Production Environment

Introduction to Marconi HPC Cluster, for users and developers

Author: Susana Bueno Minguez Speaker: Alessandro Marani

13/06/2016

Overview

- Usage of a HPC system
 - Interactive mode
 - Batch mode

•

· Graphic sessions (using RCM)

Usage of a HPC system

- Interactive mode
 - general interactive operations
 - data movement
 - archiving
 - code development
 - compilations
 - basic debugger usage
- Batch mode
 - Guarantees a fair access to resources
 - Used for production runs

Interactive mode

• A serial program can be executed in the standard UNIX way:

> ./program

This is allowed only for very short runs, since the **interactive environment has a 10 minutes time limit**: for longer runs please use the "batch" mode.

- A parallel program can be executed interactively only within an "Interactive" PBS batch job, using the "-I" (capital i) option:
 - the job is queued and scheduled as any PBS batch job
 - when executed, the standard input, output, and error streams are connected to the terminal session from which qsub was submitted.

Example: an interactive session with MPI program "myprogram"

> qsub -A <account_no> -I -Iselect=1:ncpus=2:mpiprocs=2 -- /bin/bash qsub: waiting for job ... to start qsub: job ... ready > mpirun ./myprogram > ^D (or "exit")

If you want to **export variables** to the interactive session, use the **-v option**. For example, if "myprogram" is not compiled statically, you have to define and export the LD_LIBRARY_PATH variable:

```
> export LD_LIBRARY_PATH= ...
> qsub -I -v LD_LIBRARY_PATH ...
```

How to prepare a job for its execution on batch mode On MARCONI we have the PBS scheduler

The job script scheme is:

#!/bin/bash
#PBS keywords
variables environment
execution line

PBS resources

- A job requests resources through the PBS keywords
- PBS matches requested resources with available resources, according to rules defined by the administrator
- when resources are allocated to the job, the job can be executed

PBS resources

The syntax of the request depends on which type is concerned: #PBS -l <resource>=<value> (server level resources, e.g. walltime)

#PBS -l select=N:chunk=...[+[N:]chunk=...] (chunk resources, e.g. cpus, gpus,mpiprocs)

```
For example:
#PBS -l walltime=10:00
#PBS -l select=1:ncpus=1
Or
#PBS -l select=2:ncpus=8+4:ncpus=16
```

Moreover, resources can be required in one of two possible ways:1) using PBS directives in the job script2) using options of the qsub command

PBS directives: num. of processors

The number of cpus required for a serial or parallel MPI/OpenMP/mixed job must be required with the "select" directive:

#PBS -I select=NN:ncpus=CC:mpiprocs=TT

where:

NN: number of nodes (max depending on the queue)
ncpus=CC: number of physical cores per node
mpiprocs=TT: number of MPI tasks per node

for example:

```
#PBS -l select=1:ncpus=1 --> serial job
```

```
#PBS -l select=2:ncpus=8:mpiprocs=8 --> MPI job (2 nodes and 8 procs per node)
#PBS -l select=2:ncpus=8:mpiprocs=1 --> mixed job (2 MPI tasks and 8 threads/task)
```

PBS directives: processing time

Resources as the computing time, must be requested in this form:

#PBS -I walltime=<value>

where <value>: express the actual elapsed time (wall-clock) in the format hh:mm:ss

for example:

#PBS -I walltime=1:00:00 (one hour)

PBS directives: memory allocation

You can specify the requested memory up to to maximum memory available on the nodes using the "mem" directive:

#PBS -I select=NN:ncpus=CC:mpiprocs=TT:mem=24GB

Please note: if you are requiring a larger memory with respect to the "main amount" on the system, the number of "effective cores" and the cost of your job could increase

Other PBS directives

#PBS -l select=1:ncpus=18:mpiprocs=18:mem=120GB# resources#PBS -l walltime=1:00:00# hh:mm:ss

#PBS -A <my_account> # name of the account

#PBS -N jobname# name of the job

output file

error file

merge std-err and std-out

specify e-mail notification
(a=aborted,b=begin,e=end,n=no_mail)

set e-mail destination (email address)

#PBS -M user_list

#PBS -m mail events

#PBS -o job.out

#PBS -e job.err

#PBS -j eo

The User Environment

There are a number of environment variables provided to the PBS job. Some of them are taken from the user's environment and carried with the job. Others are created by PBS.

Short example lists some of the more useful variables:

PBS_JOBNAME=jobb

PBS_ENVIRONMENT=PBS_BATCH

PBS_JOBID=453919.io01

PBS_QUEUE=shared

PBS_O_WORKDIR=/gpfs/scratch/usercin/aer0

PBS_O_HOME=/marconi/usercin/aer0

PBS_O_QUEUE=route

PBS_O_LOGNAME=aer0

PBS_O_SHELL=/bin/bash

PBS_O_HOST=nodexxx.marconi.cineca.it

PBS_O_MAIL=/var/spool/mail/aer0

PBS_O_PATH=/cineca/bin:/marconi/cineca/sysprod/pbs/default/bin: ...

PBS job script template

#!/bin/bash
#PBS -I walltime=2:00:00
#PBS -I select=1:ncpus=18:mpiprocs=18:mem=120GB
#PBS -o job.out
#PBS -e job.err
#PBS -e job.err
#PBS -A <account_no>
#PBS -m mail_events
#PBS -M user@email.com

cd \$PBS_O_WORKDIR

module load autoload intelmpi/openmpi module load somelibrary mpirun -n 18 ./myprogram < myinput

Job script examples

Serial job script:

- #!/bin/bash
- #PBS -o job.out
- #PBS -j eo
- #PBS -l walltime=0:10:00
- #PBS -l select=1:ncpus=1
- #PBS -A <my_account>
- cd \$CINECA_SCRATCH/test/
- module load R
- R < data > out.txt

Job script examples OpenMP job script

- #!/bin/bash
- #PBS -l walltime=1:00:00
- #PBS -l select=1:ncpus=8:mpiprocs=1
- #PBS -o job.out
- #PBS -e job.err
- #PBS -A <my_account>
- cd \$PBS_O_WORKDIR
- module load intel
- ./myprogram

Job script examples MPI Job Scripts

#!/bin/bash

#PBS -l walltime=1:00:00

#PBS -l select=2:ncpus=10:mpiprocs=10

#PBS -o job.out

#PBS -e job.err

#PBS -A <my_account>

cd \$PBS_O_WORKDIR

module load intel intelmpi

mpirun ./myprogram < myinput > myoutput

```
Job script examples
MPI+OpenMP job script
#!/bin/bash
#PBS - I walltime = 1:00:00
#PBS -l select=2:ncpus=8:mpiprocs=1
#PBS -o job.out
#PBS -e job.err
#PBS -A <my account>
cd $PBS O WORKDIR
module load intel intelmpi
mpirun ./myprogram
```

Array Jobs

- An efficient way to perform multiple similar runs, either serial or parallel, by submitting a unique job.
 - The maximum allowed number of runs in an array job is 10.000.

```
#!/bin/bash
#PBS -N job_array
#PBS -l select=1:ncpus=1:mpiprocs=1
#PBS -l walltime=12:00:00
#PBS -A <account_name>
#PBS -J 1-20
#PBS -r y
```

cd \$PBS_O_WORKDIR

•

../exe input\$PBS_ARRAY_INDEX.txt

PBS commands

qsub

qsub <job_script>

Your job will be submitted to the PBS scheduler and executed when there will be nodes available (according to your priority and the queue you requested)

qstat

qstat -u \$USER

Shows the list of all your scheduled jobs, along with their status (idle, running, closing, ...) Also, shows you the job id required for other qstat options

PBS commands

qstat

qstat -f <job_id>

Provides a long list of informations for the job requested. In particular, if your job isn't running yet, you'll be notified about its estimated start time or, if you made an error on the job script, you will learn that the job won't ever start

qdel

qdel <job_id>

Removes the job from the scheduled jobs by killing it

PBS commands

qalter

qalter -l <resources> <job_id>

Alter one or more attributes of one or more PBS batch jobs

More information about these commands are available with the **man** command

PSB Scheduler on MARCONI

- it is possible to submit jobs of different types, using only one "routing" queue:
- just declare how many resources you need and your job will be directed into the right queue with a correct priority.
- The maximum number of nodes that you
- can request is 167 with a maximum walltime of 24 hours
- If you do not specify the walltime, a default value of 30 minutes will be assumed.
- The maximum amount of memory for each node is 120 GB.

PSB Scheduler on MARCONI

Queue I	Name	ncpus	Max. walltime	Max. running jobs per user	Notes	Priority
	debug	min = 1 max = 72	30 min	5	queue specification NOT required	70
route	prod	min = 1 max = 2433	12 h	20	queue specification NOT required	50
	bigprod	min = 2433 max = 6000	24 h	[*]	queue specification NOT required	60
keyproject		min = 1 max = 38	180 h	4	ask to superc@cineca.it to be requested with: #PBS –q keyproject	100
archive [**]		1	4 h	8	to be requested with: #PBS -q archive	30

[*] max_run_cpus = 12.000
[**] defined on the login nodes

Job's priority on MARCONI

- The PBS scheduler estimates the job priority by taking into account the following parameters:
 - prj_priority = 0 [default_value]
 - prj_quota_ratio = (total_budget / total_no_of_months) * 100
 - **resources** requested:
 - ncpus

•

- · walltime
- eligible time

Usage of archive queue Serial job script with specific queue request: #!/bin/bash **#PBS** -o job.out **#PBS** -j eo #PBS -l walltime=0:10:00 #PBS -l select=1:ncpus=1 #PBS -A <my_account>

#PBS -q archive

#

cd \$CINECA_SCRATCH/test/ cp /gss/gss_work/DRES_my/* .

Graphic session

- It is recommended the usage of RCM, Remote Connection Manager, availave for OOSS:
 - windows
 - mac
 - linux
- Client/server application
 every time you interact with the application, server
 side has to perform some operations that can take
 some time depending on bandwidth and latency of
 your Internet connection and workload of the
 clusters.
- Available at:

https://hpc-forge.cineca.it/svn/RemoteGraph/branch/multivnc/build/dist/Releases/?p=817

Start the application double clicking on the application icon and press the "NEW LOGIN" button:

٠

٠

Insert the host name or select a previous session from the drop-down menu, your username and password, then press "Login":

· Create a new display:

8 - D Remote C	onnection Manager - CINECA	
LOGIN MANAGER	rmucci00@login.plx.cineca.it	
		No display available. Press 'NEW DISPLAY' to create a new one.
NEW LOGIN		
OPEN		NEW DISPLAY REFRESH
1	Idle	

 A new window will appear to allow users to set:

🛞 💷 Remote Connection Manager -									
Session name: my session									
Select queue: visual 🔤									
Display size: 1600x1000 🔤									
1600×1000									
OK Cancel									

· Connect to a display:

IN MANAGER	rmucci	i00@login.plx.c	ineca.it								
					STATE	SESSION NAME	CREATED	NODE	DISPLAY	USERNAME	TIMELEFT
EW LOGIN		CONNECT	SHARE	KILL	valid	my new session	20140526-12:40:34	node097	4	rmucci00	11:59:48
OPEN						NEW DISPL	AY REFRESH				

Display information:

٠

OGIN MANAGER	rmucci00@login.plx.c	ineca.it								
				STATE	SESSION NAME	CREATED	NODE	DISPLAY	USERNAME	TIMELEFT
NEW LOGIN	CONNECT	SHARE	KILL	valid	my new session	20140526-12:40:34	node097	4	rmucci00	11:59:48
OPEN					NEW DISPL	AY REFRESH				

• Share a display:

GIN MANAGER	rmucci00@login.plx.c	ineca.it								
				STATE	SESSION NAME	CREATED	NODE	DISPLAY	USERNAME	TIMELEFT
NEW LOGIN	CONNECT	SHARE	KILL	valid	my new session	20140526-12:40:34	node097	4	rmucci00	11:59:48
OPEN					NEW DISPL	AY REFRESH				

 Send the saved file to the users who needs to access to the shared display. To connect to a shared display click on the "OPEN" button and select the received .vnc file:

• Kill a display:

COGIN MANAGER	connection Manager - CINECA rmucci00@login.plx.cineca.it			_	_				
(Internet)			STATE	SESSION NAME	CREATED	NODE	DISPLAY	USERNAME	TIMELEFT
NEW LOGIN	CONNECT SHARE	KILL	valid	my new session	20140526-12:40:34	node097	4	rmucci00	11:59:48
OPEN				NEW DISPL	AY REFRESH				
	Idle								

Just press "**KILL**" beside the display you don't want to use anymore, and it will removed from the list of the available displays. This operation can take some time, depending on the workload of the clusters.

Note that by pressing "KILL", the relative display will be not reachable anymore and you will lost not saved data.

Example of job execution using Totalview within RCM

- All the software that comes with a graphic user interface (GUI) can be used within a RCM session
- With respect to other GUIs that can be run on RCM, Totalview is a little peculiar and must be run directly on the nodes that execute the parallel code

Example of job execution using Totalview within RCM

- establish connection through RCM with MARCONI
- open a terminal and prepare the job script

```
#!/bin/bash
#PBS -l walltime=00:30:00
#PBS -l select=1:ncpus=4:mpiprocs=4:mem=15gb
#PBS -N totalview
#PBS -o job.out
#PBS -o job.out
#PBS -e job.err)
#PBS -A your_account_here
```

module load autoload <openmpi|intelmpi> program module load totalview cd \$PBS_O_WORKDIR totalview mpirun -a poisson.exe -n 4 #select the compiler used to debug your

Example of job execution using Totalview within RCM

Submit the job

٠

Submit the job and pass the variable DISPLAY to the execution nodes.

qsub -v DISPLAY=`hostname`\$DISPLAY job.sh

PS: In a terminal opened inside RCM, the shortcut to paste text copied elsewhere is "Ctrl+Shift+Insert"