components: 
- ApplicationsManager: responsible for allocating resources to the various 

running applications 

- Scheduler: pure scheduler in the sense that it performs no monitoring or 

tracking of status for the application 

 

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-

site/YARN.html 
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