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Goals

During this course, you will learn:
● the trends and challenges surrounding 
the BigData definition

● how the most relevant technologies and 
methods in this domain work

● Apache Hadoop
● Map-Reduce
● Spark, SparkSQL
● MLLIB

● how to structure and program your code 
using Python



 

Today's agenda 

Time Descrizione Insegnante

9:30-10:30 Parallel Data Processing in HPC Fiameni

10:30 - 12:30 Parallel Data Processing  with Hadoop in HPC Fiameni

12:30 – 13.30 Esercitazioni MapReduce in Python D'Onorio De 
Meo/Fiameni

14:30 – 17:30 Esercitazioni MapReduce in Python D'Onorio De 
Meo/Fiameni

17:30 – 18:30 Breve introduzione Python Numpy/Pandas D'Onorio De Meo



 

Materials

https://goo.gl/N77tEy



 

Quick poll

● How many of you already know part of the mentioned Big 
Data technologies?

● How many of you know any HPC methods (MPI, OpenMP, 
etc.)?

● How many of you know Python?
● Scala?



 

Before starting



 

 Size of computational applications 

Computational Dimension:   
number of operations  needed to solve the problem, 

in general is a function of the size of the involved
data structures (n, n2 , n3 , n log n, etc.) 

flop - Floating point operations
 indicates an arithmetic floating point operation.

flop/s - Floating points operations per second
 is a unit to measure  the speed of a computer.

                       computational problems today: 
1015 – 1022 flop

One year has about 3 x 107 seconds!

Most powerful computers today have reach a 
sustained  performance is of the order of Tflop/s - 
Pflop/s (1012 - 1015 flop/s).



 

  Example: Weather Prediction

Forecasts on a global scale (…..too accurate and 
inefficient!!) 

- 3D Grid to represent the Earth

 - Earth's circumference:      40000 km
- radius:    6370 km
- Earth's surface:      4πr2      5•108  km2

- 6 variables:  
- temperature

- pressure
- humidity 

- wind speed in the 3 Cartesian directions

- cells of  1 km  on each side

-100 slices to see how the variables evolve on the
   different levels of the atmosphere
- a 30 seconds time step is required for the simulation
   with such resolution

- Each cell requires about 1000 operations per time step
   (Navier-Stokes turbulence and various phenomena)



 

Example: Weather Prediction / 1

Grid: 5 •108  • 100  = 5 • 1010  cells
●   each cell is represented with 8 Byte  
●   Memory space: 

➔ (6 var)•(8 Byte)•(5•1010 cells)  2 • 1012 Byte = 2TB 

A 24 hours  forecast  needs:
➔ 24 • 60 • 2  3•103   time-step
➔ (5•1010 cells) • (103 oper.) • (3•103 time-steps) = 1.5•1017 operations !

 

A computer with a power of 1Tflop/s will take 1.5•105 sec.
➔ 24 hours  forecast will  need 2days to run ... but we shall obtain a very accurate 

forecast

   



 

Von Neumann Model

Control

Input Memory Output

Arithm. Logic Unit

     ……… Data

Control

➔ A single instruction is loaded 
from memory (fetch) and 
decoded

➔ Compute the addresses of 
operands

➔ Fetch the operands from 
memory; 

➔ Execute the instruction ;
➔ Write the result in memory 

(store).

Instructions are 
processed sequentially



 

Speed of Processors: Clock Cycle and 
Frequency

The clock cycle  is defined as the time 

between two adjacent pulses of oscillator 
that sets the time of the processor. 

The number of these pulses per second is 
known as clock speed or clock frequency, 
generally measured in GHz (gigahertz, or 
billions of pulses per second).  

The clock cycle controls the 
synchronization of operations in a 
computer: All the  operations inside the 

processor last a multiple of  .

Processor  (ns) freq (MHz)

CDC 6600 100   10

Cyber 76 27.5   36,3

IBM ES 9000 9 111

Cray Y-MP C90 4.1 244

Intel i860 20   50

PC Pentium < 0.5 > 2 GHz

Power PC 1.17 850

IBM Power 5 0.52     1.9 GHz

IBM Power 6 0.21     4.7 GHz

Increasing the clock frequency:

The speed of light sets an upper limit to the speed 

with which electronic components can operate .

Propagation velocity of a signal in a vacuum:   
300.000 Km/s = 30 cm/ns

Heat dissipation problems inside the processor. 
Also Quantum tunelling expected to become 

important.



 

Other factors that affect Performance

In addition to processor power, other 
factors affect the performance of 
computers:

➔ Size of memory
➔ Bandwidth between processor and 

memory
➔ Bandwidth toward the I/O system
➔ Size and bandwidth of the cache
➔ Latency between processor, 

memory, and I/O system

Data

Addresses

Arithmetic-Logical 

Unit ALU
Control  

Unit

Central 

Memory

Devices



 

Memory hierarchies

Memory access time: the time required 
by the processor to access data or to 
write data from / to memory

The hierarchy exists because :
• fast memory is expensive and small
• slow memory is cheap and big

Latency
– how long do I have to wait for the 

data?
– (cannot do anything while waiting)

Throughput
– how many bytes/second. but not 

important if waiting.

Total time = latency + (amount of data / throughput) 

Time to run code = clock cycles running code + clock cycles waiting for 
memory



 

Memory access

• Important problem for the 
performance of any computer is 
access to main memory. Fast 
processors are useless if memory 
access is slow!

• Over the years the difference in 
speed between processors and 
main memory has been growing.

Time

Processors

Memory

Gap



 

Cache Memory

• High speed, small size memory used as a 
buffer between the main memory and 
the processor. When used correctly, 
reduces the time spent waiting for data 
from main memory.

• Present as various “levels” (e.g. L1, L2, 
L3, etc) according to proximity to the 
functional units of the processor. 

• Cache efficiency depends on the locality 
of the data references:
– Temporal locality refers to the re-use of data 

within relatively small time frame.
– Spatial locality refers to the use of data 

within close storage locations (e.g. one 
dimensional array).

• Cache can contain Data, Instructions or 
both.



 

Aspects of parallelism

• It has been recognised for a long time that constant performance 
improvements cannot be obtained  just by increasing factors such 
as processor clock speed – parallelism is needed.

• In HPC parallelism can be present at many levels:
– Functional parallelism within the CPU.
– Pipelining and vectorisation
– Multi-processor and multi-core
– Accelerators
– Parallel I/O



 



 

Why?

● Overwhelming amounts of data generated by all 
kinds of devices, networks and programs, e.g. sensors, 
mobile devices, internet, social networks, computer 
simulations, satellites, radiotelescopes, LHC, etc.

● Increasing storage capacity
● Storage capacity has doubled every 3 years since 
1980 with prices steadily going down

● 1,8 zetabytes: an estimation for the data stored by 
humankind in 2011 (Digital Universe study of 
International Data Corporation)

● Massive data can produce high-value information 
and knowledge

● Critical for data analysis, decision support, 
forecasting, business intelligence, research, (data-
intensive) science, etc.



 

Big Data

A buzz word!
● With different meanings depending on your 
perspective - e.g. 100 TBs is big for a transaction 
processing system, but small for a world-wide search 
engine

A simple “definition” (Wikipedia)
● Consists of data sets that grow so large that 
they become awkward to work with using on-
hand database management tools

➔Difficulties: capture, storage, search, sharing, 
analytics, visualizing

How big is big?
● Moving target: terabyte (1012 bytes), petabyte 
(1015 bytes), exabyte (1018), zetabyte (1021)

Scale is only one dimension of the problem!



 

Operate without models
forward problem
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Operate without models
inverse problem
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Operate without models (Big Data)
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Where all began...a decade ago!

http://research.microsoft.com/en-

us/collaboration/fourthparadigm/4th_paradigm_book_complete_lr.pdf



 



 

Dimensions of the problem

● Volume
● Refers to massive amounts of data
● Makes it hard to store and manage, but also to 

analyze (big analytics)
● Velocity

● Continuous data streams are being captured (e.g. 
from sensors or mobile devices) and produced

● Makes it hard to perform online processing
● Variety

● Different data formats (sequences, graphs, arrays, 
…), different semantics, uncertain data (because of 
data capture), multiscale data (with lots of 
dimensions)

● Makes it hard to integrate and analyze



 

What do we do when there is too 
much data to process?



 

Parallel data processing!

● Exploit a massively parallel computer
● A computer that interconnects lots of CPUs, RAM 
and disk units

● To obtain
● High performance through data-based parallelism

➔High throughput for transaction-oriented (OLTP) 
loads

➔Low response time for decision-support (OLAP) 
queries

● High availability and reliability through data 
replication

● Extensibility with the ideal goals
➔Linear speed-up
➔Linear scale-up



 

Speed-up

● Linear increase in performance for a 
constant database size and load, and 
proportional increase of the system 
components (CPU, memory, disk)



 

Scale-up

● Sustained performance for a linear 
increase of database size and load, and 
proportional increase of components



 

Parallel Architectures 
for Data Processing

● Three main alternatives, depending on 
how processors,memory and disk are 
interconnected

● Shared-memory computer
● Shared-disk cluster
● Shared-nothing cluster

DeWitt, D. and Gray, J. “Parallel database systems: the 
future of high performance database systems”. ACM 
Communications, 35(6), 85-98, 1992.



 

Shared Memory
● All memory and disk are 
shared

● Symmetric Multiprocessor 
(SMP)

● Recent: Non Uniform 
Memory

+ Simple for apps, fast 
com., load balancing
- Complex interconnect 
limits extensibility, cost

● For write-intensive workloads, 
not for big data



 

Shared Disk

● Disk is shared, memory is 
private

● Storage Area Network (SAN) 
to interconnect memory 
and disk (block level)

● Needs distributed lock 
manager (DLM) for cache 
coherence

+ Simple for apps, 
extensibility
- Complex DLM, cost
● For write-intensive workloads or 
big data



 

Shared Nothing

● No sharing of memory or 
disk across nodes

● No need for DLM
● But needs data 

partitioning
+ highest extensibility, 
cost
- updates, distributed 
trans

● For big data (read 
intensive)



 

Example networks

MESH Topology

 Some variations of the mesh 
model have wrap-around type 
connections between the nodes 
to the edges of the mesh (torus 
topology).
The Cray T3E adopts a 3D torus 
topology

IBM BG/Q adopts a 5D torus 
topology

Toroidal Topology



 

Commodity Interconnects
Gig Ethernet

Myrinet

Infiniband

QsNet

SCI

Toru
s

Clos

Fat tree



 

Simple Model for Parallel Data

Shared-nothing architecture
● The most general and scalable

Set-oriented
● Each dataset D is represented by a table of rows

Key-value
● Each row is represented by a <key, value> pair 
where
➔Key uniquely identifies the value in D
➔Value is a list of (attribute name : attribute value)

Can represent structured (relational) data or 
NoSQL data

● But graph is another story (see Pregel, DEX or Spark)
Examples

● <row-id#5, (part-id:5, part-name:iphone5, supplier:Apple)>
● <doc-id#10, (content:<html> html text … </html>)>
● <akeyword, (doc-id:id1, doc-id:id2, doc-id:id10)>



 

Considerations

Big datasets
● Data partitioning and indexing

➔Problem with skewed data distributions
● Parallel algorithms for algebraic operators

➔Select is easy, Join is difficult
● Disk is very slow (10K times slower than RAM)

➔Exploit main memory data structures and 
compression

Query parallelization and optimization
● Automatic if the query language is declarative 

(e.g. SQL)
● Programmer assisted otherwise (e.g. 

MapReduce)



 

Considerations (cont.)

Transaction support
● Hard: need for distributed transactions 

(distributed locks and 2PC)
➔ NoSQL systems don’t provide 

transactions
Fault-tolerance and availability

● With many nodes (e.g. several thousand), 
node failure is the norm



 

Data Partitioning

Vertical partitioning
● Basis for column 

stores (e.g. 
MonetDB): efficient 
for OLAP queries

● Easy to compress, 
e.g. using Bloom 
filters

Horizontal partitioning 
(sharding)

● Shards can be stored 
(and replicated) at 
different nodes



 

Sharding Schemes



 

Different classes of applications

● MPI (Message Passing Interface)
● A shared disk infrastructure for 

processing large data sets with a 
parallel algorithm on clusters

● OpenMP (Open MultiProcessing)
● A shared memory infrastructure for 

processing large data sets with a 
parallel algorithm on a node

● Map Reduce (Hadoop)
● A shared nothing architecture for 

processing large data sets with a 
distributed algorithm on clusters



 

Parallel Architectures 

Map Reduce/Hadoop MPI OpenMP



 

http://www.mpi-forum.org/
http://forum.stanford.edu/events/2007/plenary/slides/Olukotun.ppt
http://www.tbray.org/ongoing/When/200x/2006/05/24/On-Grids

Programming Models: What is 
MPI?

• Message Passing Interface (MPI)
– World’s most popular distributed API
– MPI is “de facto standard” in scientific computing
– C and FORTRAN, ver. 2 in 1997

• What is MPI good for?
– Abstracts away common network communications
– Allows lots of control without bookkeeping
– Freedom and flexibility come with complexity

• 300 subroutines, but serious programs with fewer than 10
 

• Basics:
– One executable run on every node
– Each node process has a rank ID number assigned
– Call API functions to send messages



 

Challenges with MPI

• Deadlock is possible…
– Blocking communication can cause deadlock

• "crossed" calls when trading information 
• example: 
• Proc1: MPI_Receive(Proc2, A);  
MPI_Send(Proc2, B);

• Proc2: MPI_Receive(Proc1, B);  
MPI_Send(Proc1, A);

• There are some solutions - MPI_SendRecv()
• Large overhead from comm. mismanagement

– Time spent blocking is wasted cycles
– Can overlap computation with non-blocking comm.

• Load imbalance is possible! Dead machines?
• Things are starting to look hard to code!



 

Brief recap  



 

Map Reduce flow

• Programmers must specify:
map (k, v)  list(<k’, v’>)→
reduce (k’, list(v’))  <k’’, v’’>→
– All values with the same key are reduced together

• Optionally, also:
partition (k’, number of partitions)  partition for k’→
– Often a simple hash of the key, e.g., hash(k’) mod n
– Divides up key space for parallel reduce operations
combine (k’, v’)  <k’, v’>*→
– Mini-reducers that run in memory after the map phase
– Used as an optimization to reduce network traffic

• The execution framework handles everything else…



 

“Everything Else”

• The execution framework handles everything else…
– Scheduling: assigns workers to map and reduce tasks
– “Data distribution”: moves processes to data
– Synchronization: gathers, sorts, and shuffles intermediate 

data
– Errors and faults: detects worker failures and restarts

• Limited control over data and execution flow
– All algorithms must expressed in m, r, c, p

• You don’t know:
– Where mappers and reducers run
– When a mapper or reducer begins or finishes
– Which input a particular mapper is processing
– Which intermediate key a particular reducer is processing



  

(1) Map Only(1) Map Only
(4) Point to Point or 

Map-Communication

(4) Point to Point or 

Map-Communication
(3) Iterative Map Reduce 

or Map-Collective

(3) Iterative Map Reduce 
or Map-Collective

(2) Classic 
MapReduce

(2) Classic 
MapReduce

     

InputInput

      

mapmap
   

     
     

reducereduce

  

InputInput

      

mapmap

   

     
     reducereduce

IterationsIterations
InputInput

 

OutputOutput

     

mapmap

    Local

Graph

BLAST Analysis
Local Machine 
Learning
Pleasingly 
Parallel

High Energy 
Physics (HEP) 
Histograms
Distributed search
Recommender 
Engines

Expectation 
maximization 
Clustering e.g. K-
means
Linear Algebra, 
PageRank

Classic MPI
PDE Solvers and 
Particle Dynamics
Graph Problems

MapReduce and Iterative Extensions (Spark, Twister) MPI, Giraph

Integrated Systems such as Hadoop + Harp with 
Compute and Communication model separated



 

Are emerging data analytics 
techniques the new El Dorado?  



Where and When using 
Apache Hadoop

WhenWhere

● Batch data processing, not 
real-time

● Highly parallel data 
intensive distributed 
applications

● Very large production 
deployments

● Process lots of unstructured 
data

● When your processing can 
easily be made parallel

● Running batch jobs is 
acceptable

● When you have access to 
lots of cheap hardware



 

 Advantages/Disadvantages
• Now it’s easy to program for many CPUs

– Communication management effectively gone
• I/O scheduling done for us

– Fault tolerance, monitoring
• machine failures, suddenly-slow machines, etc are handled

– Can be much easier to design and program!

• But … it further restricts solvable problems
– Might be hard to express problem in MapReduce
– Data parallelism is key
– Need to be able to break up a problem by data chunks
– MapReduce is closed-source (to Google) C++
– Hadoop is open-source Java-based rewrite



 

Overall limitations

● MapReduce provides an easy-to-use framework for parallel programming, 
but is it the most efficient and best solution to program execution in 
datacenters? 

● DeWitt and Stonebraker: “MapReduce: A major step backwards” – 
MapReduce is far less sophisticated and efficient than parallel query 
processing

● MapReduce is a parallel processing framework, not a database 
system, nor a query language

● It is possible to use MapReduce to implement some of the parallel 
query processing function

● What are the real limitations?
● Inefficient for general programming (and not designed for that)
● Hard to handle data with complex dependence, frequent updates, etc.
● High overhead, bursty I/O, difficult to handle long streaming data
● Limited opportunity for optimization



 

Parallel Computing Model

MapReduce can be classified as a SIMD (single-instruction, 
multiple-data) problem.

– Indeed, the map step is highly scalable because the same instructions 
are carried out over all data. Parallelism arises by breaking the data 
into independent parts with no forward or backward dependencies 
(side effects) within a Map step; that is, the Map step may not change 
any data (even its own). 

– The reducer step is similar, in that it applies the same reduction 
process to a different set of data (the results of the Map step).

– In general, the MapReduce model provides a functional, rather than 
procedural, programing model. Similar to a functional language, 
MapReduce cannot change the input data as part of the mapper or 
reducer process, which is usually a large file. Such restrictions can at 
first be seen as inefficient; however, the lack of side effects allows for 
easy scalability and redundancy.

An HPC cluster, on the other hand, can run SIMD and MIMD 
(multiple-instruction, multiple-data) jobs. 

– The programmer determines how to execute the parallel algorithm. 
Users, however, are not restricted when creating their own MapReduce 
application within the framework of a typical HPC cluster.

A Tale of Two Data-Intensive Paradigs: Applications, Abstractions, and Architectures
Shantenu Jha , Judy Qiu, Andre Luckow , Pradeep Mantha , Geoffrey C.Fox



 



 

When to use Apache Hadoop



 

When to use Apache Hadoop

• Your Data Sets Are Really Big
– Don’t even think about Hadoop if the data you want to 

process is measured in MBs or GBs. If the data driving the 
main problem you are hoping to use Hadoop to solve is 
measured in GBs, save yourself the hassle and use Excel, 
a SQL BI tool on Postgres, or some similar combination. 
On the other hand, if it’s several TB or (even better) 
measured in petabytes, Hadoop’s superior scalability will 
save you a considerable amount of time and money

• You Celebrate Data Diversity
– One of the advantages of the Hadoop Distributed File 

System (HDFS) is it’s really flexible in terms of data types. 
It doesn’t matter whether your raw data is structured, 
semi-structured (like XML and log files), unstructured (like 
video files). 



 

When to use Apache Hadoop

• You Find Yourself Throwing Away Perfectly Good 
Data

– One of the great things about Hadoop is its capability to 
store petabytes of data. If you find that you are throwing 
away potentially valuable data because its costs too much 
to archive, you may find that setting up a Hadoop cluster 
allows you to retain this data, and gives you the time to 
figure out how to best make use of that data.



 

When to NOT use MR + Hadoop

• You Need Answers in a Hurry
– Hadoop is probably not the ideal solution if you need 

really fast access to data. The various SQL engines for 
Hadoop have made big strides in the past year, and will 
likely continue to improve. But if you’re using Map-Reduce 
to crunch your data, expect to wait days or even weeks to 
get results back.

• Your Queries Are Complex and Require Extensive 
Optimization

– Hadoop is great because it gives you a massively parallel 
cluster for low-cost Lintel servers and scads of cheap hard 
disk capacity. While the hardware and scalability is 
straightforward, getting the most out of Hadoop typically 
requires a hefty investment in the technical skills required 
to optimize queries. 



 

When to NOT use MR + Hadoop

• You Require Random, Interactive Access to Data
– The pushback from the limitations of the batch-oriented 

MapReduce paradigm in early Hadoop led the community to 
improve SQL performance and boost its capability to serve 
interactive queries against random data. While SQL on Hadoop 
is getting better, in most cases it’s not a reason in of itself to 
adopt Hadoop.

• You Want to Store Sensitive Data
– Hadoop is evolving quickly and is able to do a lot of things 

that it couldn’t do just a few years ago. But one of the things 
that it’s not particularly good at today is storing sensitive 
data. Hadoop today has basic data and use access security. 
And while these features are improving by the month, the 
risks of accidentally losing personally identifiable information 
due to Hadoop’s less-than-stellar security capabilities is 
probably not worth the risk.



 

 Advantages/Disadvantages
• Now it’s easy to program for many CPUs

– Communication management effectively gone
• I/O scheduling done for us

– Fault tolerance, monitoring
• machine failures, suddenly-slow machines, etc are handled

– Can be much easier to design and program!
– Can cascade several (many?) Map-Reduce tasks

• But … it further restricts solvable problems
– Might be hard to express problem in Map-Reduce
– Data parallelism is key
– Need to be able to break up a problem by data chunks
– Map-Reduce is closed-source (to Google) C++
– Hadoop is open-source Java-based rewrite
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