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Aim of the workshop
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● The aim of this workshop is to present the (most) representative HPC numerical methods used in the fields of Computational 
Fluid Dynamics (CFD) and Numerical Astrophysics.

● The workshop aims to share the methodologies, numerical methods and their implementation used by the state-of-the-art codes 
in the HPC environment.

● Key-note lectures will present the challenges of numerically solving Partial Differential Equations (PDE) in problems related to 
fluid/hydrodynamics, using massively parallel clusters. 

● The workshop will focus on state-of the art of the different HPC architecture and the related numerical methods

Disclaimer: It is NOT our intent to give a complete survey of the numerical methods used in HPC for the fields of CFD and Numerical Astrophysics. 
The present workshop shows some of the most used research/community codes granted for access to Tier-0  HPC european (and national) 
ecosystems in the recent years. 



HPC Usage by scientific Sector @ CINECA

4

● Scientific 
computing 
core hours 
production



HPC Usage by scientific Sector @ CINECA
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Cineca users with affiliation to foreign entities. Classification User Institutes



HPC Usage by scientific Sector @ CINECA
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Total number of publications Allocated resources



HPC Usage by scientific Sector @ CINECA
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Research areas of the publications mentioning CINECA



HPC Usage by scientific Sector @ PRACE

From Call 1 to Call 13 (2011-now)

● 12 Billions of core hours 
awarded

● 6 HPC clusters (Now 7)
● 4 hosting members (now 5)

○ CINECA, Italy
○ GENCI@CEA, France
○ BSC, Spain

○ GSC (HLRS, LRZ, JSC), 
Germany

○ CSCS, Switzerland 
(starting from call 14)

● 31% ENG + Astro
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Overview of Numerical Methods and Algorithms

  Layout of following presentations 

● Area of research/interest
●  Governing Equations
●  Numerical Method
●  Need for massively parallel clusters
● Implementation in HPC environment and parallelization of the numerical methods
● Use of HPC libraries (if any)
● outcome of HPC grants used (PRACE, ISCRA, etc, etc.)
● future work
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HPC Astrophysics Codes 
A. Mignone: “Numerical method in computational fluid and
  Magnetohydrodynamics - Parallel implementation, static and adaptive 
grids”
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● Name of the code: PLUTO
● Authors: Mignone, A.; Bodo, G.; Massaglia, S.; Matsakos, T.; 

Tesileanu, O.; Zanni, C.; Ferrari, A.
● Research Area: Astrophysics/Plasma Physics
● Governing Equations: HD, MHD, RHD, RMHD
● Numerical Method:  multi-physics, multi-algorithm modular 

environment oriented towards the treatment of astrophysical flows in 
presence of discontinuities

● Implementation: 
○ Written in C
○ parallelization pure MPI
○ I/O by HDF5
○ CHOMBO

● Scalability: excellent weak and strong scaling up to 200K cores
© A. Mignone



HPC Astrophysical Codes
S. Orlando: “Using the 3D MHD code FLASH to describe systems that 
span different scales in space and time”
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● Name of the code: Flash 4
● Authors: Several, mainly from Flash center for 

computational science
● Research Area: Astrophysics/Plasma Physics, 

CFD
● Governing Equations: HD, MHD, RHD, RMHD
● Numerical Method: multi-physics, multi-algorithm 

modular environment
● Implementation:

○ written in F90
○ parallelization MPI (+ OpenMP)
○ AMR by Paramesh or CHOMBO
○ HDF5

● Scalability: good weak and strong scaling up to 4k 
cores (with AMR)

From http://flash.uchicago.edu



HPC Astrophysical Codes
C. Gheller: “ENZO and RAMSES codes for computational astrophysics”
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● Name of the codes: ENZO and RAMSES
● Main Authors: Greg Bryan (ENZO), Romain 

Teyssier (RAMSES)
● Research Area: Cosmology, Galaxy formation, 

Astrophysics
● Governing Equations: HD, RHD, MHD
● Numerical Method: Various (SPH, PIC, 

Lagrangian, ….)
● Implementation:

○ Written in F90 and C/C++
○ Parallelization MPI
○ HDF5
○ AMR

● Scalability: excellent weak and strong scaling up 
to 20-40k

From http://enzo-project.org/

From http://www.ics.uzh.ch



HPC Astrophysical Codes
R. De Pietri:  “The Einstein Toolkit: an open framework for Numerical 
General Relativistic  Astrophysics”
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● Name of the code: Einstein Toolkit
● Authors: F. Löffler, J. Faber, E. Bentivegna, T. 

Bode, P. Diener, R. Haas, I. Hinder, B. C. Mundim, 
C. D. Ott, E. Schnetter, E. Allen, M. Campanelli, 
and P. Laguna.

● Research Area: Astrophysics, General relativity, 
Plasma physics

● Governing Equations: GRHD, GRMHD
● Numerical Methods: Various (TVD, PPM, ENO, 

ePPM, WENO5, MP5, ...)
● Implementation:

○ Written in F90 and C
○ parallelization MP
○ I/O by HDF5

● Scalability: excellent weak and strong scaling up to 
10-30k cores 

From http://einsteintoolkit.org



HPC Astrophysical Codes
G. Lodato: “SPH Methods”
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● Main Author: J. J. Monaghan
● Main Paper: Smoothed particle Hydrodynamics
● Research Area: Plasma Hysics, Astrophysics, 

cosmology, CFD 
● Governing Equations: HD, RHD
● Numerical Method: SPH
● Various Implementations (e.g. Used in gadget code)
● Scalability: it depends by the code

From http://www.ged.rwth-aachen.de



HPC Astrophysical Codes
M. Baldi: “Numerical methods for standard and non-standard 
cosmological simulations” 
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● Name of the code: GADGET 3
● Main Author: Volker Springel
● Research Area: Astrophysics/Cosmology,
● Governing Equations:  multi-physics, RHD
● Numerical Method: SPH, Tree-PM
● Implementation:

○ written in C
○ parallelization MPI + OpenMP
○  DFT by FFTW
○ I/O by HDF5

● Scalability: good weak and strong scaling up to 10K-30k cores

© Millenium XXL Project



HPC CFD Codes: P. Orlandi, A minimal flow unit for turbulence, combustion and 
astrophysics
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● Authors: P. Orlandi, S. Pirozzoli, M. Bernardini
● Research Area: DNS of turbulent low-speed flows. Homogeneous isotropic turbulence, channel and pipe 

flows (with rotation and roughness elements), passive scalars and inertial particles
● Governing Equations: Incompressible Navier Stokes (DNS) 
● Numerical Method: Method-of-lines, two-stage discretization. 

○ Spatial discretization on Cartesian staggered grid, Immersed boundary method, second-order FD
○ Time advancement, hybrid third-order Runge-Kutta/Crank-Nicholson scheme
○ Fractional-step: explicit treatment of the convective terms, implicit treatment of the viscous ones

● Implemented in F90, parallelization pure MPI
○ FFTs and tridag systems exploit available libraries (FFTW or IBM ESSL)

● Scalability: excellent weak and strong scaling for channel flow simulations on FERMI  



HPC CFD Codes: S. Pirozzoli,  Turbulence in wall-bounded flows
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● Authors: S. Pirozzoli, M. Bernardini
● Research Area: DNS of turbulent flows, transonic and supersonic flows, Shock Boundary Layer 

Interaction (SBLI)
● Governing Equations: Full 3D compressible Navier-Stokes for perfect gas (DNS) 
● Numerical Method: Method-of-lines, two-stage discretization. 

○ Spatial discretization: hybrid conservative scheme, switch by the Ducros shock sensor
■ Explicit sixth-order central scheme 
■ Fifth-order weighted-essentially non-oscillatory (WENO) scheme 
■ Preservation of total kinetic energy at the discrete level (no spurious numerical dissipation) for convective term 

○ Time advancement standard fourth-order explicit RK algorithm 
● Implemented in F90, parallelization pure MPI by exploiting the Cartesian topological connectivity 
● MPI I/O
● Scalability: excellent weak and strong scaling for channel flow simulations on FERMI  



HPC CFD Codes: L. Biferale, Pseudo-spectral approach to high performance 
computing of MHD
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● Authors: L. Biferale, F. Toschi, A. LaNotte, F. Bonaccorso (started 10 years ago)
● Research Area: turbulence, superfluid, intermittency, MHD
● Governing Equations: Navier-Stokes on a cubic regular, tri-periodic lattice
● Numerical Method: 

○ Pseudo-spectral code integrates the evolution equation for the potential vector, whose curl is the 
velocity field. No explicit pressure term is calculated.

○ Time integration: second order Adams-Bashforth
● fully parallel with MPI. Lagrangian integration of particles seeding the flow is also parallelized with MPI.

○ Use of the pencil FFT, most of computational cost (P3DFFT with 1D FFT or ESSL libraries)
○ MPI I/O, HDF5

● Synergies with other European infrastructures (EuHIT, EUDAT) Projects 
● Excellent scalability up to 32k cores on FERMI 

(PRACE call 4th, 9th,11th and 12th)



HPC CFD Codes: S. Frigio, Complex solutions of the 3D Navier-Stokes Equations in 
the Fourier Space: Numerical Evidence of Blow-Up
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● Authors: S. Frigio
● Research Area: turbulence, singularities, blow-up mechanism
● Governing Equations: 3-D incompressible Navier-Stokes
● Numerical Method: Pseudo-spectral methods, integral equation in the Fourier space

○ integral equation is discretized by Nystrom method for the space variables and a marching scheme for time variable
○ discretization of the integral equation and the 2D-Pencil parallel decomposition of the 3-d computational domain 

● Implemented in F90, parallelization pure MPI
● Use of the library 2Decomp&FFT
● Scalability: good strong scaling up to 5000 cores on FERMI BG/Q  



HPC CFD Codes: F. Zonta, Physics and high performance computation of turbulent 
flows with interfaces
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● Authors: F. Zonta, A. Soldati, M. Marchioli
● Research Area: multiphase flow, physics of turbulent flows with interfaces, droplets in turbulence
● Governing Equations: DNS of Cahn-Hilliard/Navier-Stokes system (Model H)
● Numerical Method: pseudo-spectral method

○ Fourier representations for the streamwise and spanwise directions and a Chebyshev representation for the wall-normal nonhomogeneous 
direction. 

○ Time advancement of the solution via a two-level explicit Adams-Bashfort scheme for the nonlinear terms and an implicit Crank-Nicolson 
method for the viscous terms. 

○ Implemented in F77, parallelization pure MPI
● Numerical Libraries

○ FISHPACK package for the solution of separable elliptic PDEs
○ FFTW3

● Scalability: good strong scaling up 4096 cores on FERMI   BG/Q



HPC CFD Codes: A. Colombo, Discontinuous Galerkin Methods in HPC
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● Authors: F. Bassi, A. Colombo, L. Botti, A. Ghidoni, A. Nigro, A. Crivellini
● Research Area: transonic flows, shock boundary layer interaction (SBLI)
● Governing Equations: from Euler equations to the hybrid RANS-LES approaches, inc. and compressible
● Numerical Method: Discontinuous Galerkin method, MIGALE code 

○ The equations of all the implemented flow models are discretized to the same high-order accuracy on hybrid (possibly curved)  meshes
○ explicit and implicit high-order (up to order six) time integrators implemented to exploit the high-order discretization both in space and time.  
○ based on the SPMD (single process, multiple data) paradigm, MPI paradigm 

● Numerical Libraries
○ PETSc library to achieve parallelism

● The scalability of the code MIGALE has been investigated on three different TIER-0 and one TIER-1 
facilities: CURIE, HORNET and FERMI

○ Good scalability results for all clusters
○ weak scalability up to 32k cores on FERMI



Missing Guest: OpenFOAM
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● OpenFOAM is become more and more popular in the CFD community
○ OpenFOAM is (aiming to) becoming The open-source community code

■ Third most-used CFD community code by users (after Ansys-Fluent and CD-Adapco-Starccm+), 
http://www.resolvedanalytics.com/theflux/comparing-popular-cfd-software-packages

■ Fifth most-used CFD code in HPC environment  

● Does OpenFOAM can seat in this “round table” of Tier-0 CFD codes?  
○ Not yet

● Missing for a “full enabling” on massively parallel clusters (Tier-0 size) 
○ Pstream (MPI Library) actually scales reasonably well up to orders of thousands of cores
○ Serial I/O, not MPI

● Work in progress inside the community
○ Modified version of OpenFOAM available scaling up to 50/100 k cores 
○ Implementation of Adios MPI I/O library on-going



Thank You
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Overview of Numerical Methods and Algorithms, CFD Codes
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Speaker Area of research Governing 
Equations

Numerical Method Parallelization Scalability Total of CPU hours 
granted (Millons)

L. Biferale DNS/LES/Particle MHD

S. Pirozzoli Turbulents flows Navier-Stokes DNS Compressible, 
high-order explicit 

FD schemes.
Incompressible

MPI + 
(Accelerators )

Up to 32/64 k cores 
(BGQ)

200 / 300

S. Frigio Spectral Methods

P. Orlandi Immersed 
Boundary

Francesco Zonta Multiphase flow

A. Colombo Discontinuous 
Galerkin 



Overview of Numerical Methods and Algorithms ???
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● Present numerical methods and algorithms for Astrophysics and CFD:
○ Eulerian (ASTRO, CFD);
○ Lagrangian (ASTRO, CFD);
○ Implicit methods (ASTRO, CFD);
○ Explicit methods (ASTRO, CFD);

○ Regular grids (ASTRO, CFD), AMR (ASTRO, CFD) , unstructured meshes (CFD), Immersed 
Boundary (CFD) 

○ HD (ASTRO, CFD), MHD (ASTRO, CFD), RHD (ASTRO), RMHD (ASTRO);
○ Multi-Physics modules (ASTRO, CFD);
○ Parallel implementation (ASTRO, CFD);

● State of the art HPC architectures;
● State of the art and community codes.



HPC CFD Codes: L. Biferale, Pseudo-spectral approach to high performance 
computing of MHD
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● Authors: L. Biferale, K. Jansen, R. Tripiccione
● Research Area: turbulence, micro-fluids, particles physics, lattice QCD
● Governing Equations: Hybrid Monte Carlo (HMC)
● Numerical Method: Fourier space for the velocity field, time integration backward time discretization
● Implemented in C/C++, parallelization pure MPI with Fourier acceleration 

○ Use of FFTW3, statistical software R, random number generator ranlux
● MPI I/O
● Scalability: tested up to 4000 cores on FERMI  BG/Q
● Reference: 13th Call PRACE, BurgersHMC - Instantons and Intermittency in Hydrodynamic Turbulence: 

A Lattice Monte Carlo Approach


