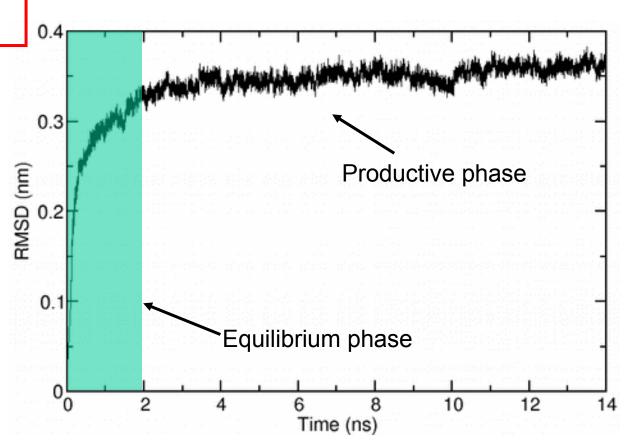


Analysis of MD trajectories (Essential Dynamics of Proteins)

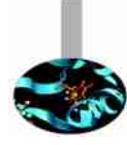
Did we reach equilibrium...?

RMSD =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (r_i - r_0)^2}$$

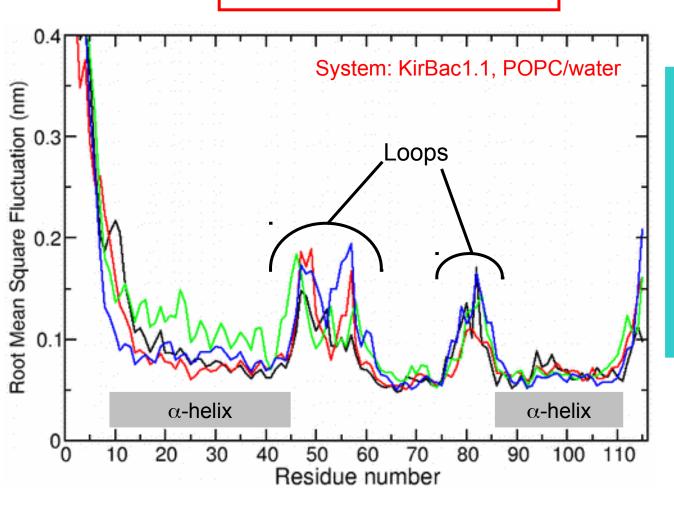
We need to make sure that all the chemical and physical properties of the system have reached an equilibrium, where their averages do not longer change as a function of time. A simple way to test this is by measuring the RMSD (root mean square deviation) of $C\alpha$ carbon atoms position with respect to start.



Measuring chain flexibility

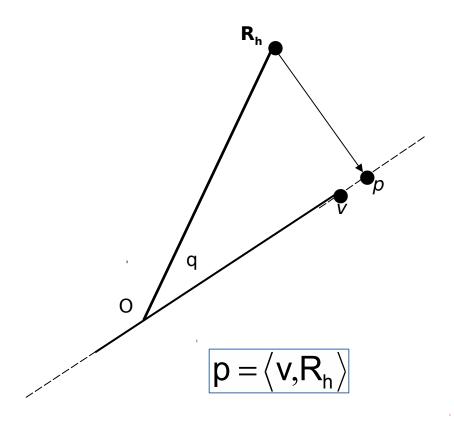


$$RMSF = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (r_i - \langle r \rangle)^2}$$



RMSF is a simple tool to measure the rigidity of the polypeptide chain. calculates the deviations of C-alpha atoms coordinates from their average position. The flexibility pattern reflects the location of secondary structure elements in the protein structure.

PCA: how it works



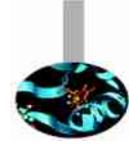
p is the projection of vector \mathbf{R}_h onto unity vector \mathbf{v} (dot product between \mathbf{v} and \mathbf{R}_h)

Let's assume our simulation is defined by the vector Rn, that simply consists of the set of cartesian coordinates of Ca atoms at a given time step.

Question: what is the unity vector so that projection of \mathbf{R}_h on vector \mathbf{v} is the largest possible?

Answer: it is the vector **v**, so that the variance of the projected point p of Rn onto v is the largest possible

Eigenvalue equation



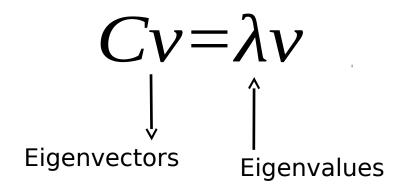
The average of projected points onto \mathbf{v} is:

$$\mu(v) = \langle v, \overline{x} \rangle$$

Variance of projected point onto **v** is:

$$\sigma^2(v) = \langle Cv, v \rangle$$

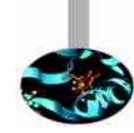
Variance of projected points along vector \mathbf{v} can be expressed in terms of dot product between \mathbf{v} and $\mathbf{C}\mathbf{v}$.

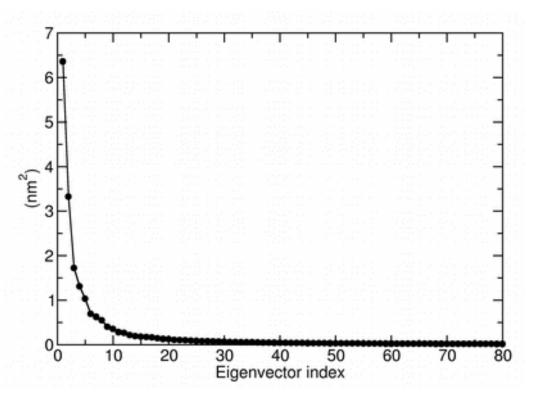


Eigenvectors represents direction where the σ^2 returns its maximum value.

Moreover, it can be shown that σ^2 are numerically equivalent to calculated eigenvalues

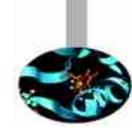
Essential Dynamics of Proteins

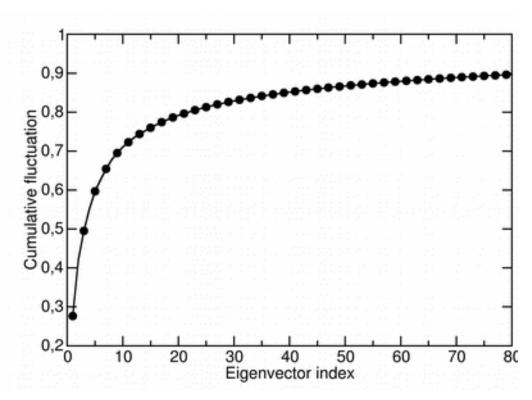




Eigenvalues are sorted in descending order: the first one corresponds to the maximum variance of the projected points. The corresponding eigenvectors are the best principal components of associated eigenvalues.

Essential Dynamics of Proteins

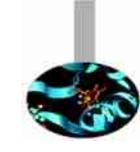




$$CF = \frac{\lambda_1 + \lambda_2 + \dots + \lambda_n}{\sum_{i=1}^{N} \lambda_i}$$

The essential space, or subspace, of a biological protein is defined by the first 10 eigenvectors of the fluctuations covariance matrix. Indeed, it can be shown that about 70-75 % of all cumulative protein fluctuation is spanned by the first 10 principal components (eigenvectors)

Essential Dynamics: workflow in GROMACS



Least square fit of protein coordinates on respect to reference structure to remove roto-translation in the simulation box.

Calculate elements of the positional fluctuations covariance matrix of the $C\alpha$ protein carbon atoms.

Diagonalizzation of the covariance matrix and output of the corresponding eigenvectors and eigenvalues.

Sort eigenvector in descending eigenvalue index and determine principal componens

Essential Dynamics: general procedure

Essential Dynamics Analysis is based on the computation of the elements of positional fluctuations covariance matrix of protein $C\alpha$ carbon atoms as follows:

$$\Gamma_{ij} = \frac{1}{n} \sum_{h=1}^{n} (x_{hi} - \overline{x}_{xi}) \times (x_{hj} - \overline{x}_{xj})$$

g_covar -f traj.xtc -s reference.gro -b start -e end -ascii

Output files:

Eigenvec.trr

Eigenval.xvg

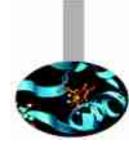
Covar.dat

→ eigenvector traj. file

→ eigenvalue set file

→ covariance matrix in raw data format

Principal components analysis

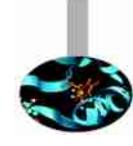


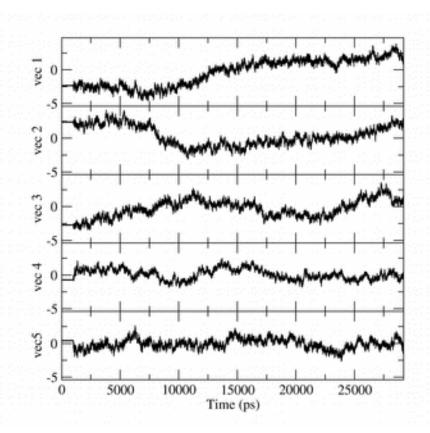
g_anaeig –f trajectory.xtc –v eigenvec.trr –eig eigenval.xvg –s reference.gro –b *start* –e *end* -first *eig-first* -last *eig-last*

g_anaeig reads a set of eigenvectors and eigenvalues as input files and returns a set of output files that can be selected using appropriate flags: Here are some examples:

-proj	to project an MD trajectory along a selected eigenvector
-rmsf	to calculate the RMSF along a selected eigenvector
-extr	to compute linear combinations of trajectory and selected eigenvectors
-filt	to filter trajectory along selected eigenvector

g_anaeig: output of flag -proj

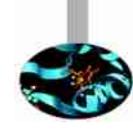


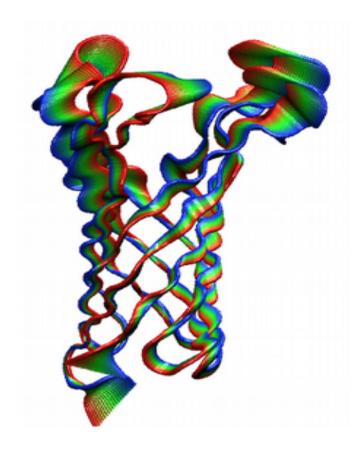


By default, 8 eigenvectors are considered for output using g_anaeig. This option can be set by using the flags -first and -end

g_anaeig -f trajectory.xtc -v eigenvec.trr -eig eigenval.xvg -s reference.gro -proj proj.xvg -first 1 -last 5

g_anaeig: flag -extr

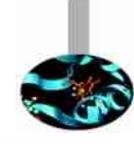


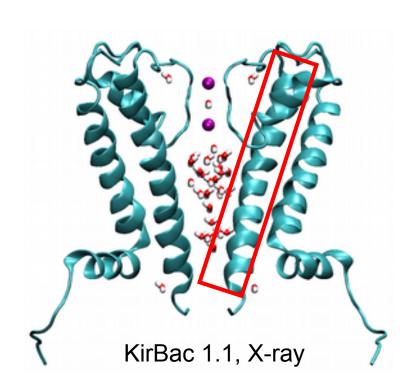


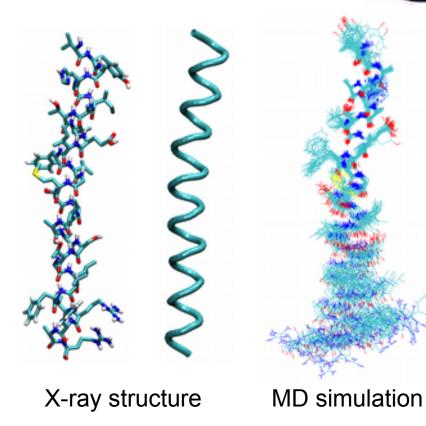
La dinamica essenziale ci aiuta a studiare i moti concertati tra gruppi di atomi all'interno di una struttura proteica. Nell'esempio si osserva un movimento concertato tra i loop extracellulari della porina OmpA lungo il primo autovettore.

g_anaeig -f trajectory.xtc -v eigenvec.trr -eig eigenval.xvg -s reference.gro -extr extreme.pdb -first 1 -last 3 -nframes 50

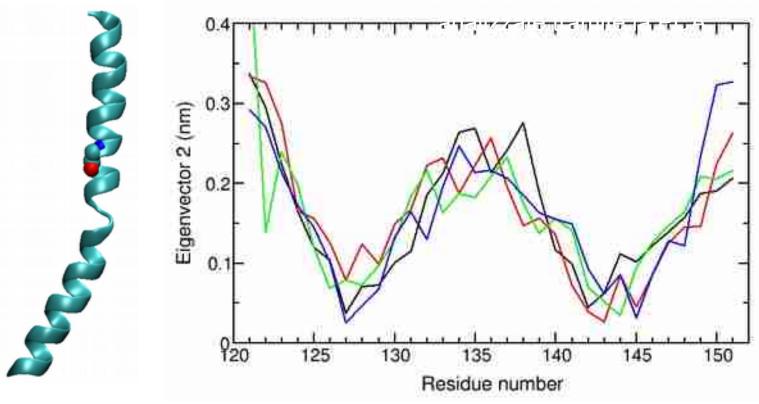
g_anaeig: the flag -filt





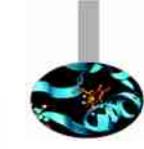


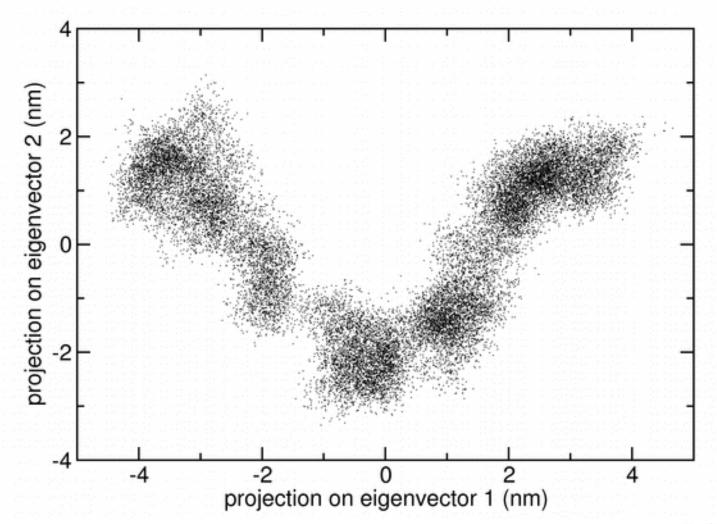
g_anaeig: the -rmsf flag



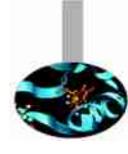
RMSF Analysis by means of principal components analysis. Fluctuations analysis by PCA on K channels simulations revealed that top flexibility on helix S6 is achieved at a conserved Gly-134 residue that is the most flexible in the polypeptide chain.

g_anaeig: the -2d or -3d flag



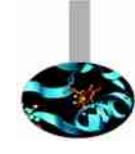


Tutorial 4: PCA on a small membrane protein



Input file on Galileo:

- cp -r /gpfs/scratch/userinternal/agrottes/CorsoMD-PATC2016/Tutorial4 ./
- Run g_covar on file total19ns.xtc using start_prot.gro as reference
- Run g_anaeig with option -proj -extr -filt and -2d
- Get the first principal plane
- Run g_rms and g_rmsf



To analyze results on PLX:

- Module load autoload vmd
- Module load xmgrace

Alternativelly, download RCM on:

http://www.hpc.cineca.it/content/remote-visualization-rcm#download

