24" Summer
School on
PARALLEL
COMPUTING

Introduction to MPI Part |l
Collective Communications
and communicators

SuperComputing Applications and Innovation Department

\

CINECA

Summer
4B School on

N PARALLEL
COMPUTING

Collective communications

PP

CINECA

R3I1T

- 3% %3
$333%

Summer
School on

COMPUTING

Collective communications is a method of communication which
involves all processes in a communicator:

All processes (in a communicator) call the collective function
Collective communications will not interfere with point-to-point
All collective communications are blocking (in MPI 2.0)

No tags are required

Receive buffers must match in size (number of bytes)

It's a safe communication mode

CINECA

Summer
School on

COMPUTING

Communications involving a group of processes. They are called by all the
ranks involved in a communicator (or a group) and are of three types:

* Synchronization (e.g. Barrier)

* Data Movement (e.g. Broadcast or Gather/scatter)
* Global Computation (e.g. reductions)

CINECA \

Summer
School on
PARALLEL
COMPUTING

MPI Barrier
It stops all processes within a communicator until they are synchronized

int MPI_Barrier(MPI_Comm comm);

& L, &

UL

barrier barrier

FD Pl P: Fl P,i

|

CINECA

Summer
School on

COMPUTING

MPI Broadcast

Int MPI_Bcast (void *buf, int count, MPI_Datatype datatype, int root,
MPI_Comm comm)

Note that all processes must specify the same root and same comm.

CINECA

Summer
School on

Example COMPUTING

PROGRAM broad cast

INCLUDE ’'mpif.h’

INTEGER ierr, myid, nproc, root
INTEGER status (MPI STATUS SIZE)
REAL A (2)

CALL MPI_INIT(ierr)

CALL MPI COMM SIZE (MPI COMM WORLD, nproc, 1ilerr)
CALL MPI COMM RANK (MPI COMM WORLD, myid, ierr)

root = 0

IF(myid .EQ. 0O) THEN
a(l) = 2.0
a(2) = 4.0

END IF

CALL MPI BCAST(a, 2, MPI REAL, 0, MPI COMM WORLD, ierr)
WRITE (6,*) myid, ': a(l)=", a(l), "a(2)=", al(2)

CALL MPI FINALIZE (i1err)

END PROGRAM broad cast

CINECA

CINECA \

Summer
School on

MPI Gather

COMPUTING

Each process, root included, sends the content of its send buffer to the root process.
The root process receives the messages and stores them in the rank order. recvent

parameter is the count of elements received per process, not the total summation of
counts from all processes.

int MPI_Gather(void *sendbuf, int sendcnt, MPI_Datatype sendtype,
void *recvbuf, int recvent, MPI_Datatype recvtype,
int root, MPI_Comm comm)

- = - -:-
7 7

= =

Summer
School on

The root sends a message. The message is split into n equal segments,
the i-th segment is sent to the i-th process in the group and each process
receives this message.

int MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype,
void *recvbuf, int recvent, MPI_Datatype recvtype, int root,
MPI_Comm comm)

CINECA \

Summer
School on

COMPUTING

There are possible combinations of collective functions.

For example,

MPI Allgather

is a combination of a gather + a broadcast

int MPI_Allgather(void *sendbuf, int sendcount, MPI _Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

-

CINECA

CINECA

Summer
School on

COMPUTING

For many collective functions there are extended functionalities.
For example it’s possible to define the length of arrays to be scattered or gathered
with. Sendbuf, sendcounts significant only at root.

int MPI_Scatterv(const void *sendbuf, const int *sendcounts, const int *displs,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

Proc. 0

Proc. 3 MPI_Scatterw

Summer
School on

COMPUTING

MPI_Gatherv

Gathers into specified locations from all processes in a group. Recvbuf, Recvcounts
significant only at root.

int MPI_Gatherv(const void *sendbuf, int sendcount, MPIl_Datatype sendtype,
void *recvbuf, const int *recvcounts, const int *displs,
MPI_Datatype recvtype, int root, MPl_Comm comm)

CINECA

Summer
School on

MPI All to all COMPUTING

This function makes a redistribution of the content of each process in a

way that each process know the buffer of all others. It is a way to

implement the matrix data transposition.

int MPI_Alltoall(void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

- a2 a3 a4

b1 b2 b3 b4 a2 b2 c2 d2

- c2 c3 c4 a3 b3 c3 d3
- d2 d3 d4 a4 b4 c4 d4

Summer
School on

COMPUTING

Reduction

Reduction operations permits us to
* Collect data from each process

* Reduce the data to a single value

* Store the result on the root process (MPIl_Reduce) or
Store the result on all processes (MPI_Allreduce)

CINECA

Predefined reduction operations

CINECA

MPI op Function

MPI_ MAX Maximum

MPI_MIN Minimum

MPI SUM Sum

MPI PROD Product

MPI _LAND Logical AND

MPI BAND Bitwise AND

MPI LOR Logical OR

MPI BOR Bitwise OR

MPI LXOR Logical exclusive OR
MPI BXOR Bitwise exclusive OR
MPI_ MAXLOC Maximum and location
MPI_ MINLOC Minimum and location

Summer
School on
PARALLEL
COMPUTING

Summer
School on

COMPUTING

PROGRAM reduce

INCLUDE ’‘mpif.h’

INTEGER ierr, myid, nproc, root
REAL A(2), res(2)

CALL MPI_INIT(ierr)

CALL MPI COMM SIZE (MPI COMM WORLD, nproc, ierr)
CALL MPI COMM RANK (MPI COMM WORLD, myid, ierr)

root = 0
a(l) = 2.0
a(2) = 4.0

CALL MPI_REDUCE(a, res, 2, MPI REAL, MPI_SUM, root,

MPI COMM WORLD, ierr)

ITF(myid .EQ. 0) THEN

WRITE (6, *) myid, ’': res(l)=", res(l), 'res(2)=", res(2)

END IF

CALL MPI_FINALIZE(ierr)

END

O : res(l)= 4.000000 res(2)= 8.000000

CINECA \

Summer
School on

Performance issues COMPUTING

* Hardware vendors work hard to provide optimized
collective calls but performances will vary according to
Implementation.

* Because of forced synchronization, collective
communications may not always be the best solution.

Some studies show that around 80% transfer time is in collectives.

CINECA

Summer
4B School on

N PARALLEL
COMPUTING

MPI communicators and groups

Summer
School on

COMPUTING

Many users are familiar with the mostly used communicator:
MPI_COMM_WORLD
A communicator can be thought as a handle to a group.
- a group is a ordered set of processes
- each process is associated with a rank

- ranks are contiguous and start from zero

Groups allow collective operations to be operated on a subset of processes

The group routines are primarily used to specify which processes should be
used to construct a communicator.

CINECA

Summer
School on

COMPUTING

Intracommunicators

are used for communications within a single group

Intercommunicators

are used for communications between two disjoint groups

CINECA

Summer
School on

COMPUTING

Group management:

All group operations are local (no communication is needed)

- Groups are not initially associated with communicators

- Groups can only be used for message passing within a communicator
- We can access groups, construct groups, destroy groups, i.e.

groups/communicators are dynamic - they can be created and destroyed
during program execution.

CINECA

Summer
School on

Using MPI Groups COMPUTING

Typical usage:

1. Extract handle of global group from MPI_COMM_WORLD using
MPI_Comm_group

2.Form new group as a subset of global group using MPI_Group_incl

3. Create new communicator for new group using MPI_Comm_ create

4.Determine new rank in new communicator using MPl_Comm_rank

5.When finished, free up new communicator and group (optional) using
MPI_Comm_free and MPI_Group_free

CINECA

Summer
School on

COMPUTING

Group constructors

Group constructors are used to create new groups from existing ones (initially
from the group associated with MPI_ COMM_WORLD; you can use
mpi_comm_group to get this).

Group creation is a local operation: no communication is needed

After the creation of a group, no communicator has been associated to this
group, and hence no communication is possible within the new group

CINECA

Summer
f School on

e/ PARALLEL

Group Creation COMPUTING

MPI_COMM_WORLD

comm1 comm?2

Summer
School on

COMPUTING

Group accessors:

- MPI_GROUP_SIZE
This routine returns the number of processes in the group
- MPI_GROUP_RANK

This routine returns the rank of the calling process inside a given group

CINECA

Summer
School on

- MPI_COMM_GROUP(comm,group,ierr) COMPUTING
This routine returns the group associated with the communicator comm

- MPI_GROUP_UNION(group_a, group b, newgroup, ierr)

This returns the ensemble union of group_a and group_b

- MPI_GROUP_INTERSECTION(group_a, group_b, newgroup, ierr)

This returns the ensemble intersection of group _a and group b

- MPI_GROUP_DIFFERENCE(group a, group_b, newgroup, ierr)

This returns in newgroup all processes in group_a that rare not in group_Db,
ordered as in group_a

CINECA

Summer
School on

COMPUTING

- MPI_GROUP_INCL(group, n, ranks, newgroup, ierr)

This routine creates a new group that consists of all the n processes with ranks
ranks[0]... ranks[n-1]

Example:

group = {a,b,c,d,e,f,g,h,i,j}
n=>5

ranks = {0,3,8,6,2}

newgroup = {a,d,i,g,c}

CINECA \

Summer
School on

COMPUTING

- MPI_GROUP_EXCL(group,n,ranks,newgroup,ierr)

This routine returns a newgroup that consists of all the processes in the group
after removing processes with ranks: ranks[0]..ranks[n-1]

Example:

group = {a,b,c,d,e,f,g,h,i,j}
n=>5

ranks = {0,3,8,6,2}

newgroup = {b,e,f h,j}

CINECA \

Summer
School on

COMPUTING

Communicator management

Communicator access operations are local, not requiring interprocess
communication

Communicator constructors are collective and may require interprocess
communications

We will cover in depth only intracommunicators.

CINECA \

Summer
School on

] COMPUTING
Communicator accessors

- MPI_COMM_SIZE(comm,size,ierr)
Returns the number of processes in the group associated with the comm

- MPI_COMM_RANK(comm,rank,ierr)
Returns the rank of the calling process within the group associated with the
comm

- MPI_COMM_COMPARE(comm1,comm2,result,ierr)
Returns:
- MP1_IDENT: if comm1 and comm2 are the same handle
- MP1_CONGRUENT: Indicates that the underlying groups have identical
members in the same rank order. These communicators differ only by context.
- MP1_SIMILAR: if the groups associated with comm1 and comm2 have
the same members but in different rank order
- MP1_UNEQUAL otherwise

CINECA

Summer
School on

COMPUTING

Communicator constructors

- MPI_COMM_DUP(comm, newcomm,ierr)
This returns a communicator newcomm identical to the communicator comm

- MPI_COMM_CREATE(comm, group, newcomm,ierr)

This collective routine must be called by all the process involved in the group
associated with comm. It returns a new communicator that is associated with
the group. MPI_COMM _NULL is returned to processes not in the group.
Note that group must be a subset of the group associated with comm!

CINECA

CINECA

Summer
School on

COMPUTING

#include "mpi.h"
#include <stdio.h>
int main(int argc,char **argv) {
int rank, new_rank, nprocs, sendbuf, recvbuf, ranks1[4]={0,1,2,3}, ranks2[4]={4,5,6,7};
MPI1_Group orig_group, new_group;
MPI1_Comm new_comm,;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
sendbuf = rank;
MPI1_Comm_group(MPI_COMM_WORLD, &orig_group);
if (rank < nprocs/2)
MPI_Group_incl(orig_group, nprocs/2, ranks1, &new_group);
else
MPI_Group_incl(orig_group, nprocs/2, ranks2, &new_group);
MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);
MPI_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, new_comm);
MPI_Group_rank (new_group, &new_rank);
printf("rank= %d newrank= %d recvbuf= %d\n",rank,new_rank,recvbuf);
MPI_Finalize();
return O;

rank= 2 newrank= 2 recvbuf= 6
rank= 0 newrank= 0 recvbuf= 6
rank= 1 newrank= 1 recvbuf= 6
rank= 7 newrank= 3 recvbuf= 22
rank= 5 newrank= 1 recvbuf= 22
rank= 3 newrank= 3 recvbuf= 6
rank= 4 newrank= 0 recvbuf= 22

rank= 6 newrank= 2 recvbuf= 22

Summer
School on

COMPUTING

- MPI_COMM_SPLIT(comm, color, key, newcomm, ierr)

This routine creates as many new groups and communicators as there are
distinct values of color.

(processes in the same color are in the same communicator).

The rankings in the new groups are determined by the value of the key.

MPI_UNDEFINED is used as the color for processes to not be included in any
of the new groups

CINECA

Summer
School on

COMPUTING

rank 9 11 |12 183 |4 [B |6 |7 10
> alb|c|d |e [f |g |h K
CooF' (LY 13 |1 (4 [B/|F (3 [3 3
Key 10 (1 (2 (3 |1 |9 |3 |8 0

Both process a and j are returned MPI COMM_ NULL
3 new groups are created

L8

{tk,b, e, g, h}

5

Drop U, count number of colors, for each colors select keys in
CINECA \Q[der.

Summer
School on

COMPUTING

MPI provides functions to manage and to create groups and
communicators.

MPI_comm_split, for example, creates a communicator...

1f (myid%2==0) {
color=1;
}else{
color=2;
}
MPI COMM SPLIT(MPI COMM WORLD,color,myid, &subcomm) ;
MPI COMM RANK (subcomm,mynewid) ;
printf(“rank in MPICOM ORLD %d”,myid,”rank in Subcomm %d”,mynewid,color);

| am rank 2 in MPI_COMM_WORLD, but 1 in Comm 1.
| am rank 7 in MPI_COMM_WORLD, but 3 in Comm 2.
| am rank 0 in MPI_COMM_WORLD, but 0 in Comm 1.
| am rank 4 in MPI_COMM_WORLD, but 2 in Comm 1.
| am rank 6 in MPI_COMM_WORLD, but 3 in Comm 1.
| am rank 3 in MPI_COMM_WORLD, but 1 in Comm 2.
| am rank 5 in MPI_COMM_WORLD, but 2 in Comm 2.
| am rank 1 in MPI_COMM_WORLD, but 0 in Comm 2.
CINECA

For a 2D logical grid, create subgrids of rows and columns

Summer

School on

_ COMPUTING
int MPI_Comm_split(MPI_Comm old_comm, int color, int key, MP|_Comm *new_comm)

c**logical 2D topology with nrow rows and mcol columns

irow = Iam/mcol
Jjcol = mod (Iam,
commZ2D =

logical row number
mcol) logical column number

MPI COMM WORLD

call MPI Comm split(commz2D, irow, jcol, row comm, lerr)
call MPI Comm split(commz2D, jcol, irow, col comm, ilerr)

Figure a.
2D logical Grid

) 1)

2)

) (3)
CINEC

Figure h.

3 Row Subgrids

(0)
(0)

f2)
)

)
(0

(1)
)

(3)
@

(3)
)

Figure c.

2 Column Subgrids

(0
(0

(2
1)

)
2

(1)
)

(3)
@

(3)
2

Jam

k2

L

row

Jjeal

Summer
School on

COMPUTING

Destructors

The communicators and groups from a process’ viewpoint are just handles.
Like all handles, there is a limited number available: you could (in principle) run
out!

- MPI_GROUP_FREE(group, ierr)
- MPI_COMM_FREE(comm,ierr)

CINECA \

Summer
School on

COMPUTING

Intercommunicators
Intercommunicators are associated with 2 groups of disjoint processes.
Intercommunicators are associated with a remote group and a local group

The target process (destination for send, source for receive) is its rank in the
remote group.

A communicator is either intra or inter, never both

CINECA

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38

