
Mirko Cestari – m.cestari@cineca.it

Alessandro Marani – a.marani@cineca.it
SuperComputing Applications and Innovation Department

Introduction to EURORA
Parallel & production environment

February 23, 2016

mailto:m.cestari@cineca.it
mailto:a.marani@cineca.it

EURORA CHARACTERISTICS

Model: Eurora prototype

Architecture: Linux Infiniband Cluster

Processors Type:

- Intel Xeon (Eight-Core SandyBridge)

E5-2658 2.10 GHz (Compute)

- Intel Xeon (Eight-Core SandyBridge)

E5-2687W 3.10 GHz (Compute)

- Intel Xeon (Esa-Core Westmere) E5645

2.4 GHz (Login)

Number of nodes: 64 Compute + 1 Login

Number of cores: 1024 (compute) + 12

(login)

accelerators: 64 nVIDIA Tesla K20 (Kepler) +

64 Intel Xeon Phi (MIC)

RAM: 1.1 TB (16 GB/Compute node +

32GB/Fat node)

OS: RedHat CentOS release 6.3, 64 bit

EURORA CHARACTERISTICS
• Compute Nodes: 64 16-core compute cards (nodes).

• 32 nodes contain 2 Intel(R) Xeon(R) SandyBridge 8-core E5-2658

processors, with a clock rate of about 2 GHz,

• 32 nodes contain 2 Intel(R) Xeon(R) SandyBridge 8-core E5-2687W

processors, with a clock rate of about 3 GHz.

– 58 compute nodes have 16GB of memory, but the allocatable memory on the

node is 14 GB. The remaining 6 nodes (with processors at 3 GHz clock rate)

have 32 GB RAM.

– The Eurora cores are capable of 8 floating point operations per cycle. Half of

the compute cards (the ones with a 3GHz clock rate) have two nVIDIAK20

(Kepler) GPU cards installed. The other half (the 2GHz ones) have two Intel

Xeon Phi accelerators installed.

• Login node: 2 Intel(R) Xeon(R) 6-core Westmere E5645 processors at 2.4 GHz.

• Network: all the nodes are interconnected through a custom Infiniband network,

allowing for a low latency/high bandwidth interconnection.

EURORA IN GREEN500

The Green500 is a ranking that classifies the
Top500 supercomputers in terms of

“energy efficiency”

(best ratio performance/power consumption)

In June 2013 ranking, EURORA has been proclaimed the greenest supercomputer in the world!!

In the last ranking (Nov 2015), unfortunately EURORA didn’t make the Top500.

How to log in

• Establish a ssh connection

ssh <username>@login.eurora.cineca.it

• Remarks:

– ssh available on all linux distros

– Putty (free) or Tectia ssh on Windows

– secure shell plugin for Google Chrome!

– login nodes are swapped to keep the load balanced

– important messages can be found in the message of the day

• Check the user guide!

http://www.hpc.cineca.it/content/eurora-user-guide

• Establish a ssh connection

ssh <username>@login.eurora.cineca.it

• Remarks:

– ssh available on all linux distros

– Putty (free) or Tectia ssh on Windows

– secure shell plugin for Google Chrome!

– login nodes are swapped to keep the load balanced

– important messages can be found in the message of the day

• Check the user guide!

http://www.hpc.cineca.it/content/eurora-user-guide

http://www.hpc.cineca.it/content/eurora-user-guide
http://www.hpc.cineca.it/content/eurora-user-guide

WORK ENVIRONMENT

$HOME:

Permanent, backed-up, and local to EURORA.

5 Gb of quota. For source code or important input files.

$CINECA_SCRATCH:

Large, parallel filesystem (GPFS).

No quota. Run your simulations and calculations here.

use the command cindata to get info on your disk occupation

http://www.hpc.cineca.it/content/data-storage-and-filesystems-0

http://www.hpc.cineca.it/content/data-storage-and-filesystems-0

LAUNCHING JOBS

As in every HPC cluster, EURORA allows you to run your

simulations by submitting “jobs” to the compute nodes

Your job is then taken in consideration by a scheduler, that adds

it to a queuing line and allows its execution when the resources

required are available

The operative scheduler in EURORA is PBS

PBS JOB SCRIPT SCHEME

The scheme of a PBS job script is as follows:

#!/bin/bash

#PBS keywords

variables environment

execution line

PBS JOB SCRIPT EXAMPLE
#!/bin/bash

#PBS -N myname

#PBS -o job.out

#PBS -e job.err

#PBS -m abe

#PBS -M user@email.com

#PBS -l walltime=00:30:00

#PBS -l select=1:ncpus=16:mpiprocs=8:mem=10GB

#PBS -q parallel

#PBS -A <my_account>

#PBS -W group_list=<my_account>

echo “I’m working on EURORA!”

PBS KEYWORD ANALYSIS - 1

#PBS -N myname

Defines the name of your job

#PBS -o job.out

Specifies the file where the standard output is directed

(default=jobname.o<jobID>)

#PBS -e job.err

Specifies the file where the standard error is directed

(default=jobname.e<jobID>)

#PBS -m abe (optional)

Specifies e-mail notification. An e-mail will be sent to you when

something happens to your job, according to the keywords you

specified (a=aborted, b=begin, e=end, n=no email)

#PBS -M user@email.com (optional)

Specifies the e-mail address for the keyword above

mailto:user@email.com

PBS KEYWORD ANALYSIS - 2

#PBS -l walltime=00:30:00

Specifies the maximum duration of the job. The maximum time allowed

depends on the queue used (more about this later)

#PBS -l select=1:ncpus=16:mpiprocs=8:mem=10GB

Specifies the resources needed for the simulation.

select – number of compute nodes (“chunks”)

ncpus – number of cpus per node (max. 16)

mpiprocs – number of MPI tasks per node (max=ncpus)

mem – memory allocated for each node (default=850MB, max.=14 GB)

You can require up to 32GB but have to wait more because you will be

directed on the special high memory nodes

NEVER ask for 15GB, or the job won’t run properly!

QUEUING SYSTEM

#PBS -q parallel

Specifies the queue requested for the job. Since EURORA

is out of production, the only available queue is “parallel”.

#PBS -W group_list=train_cmpB2016

Specifies that you are member of a group authorized to use
the parallel queue. Only some groups are authorized,
because EURORA is out of production. This keyword
is useless in regular environments (such as
GALILEO)

ACCOUNTING SYSTEM

#PBS -A <my_account>

Specifies the account to use the CPU hours from.

As an user, you have access to a limited number of CPU hours to spend. They are not
assigned to users, but to projects and are shared between the users who are

working on the same project (i.e. your research partners). Such projects are called
accounts and are a different concept from your username.

You can check the status of your account with the command “saldo -b”, which tells you

how many CPU hours you have already consumed for each account you’re assigned

at (a more detailed report is provided by “saldo -r”).

ACCOUNT FOR THE COURSE

The account provided for this school is

“train_cmpB2016”

(you have to specify it on your job scripts).

It will expire the Monday after the end of the

school and is shared between all the students;

there are plenty of hours for everybody, but

don’t waste them!

#PBS -A train_cmpB2016

PBS COMMANDS
After the job script is ready, all there is left to do is to submit it:

qsub
qsub <job_script>

Your job will be submitted to the PBS scheduler and executed
when there will be nodes available (according to your priority and
the queue you requested)

qstat
qstat
qstat -u $USER

Shows the list of all your scheduled jobs, along with their status
(idle, running, closing, …) Also, shows you the job id required for
other PBS commands

PBS COMMANDS

qstat
qstat -f <job_id>

Provides a long list of informations for the job requested.
In particular, if your job isn’t running yet, you'll be notified about its
estimated start time or, if you made an error on the job script, you

will learn that the job won’t ever start

qdel

qdel <job_id>

Removes the job from the scheduled jobs by killing it

AN EXAMPLE OF A PARALLEL JOB

#!/bin/bash

#PBS -l walltime=1:00:00

#PBS -l select=2:ncpus=16:mpiprocs=4

#PBS -o job.out

#PBS -e job.err

#PBS -q parallel

#PBS -A <my_account>

#PBS -W group_list=<my_account>

cd $PBS_O_WORKDIR # points to the folder you are actually working into

module load autoload openmpi

mpirun –np 8 ./myprogram

MODULE SYSTEM
• All the optional software on the cluster is made available through

the "module" system

• provides a way to rationalize software and its environment

variables

• Modules are divided in 2 profiles

• profile/base (default - stable and tested modules)

• profile/advanced (software not yet tested or not well

optimized)

• Each profile is divided in 4 categories

• compilers (GNU, intel, openmpi)

• libraries (e.g. LAPACK, BLAS, FFTW, ...)

• tools (e.g. Scalasca, GNU make, VNC, ...)

• applications (software for chemistry, physics, ...)

MODULE SYSTEM

• CINECA’s work environment is organized in modules, a set of

installed libraries, tools and applications available for all users.

• “loading” a module means that a series of (useful) shell

environment variables will be set

• E.g. after a module is loaded, an environment variable of the

form “<MODULENAME>_HOME” is set

MODULE COMMANDS

COMMAND DESCRIPTION

module av list all the available modules

module load <module_name(s)> load module <module_name>

module list list currently loaded modules

module purge unload all the loaded modules

module unload <module_name> unload module <module_name>

module help <module_name> print out the help (hints)

module show <module_name> print the env. variables set when

loading the module

MODULE PREREQS AND CONFLICTS

Some modules need to be loaded after other modules they

depend from (e.g.: parallel compiler depends from basic

compiler). You can load both compilers at the same time

with “autoload”

You may also get a “conflict error” if you load a module not

suited for working together with other modules you already

loaded (e.g. different compilers). Unload the previous module

with “module unload”

COMPILING ON EURORA

• On EURORA you can choose between three different

compiler families: gnu, intel and pgi

• You can take a look at the versions available with “module

av” and then load the module you want.

module load intel # loads default intel compilers suite

module load intel/co-2011.6.233--binary # loads specific

compilers suite

GNU INTEL PGI

Fortran gfortran ifort pgf77

C gcc icc pgcc

C++ g++ icpc pgcc

Get a list of the

compilers flags with

the command man

PARALLEL COMPILING ON EURORA
• MPI libraries available: OpenMPI/IntelMPI

– The library and special wrappers to compile and link the personal programs are

contained in several "openmpi" modules, one for each supported suite of

compilers

• Load a version of OpenMPI:

module av openmpi

openmpi/1.6.5--pgi--14.1

openmpi/1.7.4--intel--cs-xe-2013--binary

openmpi/1.8.3--gnu--4.8.0

openmpi/1.8.3-threadmultiple--gnu--4.8.0

module load autoload openmpi/1.8.3—gnu--4.8.0

Load a version of IntelMPI (in profile/advanced):
module av intelmpi

intelmpi/4.1.0—binary

intelmpi/4.1.1—binary

intelmpi/4.1.2—binary

intelmpi/5.0.1--binary

module load autoload intelmpi/5.0.1--binary

PARALLEL COMPILING ON EURORA

OPENMPI/INTELMPI

Fortran90 mpif90

C mpicc

C++ mpiCC

Compiler flags are the same of the basic compiler (since

they are basically MPI wrappers of those compilers)

OpenMP is provided with following compiler flags:

gnu: -fopenmp

intel : -openmp

pgi: -mp

JOB SCRIPT FOR PARALLEL EXECUTION

Let’s take a step back…

#PBS -l select=2:ncpus=16:mpiprocs=4

This example line means “allocate 2 nodes with 16 CPUs each, and 4 of

them should be considered as MPI tasks”

So a total of 32 CPUs will be available. 8 of them will be MPI tasks, the

others will be OpenMP threads (4 threads for each task).

In order to run a pure MPI job, ncpus must be equal to mpiprocs.

EXECUTION LINE IN JOB SCRIPT

mpirun -np 8 ./myprogram

Your parallel executable is launched on the compute nodes via the

command “mpirun”.

With the “–np” flag you can set the number of MPI tasks used for the

execution. The default is the maximum number allowed by the

resources requested.

WARNING:

In order to use mpirun, openmpi-intelmpi has to be loaded.

module load autoload openmpi

DEVELOPING IN COMPUTE NODES:

INTERACTIVE SESSION

It may be easier to compile and develop directly in the compute nodes, without

recurring to a batch job.

For this purpose, you can launch an interactive job to enter inside a compute node by

using PBS.

The node will be reserved to you as it was requested by a regular batch job

Basic interactive submission line:
qsub –I –l select=1 –A <account_name> (-q <queue_name>)

Other PBS keyword can be added to the line as well (walltime, resources,…)

