

Welcome!

Master BBS in Data Science
Giuseppe Fiameni

March 16th 2016

Goals

During this course, you will learn:
● the trends and challenges surrounding
the BigData definition

● how the most relevant technologies and
methods in this domain work

● Apache Hadoop
● Map-Reduce
● Spark, SparkSQL
● MLLIB

● how to structure and program your code
using Python

Today's agenda

Time Descrizione Insegnante

9:30-10:30 Parallel Data Processing in HPC Fiameni

10:30 - 12:30 Parallel Data Processing with Hadoop in HPC Fiameni

12:30 – 13.30 Esercitazioni MapReduce in Python D'Onorio De
Meo/Fiameni

14:30 – 17:30 Esercitazioni MapReduce in Python D'Onorio De
Meo/Fiameni

17:30 – 18:30 Breve introduzione Python Numpy/Pandas D'Onorio De Meo

Materials

https://goo.gl/N77tEy

Quick poll

● How many of you already know part of the mentioned Big
Data technologies?

● How many of you know any HPC methods (MPI, OpenMP,
etc.)?

● How many of you know Python?
● Scala?

Before starting

 Size of computational applications

Computational Dimension:
number of operations needed to solve the problem,

in general is a function of the size of the involved
data structures (n, n2 , n3 , n log n, etc.)

flop - Floating point operations
 indicates an arithmetic floating point operation.

flop/s - Floating points operations per second
 is a unit to measure the speed of a computer.

 computational problems today:
1015 – 1022 flop

One year has about 3 x 107 seconds!

Most powerful computers today have reach a
sustained performance is of the order of Tflop/s -
Pflop/s (1012 - 1015 flop/s).

 Example: Weather Prediction

Forecasts on a global scale (…..too accurate and
inefficient!!)

- 3D Grid to represent the Earth

 - Earth's circumference: 40000 km
- radius: 6370 km
- Earth's surface: 4πr2 5•108 km2

- 6 variables:
- temperature

- pressure
- humidity

- wind speed in the 3 Cartesian directions

- cells of 1 km on each side

-100 slices to see how the variables evolve on the
 different levels of the atmosphere
- a 30 seconds time step is required for the simulation
 with such resolution

- Each cell requires about 1000 operations per time step
 (Navier-Stokes turbulence and various phenomena)

Example: Weather Prediction / 1

Grid: 5 •108 • 100 = 5 • 1010 cells
● each cell is represented with 8 Byte
● Memory space:

➔ (6 var)•(8 Byte)•(5•1010 cells) 2 • 1012 Byte = 2TB

A 24 hours forecast needs:
➔ 24 • 60 • 2 3•103 time-step
➔ (5•1010 cells) • (103 oper.) • (3•103 time-steps) = 1.5•1017 operations !

A computer with a power of 1Tflop/s will take 1.5•105 sec.
➔ 24 hours forecast will need 2days to run ... but we shall obtain a very accurate

forecast

Von Neumann Model

Control

Input Memory Output

Arithm. Logic Unit

 ……… Data

Control

➔ A single instruction is loaded
from memory (fetch) and
decoded

➔ Compute the addresses of
operands

➔ Fetch the operands from
memory;

➔ Execute the instruction ;
➔ Write the result in memory

(store).

Instructions are
processed sequentially

Speed of Processors: Clock Cycle and
Frequency

The clock cycle is defined as the time

between two adjacent pulses of oscillator
that sets the time of the processor.

The number of these pulses per second is
known as clock speed or clock frequency,
generally measured in GHz (gigahertz, or
billions of pulses per second).

The clock cycle controls the
synchronization of operations in a
computer: All the operations inside the

processor last a multiple of .

Processor (ns) freq (MHz)

CDC 6600 100 10

Cyber 76 27.5 36,3

IBM ES 9000 9 111

Cray Y-MP C90 4.1 244

Intel i860 20 50

PC Pentium < 0.5 > 2 GHz

Power PC 1.17 850

IBM Power 5 0.52 1.9 GHz

IBM Power 6 0.21 4.7 GHz

Increasing the clock frequency:

The speed of light sets an upper limit to the speed

with which electronic components can operate .

Propagation velocity of a signal in a vacuum:
300.000 Km/s = 30 cm/ns

Heat dissipation problems inside the processor.
Also Quantum tunelling expected to become

important.

Other factors that affect Performance

In addition to processor power, other
factors affect the performance of
computers:

➔ Size of memory
➔ Bandwidth between processor and

memory
➔ Bandwidth toward the I/O system
➔ Size and bandwidth of the cache
➔ Latency between processor,

memory, and I/O system

Data

Addresses

Arithmetic-Logical

Unit ALU
Control

Unit

Central

Memory

Devices

Memory hierarchies

Memory access time: the time required
by the processor to access data or to
write data from / to memory

The hierarchy exists because :
• fast memory is expensive and small
• slow memory is cheap and big

Latency
– how long do I have to wait for the

data?
– (cannot do anything while waiting)

Throughput
– how many bytes/second. but not

important if waiting.

Total time = latency + (amount of data / throughput)

Time to run code = clock cycles running code + clock cycles waiting for
memory

Memory access

• Important problem for the
performance of any computer is
access to main memory. Fast
processors are useless if memory
access is slow!

• Over the years the difference in
speed between processors and
main memory has been growing.

Time

Processors

Memory

Gap

Cache Memory

• High speed, small size memory used as a
buffer between the main memory and
the processor. When used correctly,
reduces the time spent waiting for data
from main memory.

• Present as various “levels” (e.g. L1, L2,
L3, etc) according to proximity to the
functional units of the processor.

• Cache efficiency depends on the locality
of the data references:
– Temporal locality refers to the re-use of data

within relatively small time frame.
– Spatial locality refers to the use of data

within close storage locations (e.g. one
dimensional array).

• Cache can contain Data, Instructions or
both.

Aspects of parallelism

• It has been recognised for a long time that constant performance
improvements cannot be obtained just by increasing factors such
as processor clock speed – parallelism is needed.

• In HPC parallelism can be present at many levels:
– Functional parallelism within the CPU.
– Pipelining and vectorisation
– Multi-processor and multi-core
– Accelerators
– Parallel I/O

Why?

● Overwhelming amounts of data generated by all
kinds of devices, networks and programs, e.g. sensors,
mobile devices, internet, social networks, computer
simulations, satellites, radiotelescopes, LHC, etc.

● Increasing storage capacity
● Storage capacity has doubled every 3 years since
1980 with prices steadily going down

● 1,8 zetabytes: an estimation for the data stored by
humankind in 2011 (Digital Universe study of
International Data Corporation)

● Massive data can produce high-value information
and knowledge

● Critical for data analysis, decision support,
forecasting, business intelligence, research, (data-
intensive) science, etc.

Big Data

A buzz word!
● With different meanings depending on your
perspective - e.g. 100 TBs is big for a transaction
processing system, but small for a world-wide search
engine

A simple “definition” (Wikipedia)
● Consists of data sets that grow so large that
they become awkward to work with using on-
hand database management tools

➔Difficulties: capture, storage, search, sharing,
analytics, visualizing

How big is big?
● Moving target: terabyte (1012 bytes), petabyte
(1015 bytes), exabyte (1018), zetabyte (1021)

Scale is only one dimension of the problem!

Operate without models
forward problem

m
od

el

params

algor.

theory

Outputs

Before...Before...

Operate without models
inverse problem

model

params

algor.

DATA

O
utputs

Now, future...Now, future...

Operate without models (Big Data)

model

params

algor.

DATA

outputsm
od

el

params

algor.

theory

Outputs

Where all began...a decade ago!

http://research.microsoft.com/en-

us/collaboration/fourthparadigm/4th_paradigm_book_complete_lr.pdf

Dimensions of the problem

● Volume
● Refers to massive amounts of data
● Makes it hard to store and manage, but also to

analyze (big analytics)
● Velocity

● Continuous data streams are being captured (e.g.
from sensors or mobile devices) and produced

● Makes it hard to perform online processing
● Variety

● Different data formats (sequences, graphs, arrays,
…), different semantics, uncertain data (because of
data capture), multiscale data (with lots of
dimensions)

● Makes it hard to integrate and analyze

What do we do when there is too
much data to process?

Parallel data processing!

● Exploit a massively parallel computer
● A computer that interconnects lots of CPUs, RAM
and disk units

● To obtain
● High performance through data-based parallelism

➔High throughput for transaction-oriented (OLTP)
loads

➔Low response time for decision-support (OLAP)
queries

● High availability and reliability through data
replication

● Extensibility with the ideal goals
➔Linear speed-up
➔Linear scale-up

Speed-up

● Linear increase in performance for a
constant database size and load, and
proportional increase of the system
components (CPU, memory, disk)

Scale-up

● Sustained performance for a linear
increase of database size and load, and
proportional increase of components

Parallel Architectures
for Data Processing

● Three main alternatives, depending on
how processors,memory and disk are
interconnected

● Shared-memory computer
● Shared-disk cluster
● Shared-nothing cluster

DeWitt, D. and Gray, J. “Parallel database systems: the
future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.

Shared Memory
● All memory and disk are
shared

● Symmetric Multiprocessor
(SMP)

● Recent: Non Uniform
Memory

+ Simple for apps, fast
com., load balancing
- Complex interconnect
limits extensibility, cost

● For write-intensive workloads,
not for big data

Shared Disk

● Disk is shared, memory is
private

● Storage Area Network (SAN)
to interconnect memory
and disk (block level)

● Needs distributed lock
manager (DLM) for cache
coherence

+ Simple for apps,
extensibility
- Complex DLM, cost
● For write-intensive workloads or
big data

Shared Nothing

● No sharing of memory or
disk across nodes

● No need for DLM
● But needs data

partitioning
+ highest extensibility,
cost
- updates, distributed
trans

● For big data (read
intensive)

Example networks

MESH Topology

 Some variations of the mesh
model have wrap-around type
connections between the nodes
to the edges of the mesh (torus
topology).
The Cray T3E adopts a 3D torus
topology

IBM BG/Q adopts a 5D torus
topology

Toroidal Topology

Commodity Interconnects
Gig Ethernet

Myrinet

Infiniband

QsNet

SCI

Toru
s

Clos

Fat tree

Simple Model for Parallel Data

Shared-nothing architecture
● The most general and scalable

Set-oriented
● Each dataset D is represented by a table of rows

Key-value
● Each row is represented by a <key, value> pair
where
➔Key uniquely identifies the value in D
➔Value is a list of (attribute name : attribute value)

Can represent structured (relational) data or
NoSQL data

● But graph is another story (see Pregel, DEX or Spark)
Examples

● <row-id#5, (part-id:5, part-name:iphone5, supplier:Apple)>
● <doc-id#10, (content:<html> html text … </html>)>
● <akeyword, (doc-id:id1, doc-id:id2, doc-id:id10)>

Considerations

Big datasets
● Data partitioning and indexing

➔Problem with skewed data distributions
● Parallel algorithms for algebraic operators

➔Select is easy, Join is difficult
● Disk is very slow (10K times slower than RAM)

➔Exploit main memory data structures and
compression

Query parallelization and optimization
● Automatic if the query language is declarative

(e.g. SQL)
● Programmer assisted otherwise (e.g.

MapReduce)

Considerations (cont.)

Transaction support
● Hard: need for distributed transactions

(distributed locks and 2PC)
➔ NoSQL systems don’t provide

transactions
Fault-tolerance and availability

● With many nodes (e.g. several thousand),
node failure is the norm

Data Partitioning

Vertical partitioning
● Basis for column

stores (e.g.
MonetDB): efficient
for OLAP queries

● Easy to compress,
e.g. using Bloom
filters

Horizontal partitioning
(sharding)

● Shards can be stored
(and replicated) at
different nodes

Sharding Schemes

Different classes of applications

● MPI (Message Passing Interface)
● A shared disk infrastructure for

processing large data sets with a
parallel algorithm on clusters

● OpenMP (Open MultiProcessing)
● A shared memory infrastructure for

processing large data sets with a
parallel algorithm on a node

● Map Reduce (Hadoop)
● A shared nothing architecture for

processing large data sets with a
distributed algorithm on clusters

Parallel Architectures

Map Reduce/Hadoop MPI OpenMP

http://www.mpi-forum.org/
http://forum.stanford.edu/events/2007/plenary/slides/Olukotun.ppt
http://www.tbray.org/ongoing/When/200x/2006/05/24/On-Grids

Programming Models: What is
MPI?

• Message Passing Interface (MPI)
– World’s most popular distributed API
– MPI is “de facto standard” in scientific computing
– C and FORTRAN, ver. 2 in 1997

• What is MPI good for?
– Abstracts away common network communications
– Allows lots of control without bookkeeping
– Freedom and flexibility come with complexity

• 300 subroutines, but serious programs with fewer than 10

• Basics:
– One executable run on every node
– Each node process has a rank ID number assigned
– Call API functions to send messages

Challenges with MPI

• Deadlock is possible…
– Blocking communication can cause deadlock

• "crossed" calls when trading information
• example:
• Proc1: MPI_Receive(Proc2, A);
MPI_Send(Proc2, B);

• Proc2: MPI_Receive(Proc1, B);
MPI_Send(Proc1, A);

• There are some solutions - MPI_SendRecv()
• Large overhead from comm. mismanagement

– Time spent blocking is wasted cycles
– Can overlap computation with non-blocking comm.

• Load imbalance is possible! Dead machines?
• Things are starting to look hard to code!

Brief recap

Map Reduce flow

• Programmers must specify:
map (k, v) list(<k’, v’>)→
reduce (k’, list(v’)) <k’’, v’’>→
– All values with the same key are reduced together

• Optionally, also:
partition (k’, number of partitions) partition for k’→
– Often a simple hash of the key, e.g., hash(k’) mod n
– Divides up key space for parallel reduce operations
combine (k’, v’) <k’, v’>*→
– Mini-reducers that run in memory after the map phase
– Used as an optimization to reduce network traffic

• The execution framework handles everything else…

“Everything Else”

• The execution framework handles everything else…
– Scheduling: assigns workers to map and reduce tasks
– “Data distribution”: moves processes to data
– Synchronization: gathers, sorts, and shuffles intermediate

data
– Errors and faults: detects worker failures and restarts

• Limited control over data and execution flow
– All algorithms must expressed in m, r, c, p

• You don’t know:
– Where mappers and reducers run
– When a mapper or reducer begins or finishes
– Which input a particular mapper is processing
– Which intermediate key a particular reducer is processing

(1) Map Only(1) Map Only
(4) Point to Point or

Map-Communication

(4) Point to Point or

Map-Communication
(3) Iterative Map Reduce

or Map-Collective

(3) Iterative Map Reduce
or Map-Collective

(2) Classic
MapReduce

(2) Classic
MapReduce

InputInput

mapmap

reducereduce

InputInput

mapmap

 reducereduce

IterationsIterations
InputInput

OutputOutput

mapmap

 Local

Graph

BLAST Analysis
Local Machine
Learning
Pleasingly
Parallel

High Energy
Physics (HEP)
Histograms
Distributed search
Recommender
Engines

Expectation
maximization
Clustering e.g. K-
means
Linear Algebra,
PageRank

Classic MPI
PDE Solvers and
Particle Dynamics
Graph Problems

MapReduce and Iterative Extensions (Spark, Twister) MPI, Giraph

Integrated Systems such as Hadoop + Harp with
Compute and Communication model separated

Are emerging data analytics
techniques the new El Dorado?

Where and When using
Apache Hadoop

WhenWhere

● Batch data processing, not
real-time

● Highly parallel data
intensive distributed
applications

● Very large production
deployments

● Process lots of unstructured
data

● When your processing can
easily be made parallel

● Running batch jobs is
acceptable

● When you have access to
lots of cheap hardware

 Advantages/Disadvantages
• Now it’s easy to program for many CPUs

– Communication management effectively gone
• I/O scheduling done for us

– Fault tolerance, monitoring
• machine failures, suddenly-slow machines, etc are handled

– Can be much easier to design and program!

• But … it further restricts solvable problems
– Might be hard to express problem in MapReduce
– Data parallelism is key
– Need to be able to break up a problem by data chunks
– MapReduce is closed-source (to Google) C++
– Hadoop is open-source Java-based rewrite

Overall limitations

● MapReduce provides an easy-to-use framework for parallel programming,
but is it the most efficient and best solution to program execution in
datacenters?

● DeWitt and Stonebraker: “MapReduce: A major step backwards” –
MapReduce is far less sophisticated and efficient than parallel query
processing

● MapReduce is a parallel processing framework, not a database
system, nor a query language

● It is possible to use MapReduce to implement some of the parallel
query processing function

● What are the real limitations?
● Inefficient for general programming (and not designed for that)
● Hard to handle data with complex dependence, frequent updates, etc.
● High overhead, bursty I/O, difficult to handle long streaming data
● Limited opportunity for optimization

Parallel Computing Model

MapReduce can be classified as a SIMD (single-instruction,
multiple-data) problem.

– Indeed, the map step is highly scalable because the same instructions
are carried out over all data. Parallelism arises by breaking the data
into independent parts with no forward or backward dependencies
(side effects) within a Map step; that is, the Map step may not change
any data (even its own).

– The reducer step is similar, in that it applies the same reduction
process to a different set of data (the results of the Map step).

– In general, the MapReduce model provides a functional, rather than
procedural, programing model. Similar to a functional language,
MapReduce cannot change the input data as part of the mapper or
reducer process, which is usually a large file. Such restrictions can at
first be seen as inefficient; however, the lack of side effects allows for
easy scalability and redundancy.

An HPC cluster, on the other hand, can run SIMD and MIMD
(multiple-instruction, multiple-data) jobs.

– The programmer determines how to execute the parallel algorithm.
Users, however, are not restricted when creating their own MapReduce
application within the framework of a typical HPC cluster.

A Tale of Two Data-Intensive Paradigs: Applications, Abstractions, and Architectures
Shantenu Jha , Judy Qiu, Andre Luckow , Pradeep Mantha , Geoffrey C.Fox

When to use Apache Hadoop

When to use Apache Hadoop

• Your Data Sets Are Really Big
– Don’t even think about Hadoop if the data you want to

process is measured in MBs or GBs. If the data driving the
main problem you are hoping to use Hadoop to solve is
measured in GBs, save yourself the hassle and use Excel,
a SQL BI tool on Postgres, or some similar combination.
On the other hand, if it’s several TB or (even better)
measured in petabytes, Hadoop’s superior scalability will
save you a considerable amount of time and money

• You Celebrate Data Diversity
– One of the advantages of the Hadoop Distributed File

System (HDFS) is it’s really flexible in terms of data types.
It doesn’t matter whether your raw data is structured,
semi-structured (like XML and log files), unstructured (like
video files).

When to use Apache Hadoop

• You Find Yourself Throwing Away Perfectly Good
Data

– One of the great things about Hadoop is its capability to
store petabytes of data. If you find that you are throwing
away potentially valuable data because its costs too much
to archive, you may find that setting up a Hadoop cluster
allows you to retain this data, and gives you the time to
figure out how to best make use of that data.

When to NOT use MR + Hadoop

• You Need Answers in a Hurry
– Hadoop is probably not the ideal solution if you need

really fast access to data. The various SQL engines for
Hadoop have made big strides in the past year, and will
likely continue to improve. But if you’re using Map-Reduce
to crunch your data, expect to wait days or even weeks to
get results back.

• Your Queries Are Complex and Require Extensive
Optimization

– Hadoop is great because it gives you a massively parallel
cluster for low-cost Lintel servers and scads of cheap hard
disk capacity. While the hardware and scalability is
straightforward, getting the most out of Hadoop typically
requires a hefty investment in the technical skills required
to optimize queries.

When to NOT use MR + Hadoop

• You Require Random, Interactive Access to Data
– The pushback from the limitations of the batch-oriented

MapReduce paradigm in early Hadoop led the community to
improve SQL performance and boost its capability to serve
interactive queries against random data. While SQL on Hadoop
is getting better, in most cases it’s not a reason in of itself to
adopt Hadoop.

• You Want to Store Sensitive Data
– Hadoop is evolving quickly and is able to do a lot of things

that it couldn’t do just a few years ago. But one of the things
that it’s not particularly good at today is storing sensitive
data. Hadoop today has basic data and use access security.
And while these features are improving by the month, the
risks of accidentally losing personally identifiable information
due to Hadoop’s less-than-stellar security capabilities is
probably not worth the risk.

 Advantages/Disadvantages
• Now it’s easy to program for many CPUs

– Communication management effectively gone
• I/O scheduling done for us

– Fault tolerance, monitoring
• machine failures, suddenly-slow machines, etc are handled

– Can be much easier to design and program!
– Can cascade several (many?) Map-Reduce tasks

• But … it further restricts solvable problems
– Might be hard to express problem in Map-Reduce
– Data parallelism is key
– Need to be able to break up a problem by data chunks
– Map-Reduce is closed-source (to Google) C++
– Hadoop is open-source Java-based rewrite

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Size of computational applications
	Example: Weather Prediction
	Example: Weather Prediction / 1
	von Neumann Model
	Speed of Processors: Clock Cycle and Frequency
	Other factors that affect Performance
	Memory hierarchies
	Memory access
	Cache Memory
	Aspects of parallelism
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Example networks
	Commodity Interconnects
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 42
	Slide 43
	Slide 45
	Slide 46
	Slide 47
	MapReduce: Recap
	“Everything Else”
	4 Forms of MapReduce
	Slide 51
	Where and When using Hadoop
	Slide 53
	Slide 54
	Slide 57
	Slide 60
	Slide 72
	Slide 73
	Slide 75
	Slide 76
	Slide 77
	Slide 78

