
Introducing the Intel Knights Landing (KNL) architecture

Knights Landing Overview

Stand-alone, Self-boot CPU

Up to 72 new Silvermont-based cores

4 Threads per core. 2 AVX 512 vector units

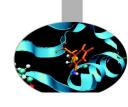
Binary Compatible¹ with Intel® Xeon® processor

2-dimensional Mesh on-die interconnect

MCDRAM: On-Package memory: 400+ GB/s of BW²

DDR memory

Intel® Omni-path Fabric


3+ TFLops (DP) peak per package

~3x ST performance over KNC

It's not a GPU. It's not an accelerator. It's very different from a KNC.

Many Trailblazing Improvements in KNL

Improvements	What/Why
Self Boot Processor	No PCIe bottleneck
Binary Compatibility with Xeon	Runs all legacy software. No recompilation.
New Core: SLM based	~3x higher ST performance over KNC
Improved Vector density	3+ TFLOPS (DP) peak per chip
AVX 512 ISA	New 512-bit Vector ISA with Masks
Scatter/Gather Engine	Hardware support for gather and scatter
New memory technology: MCDRAM + DDR	Large High Bandwidth Memory → MCDRAM Huge bulk memory → DDR
New on-die interconnect: Mesh	High BW connection between cores and memory

Intel® AVX Technology

AVX	AVX2
256-bit basic FP	Float16 (IVB 2012)
16 registers	256-bit FP FMA
NDS (and AVX128)	256-bit integer
Improved blend	PERMD
MASKMOV	Gather
Implicit unaligned	

SNB HSW

AVX-512

512-bit FP/Integer

32 registers

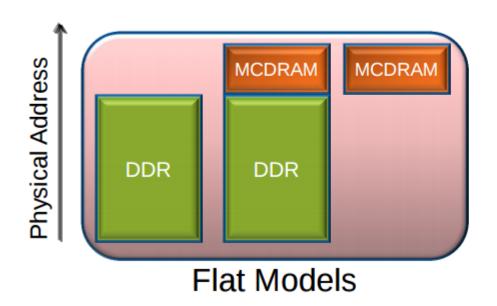
8 mask registers

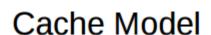
Embedded rounding Embedded broadcast

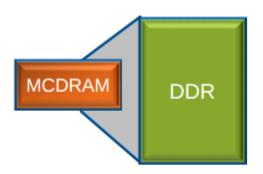
Scalar/SSE/AVX "promotions"

HPC additions

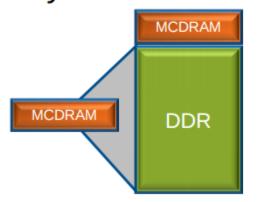
Gather/Scatter



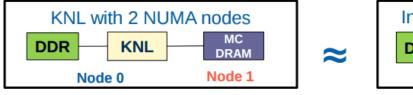


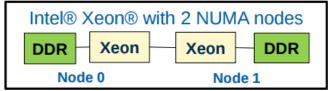


3 Memory Modes


- Mode selected at boot
- MCDRAM-Cache covers all DDR

Hybrid Model

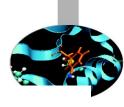




	DDR Only	MCDRAM as Cache	MCDRAM Only	Flat DDR + MCDRAM	Hybrid
Software Effort	No software changes required			Change allo bandwidth-ci	
Performance	Not peak performance.		Best performance.		e.

MCDRAM exposed as a separate NUMA node

Memory allocated in DDR by default


Keeps low bandwidth data out of MCDRAM.

Apps explicitly allocate important data in MCDRAM

- "Fast Malloc" functions: Built using NUMA allocations functions
- "Fast Memory" Compiler Annotation: For use in Fortran.

Summary

- Knights Landing (KNL) is the first self-boot Intel® Xeon Phi™ processor
- Many improvements for performance and programmability
 - Significant leap in scalar and vector performance
 - Significant increase in memory bandwidth and capacity
 - Binary compatible with Intel® Xeon® processor
- Common programming models between Intel® Xeon® processor and Intel® Xeon Phi™ processor
- KNL offers immense amount of parallelism (both data and thread)
 - Future trend is further increase in parallelism for both Intel® Xeon® processor and Intel® Xeon Phi™ processor
 - Developers need to prepare software to extract full benefits from this trend

