
Porting on Manycore architectures:
A case study

V. Ruggiero (v.ruggiero@cineca.it)
Roma, 4 November 2016

SuperComputing Applications and Innovation Department

Trends

Trends: summarizing...

I The number of transistors increases
I The power consumption must not increase
I The density can not increase on a single chip

Solution :
I Exposing parallelism increasing the number of cores

Multicore vs ManyCore?

I Doubling the number of standard cores per die with every
semiconductor process generation starting with a single processor.

I Switching from sequential to modestly parallel computing makes
programming much more difficult without rewarding this greater effort
with a dramatic improvement in power-performance. Hence,
multicore is unlikely to be the ideal answer.

I The alternative approach moving forward is to adopt the manycore
architecture which employs simpler cores running at modestly lower
clock frequencies. Rather than progressing from two to four to eight
cores with the multicore approach, a manycore design has hundreds
of cores.

I Even if the simpler core offers only one-third the computational
efficiency of the more complex out-of-order cores, a manycore
design stills be an order of magnitude more power- and area-efficient
in terms of sustained performance.

What is Many-Core?

"The terms many-core and massively multi- core are sometimes used
to describe multi- core architectures with an especially high number
of cores(tens or hundreds)"

(Andras Vajda)

What is Intel Xeon Phi?

I 7100 / 5100 / 3100 Series available
I 5110P:

I Intel Xeon Phi clock: 1053 MHz
I 60 cores in-order
I 1 TFlops/s DP peak performance (2 Tflops SP)
I 4 hardware threads per core
I 8 GB DDR5 memory
I 512-bit SIMD vectors (32 registers)
I Fully-coherent L1 and L2 caches
I Max Memory bandwidth (theoretical) 320 GB/s
I Max Thermal Design Power (TDP): 225 W

Intel Xeon Phi

I It does not require learning
I a new programming language
I new parallelization techniques

I The programming paradigm is based on
I C/ Fortran
I OMP/MPI standards

I Achieving good performance is not simple
I the hardware has own characteristics that must understood in order to

port the code in an efficient manner.

Parallelization

Data
Vectorization
Automatic
Directives/Pragmas
Libraries

⇓
SIMD

Thread/Task
Multi-Threading
OpenMP
TBB, CilkTM Plus
OpenCL
pthreads

⇓
Multicore Manycore

Process
Message Passing
MPI

⇓
Cluster

SIMD

I What are the microprocessor vector extensions or SIMD (Single
Instruction Multiple Data Units)

I How to use them
I Through the compiler via automatic vectorization

I Manual transformations that enable vectorization
I Directives to guide the compiler

I Through intrinsics
I Main focus on vectorizing through the compiler

I Code more readable
I Code portable

What is Vectorization?

I Hardware Perspective: Specialized instructions, registers, or
functional units to allow in-core parallelism for operations on arrays
(vectors) of data.

I Compiler Perspective: Determine how and when it is possible to
express computations in terms of vector instructions

I User Perspective: Determine how to write code in a manner that
allows the compiler to deduce that vectorization is possible.

What Happened To Clock Speed?

I Everyone loves to misquote Moore’s Law:
I "CPU speed doubles every 18 months."

I Correct formulation:
I "Available on-die transistor density doubles every 18 months."

I For a while, this meant easy increases in clock speed
I Greater transistor density means more logic space on a chip

Clock Speed Wasn’t Everything
I Chip designers increased

performance by adding
sophisticated features to
improve code efficiency.

I Branch-prediction hardware.
I Out-of-order and speculative

execution.
I Superscalar chips.
I Superscalar chips look like

conventional single-core chips
to the OS.

I Behind the scenes, they use
parallel instruction pipelines to
(potentially) issue multiple
instructions simultaneously.

IF: Instrunction Fetch
ID: Instruction Decode
EX: Execute
MEM: Memory access
WB: Register Write Back

SIMD Parallelism

I CPU designers had, in fact, been exposing explicit parallelism for a
while.

I MMX is an early example of a SIMD (Single Instruction Multiple
Data) instruction set.

I Also called a vector instruction set.
I Normally, scalar instructions operate on single items in memory.

I Can be different size in terms of bytes, of course.
I Standard x86 arithmetic instructions are scalar. (ADD, SUB, etc.)

I Vector instructions operate on packed vectors in memory.
I A packed vector is conceptually just a small array of values in

memory.
I A 128-bit vector can be two doubles, four floats, four int32s, etc.
I The elements of a 128-bit single vector can be thought of as v[0], v[1],

v[2], and v[3].

SIMD Parallelism

I Vector instructions are handled by an additional unit in the CPU core,
called something like a vector arithmetic unit.

I If used to their potential, they can allow you to perform the same
operation on multiple pieces of data in a single instruction.

I Single-Instruction, Multiple Data parallelism.
I Your algorithm may not be amenable to this...
I ... But lots are. (Spatially-local inner loops over arrays are a classic.)

I It has traditionally been hard for the compiler to vectorise code
efficiently, except in trivial cases.

I It would suck to have to write in assembly to use vector instructions...

Vector units
I Auto-vectorization is transforming sequential code to exploit the

SIMD (Single Instruction Multiple Data) instructions within the
processor to speed up execution times

I Vector Units performs parallel floating/integer point operations on
dedicate SIMD units

I Intel: MMX, SSE, SSE2, SSE3, SSE4, AVX
I Think vectorization in terms of loop unrolling
I Example: summing 2 arrays of 4 elements in one single instruction

C(0) = A(0) + B(0)
C(1) = A(1) + B(1)
C(2) = A(2) + B(2)
C(3) = A(3) + B(3)

no vectorization vectorization

SIMD - evolution

I SSE: 128 bit register (Intel Core - AMD Opteron)
I 4 floating/integer operating in single precision
I 2 floating/integer operating in double precision

I AVX: 256 bit register (Intel Sandy Bridge - Intel Broadwell - Intel
Haswell - AMD Bulldozer)

I 8 floating/integer operating in single precision
I 4 floating/integer operating in double precision

I MIC: 512 bit register (Intel Knights Corner - Intel Knights Landing)
I 16 floating/integer operating in single precision
I 8 floating/integer operating in double precision

How do we access the SIMD units?

I C or fortran code and
vectorizing compiler

I Macros or Vector Intrinsics

I Assembly Language

for (i=0; i<LEN; i++)
c[i] = a[i] + b[i];

void example(){
__m128 rA, rB, rC;
for (int i = 0; i <LEN; i+=4){
rA = _mm_load_ps(&a[i]);
rB = _mm_load_ps(&b[i]);
rC = _mm_add_ps(rA,rB);
_mm_store_ps(&C[i], rC);
}}

..B8.5
movaps a(,%rdx,4), %xmm0
addps b(,%rdx,4), %xmm0
movaps %xmm0, c(,%rdx,4)
addq $4, %rdx
cmpq $rdi, %rdx
ji ..B8.5

Vector-aware coding

I Know what makes vectorizable at all
I "for" loops (in C) or "do" loops (in fortran) that meet certain constraints

I Know where vectorization will help
I Evaluate compiler output

I Is it really vectorizing where you think it should?
I Evaluate execution performance

I Compare to theoretical speedup
I Know data access patterns to maximize efficiency
I Implement fixes: directives, compilation flags, and code changes

I Remove constructs that make vectorization impossible/impractical
I Encourage and (or) force vectorization when compiler doesn’t, but

should
I Better memory access patterns

Writing Vector Loops

I Basic requirements of vectorizable loops:
I Countable at runtime

I Number of loop iterations is known before loop executes
I No conditional termination (break statements)

I Have single control flow
I No Switch statements
I ’if’ statements are allowable when they can be implemented as masked

assignments
I Must be the innermost loop if nested

I Compiler may reverse loop order as an optimization!
I No function calls

I Basic math is allowed: pow(), sqrt(), sin(), etc
I Some inline functions allowed

When vectorization fails

I Not Inner Loop: only the inner loop of a nested loop may be
vectorized, unless some previous optimization has produced a
reduced nest level. On some occasions the compiler can vectorize
an outer loop, but obviously this message will not then be generated.

I Low trip count:The loop does not have sufficient iterations for
vectorization to be worthwhile.

I Vectorization possible but seems inefficient:the compiler has
concluded that vectorizing the loop would not improve performance.
You can override this by placing #pragma vector always (C C++)
or !dir$ vector always (Fortran) before the loop in question

I Contains unvectorizable statement: certain statements, such as
those involving switch and printf , cannot be vectorized

When vectorization fails
I Subscript too complex: an array subscript may be too complicated for

the compiler to handle. You should always try to use simplified
subscript expressions

I Condition may protect exception: when the compiler tries to vectorize
a loop containing an if statement, it typically evaluates the RHS
expressions for all values of the loop index, but only makes the final
assignment in those cases where the conditional evaluates to TRUE.
In some cases, the compiler may not vectorize because the condition
may be protecting against accessing an illegal memory address. You
can use the #pragma ivdep to reassure the compiler that the
conditional is not protecting against a memory exception in such
cases.

I Unsupported loop Structure: loops that do not fulfill the requirements
of countability, single entry and exit, and so on, may generate these
messages

https://software.intel.com/en-us/articles/
vectorization-diagnostics-for-intelr-c-compiler-150-and-above

When vectorization fails

I Operator unsuited for vectorization: Certain operators, such as the %
(modulus) operator, cannot be vectorized

I Non-unit stride used: non-contiguous memory access.
I Existence of vector dependence: vectorization entails changes in the

order of operations within a loop, since each SIMD instruction
operates on several data elements at once. Vectorization is only
possible if this change of order does not change the results of the
calculation

Vectorized loops? (intel compiler)

I Vectorization is enabled by the flag -vec and by default at -O2.

-vec-report[N] (deprecated)
-qopt-report[=N] -qopt-report-phase=vec

N Diagnostic Messages
0 No diagnostic messages; same as not using switch

and thus default
1 Tells the vectorizer to report on vectorized loops.
2 Tells the vectorizer to report on vectorized

and non-vectorized loops.
3 Tells the vectorizer to report on vectorized

and non-vectorized loops and any proven
or assumed data dependencies.

4 Tells the vectorizer to report on non-vectorized loops.
5 Tells the vectorizer to report on non-vectorized loops

and the reason why they were not vectorized.
6 Tells the vectorizer to use greater detail when reporting

on vectorized and non-vectorized loops and any proven
or assumed data dependencies.

7 Tells the vectorizer to emit vector code quality message ids
and corresponding data values for vectorized loops.
It provides information such as the expected speedup,
memory access patterns, and the number of vector idioms
for vectorized loops.

Vectorization Report (intel compiler):example

ifort -O3 -qopt-report=5

LOOP BEGIN at matmat.F90(51,1)
remark #25427: Loop Statements Reordered
remark #15389: vectorization support: reference C has unaligned access
remark #15389: vectorization support: reference B has unaligned access

[matmat.F90(50,1)]
remark #15389: vectorization support: reference A has unaligned access

[matmat.F90(49,1)]
remark #15381: vectorization support: unaligned access used inside loop body

[matmat.F90(49,1)]
remark #15301: PERMUTED LOOP WAS VECTORIZED
remark #15451: unmasked unaligned unit stride stores: 3
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 229
remark #15477: vector loop cost: 43.750
remark #15478: estimated potential speedup: 5.210
remark #15479: lightweight vector operations: 24
remark #15480: medium-overhead vector operations: 2
remark #15481: heavy-overhead vector operations: 1
remark #15482: vectorized math library calls: 2
remark #15487: type converts: 2
remark #15488: --- end vector loop cost summary ---
remark #25015: Estimate of max trip count of loop=28

LOOP END

When vectorization fails

I Programmers need to provide the necessary information
I Programmers need to transform the code

I Add compiler directives
I Transform the code
I Program using vector intrinsics

The Code

I Fortran code for the compressible turbulent boundary layers over a
flat plate.

I Solve the NS equations using a FD 6th-order energy consistent
method.

I A full (3D) MPI splitting is allowed.
I For an easy implementation of the recycling method the number of

partitions in the third direction must be 1.
I The authors are Sergio Pirozzoli and Matteo Bernardini

Starting point

I grid size 64X64X64
I running on 1 process
I compiler options: -mmic -r8
I elapsed mean time in seconds per time step

Optimization Level no-vec vec
O0 43.9 43.9
O1 9.96 9.96
O2 4.33 6.91
O3 4.28 6.86
fast 3.80 6.65

Profiling (500 time steps)

no-vec vec
2013.62 3468.67 Total Time [s]

time[s] time[%] time/visit[us]
37.73 1.9 6281.44
28.11 1.4 9361.68

263.78 13.1 87867.08
545.82 27.1 363882.92
260.60 12.9 173733.02
288.00 14.3 192001.64
105.40 5.2 70267.38
273.38 13.6 182254.33
78.93 3.9 157866.76
...

time[s] time[%] time/visit[us]
14.97 0.4 2492.57
28.13 0.8 9367.47
90.03 2.6 29988.86

1145.89 33.0 763924.02
402.93 11.6 268620.46
669.23 19.3 446156.29
338.96 9.8 225971.02
554.56 16.0 369708.88
81.84 2.4 163678.48
...

visits function
6006 bcwall__
3003 bcswap_
3002 getpress_
1500 visflx_lap_
1500 euler_i_
1500 euler_k_
1500 pgrad_
1500 euler_j_
500 rk_
...

visflx_lap.f
...
remark #25451: Advice: Loop Interchange, if possible,
might help loopnest. Suggested Permutation: (1 2 3) --> (3 2 1)

remark #15542: loop was not vectorized: inner loop was already vectorized
remark #25015: Estimate of max trip count of loop=64
LOOP BEGIN at /galileo/home/userinternal/vruggie1/OLD_CHANNEL/CHANNEL/visflx_lap.f(77,8)

...

do k=1,nz
do j=1,ny
do i=1,nx
...
do l=1,mm
...
do l=1,mm
...

⇒
!dir$ simd

do i=1,nx
do j=1,ny

do k=1,nz
...

!dir$ novector
do l=1,mm
...

!dir$ novector
do l=1,mm
...

763924.02 ⇒ 232511.55

30% gain per visit

euler_*.f

What can be done to improve these routines?
I Where the autovectorization is implemented?
I Insert compiler directives to vectorize the loops
I Run the code and in all loops check the difference between

estimated potential speedup and measured speedup
I Where the vectorization is inefficient inderdict vectorization

euler_*.f

I Elapsed time per visit
I The comparison is between new version of the routine and old

autovectorized version of the routine

routine old new % gain
euler_i 268620.46 169546.83 26.9
euler_j 369708.88 170571.67 53.8
euler_k 446156.29 180130.26 59.6

pgrad.f

...
remark #25451: Advice: Loop Interchange, if possible,
might help loopnest. Suggested Permutation: (1 2 3) --> (3 2 1)
remark #15542: loop was not vectorized: inner loop was already vectorized
..

do i=1,nx
dx = 1./dcsidx(i)
do j=1,ny
dy = 1./detady(j)
do k=1,nz
dz = 1./dzitdz(k)

⇒
!dir$ novector
do k=1,nz

dz = 1./dzitdz(k)
!dir$ novector

do j=1,ny
dy = 1./detady(j)
do i=1,nx
dx = 1./dcsidx(i)

225971.02 ⇒ 21629.31

89% gain per visit

rk.f

I 4 autovectorized loops
I Inserting novector directive in one inefficient loop

163678.48 ⇒ 136289.40

17% gain per visit

no-vector vs vector

routine % gain
euler_i 2.4
euler_j 6.4
euler_k 6.2
bcwall 60.4

getpress 65.9
visflx_lap 36.2

pgrad 69.2
rk 14.3

no-vector vs vector

I elapsed mean time in seconds per time step

grid size novec vec % gain
64X64X64 3.80 2.76 27.4

128X64X64 7.78 5.49 29.4
128X128X64 15.4 10.9 29.2

128X128X128 30.8 27.3 11.4
256X128X128 64.6 54.3 16.0
256X256X128 141.3 111.6 21.1

Speedup vs Grid Size

Speedup
grid size 4 8 16 32 64 128

64X64X64 3.6 6.7 11.5 18.4 25.1 25.1
128X64X64 3.9 7.0 12.8 20.3 28.9 36.6
128X128X64 4.0 7.7 12.4 18.9 33.0 40.4

128X128X128 4.1 8.2 13.9 22.2 39.6 58.1
256X128X128 4.0 8.1 16.1 30.2 46.4 66.2
256X256X128 4.1 8.3 16.5 32.4 51.4 72.9

Test Case
I Grid Size 256X256X128
I Running 500 time steps
I 3 different number of processes

type max_buf[B] visits time[s] time[%] time/visit[us] region

32 processes

ALL 2,104,704 1,320,912 75806.35 100.0 57389.40 ALL
MPI 1,526,736 661,824 10861.47 14.3 16411.42 MPI
USR 349,512 354,480 57090.80 75.3 161055.07 USR
COM 228,456 304,608 7854.08 10.4 25784.21 COM

64 processes

ALL 2,104,704 2,591,728 99595.04 100.0 38428.05 ALL
MPI 1,526,736 1,323,648 22079.52 22.2 16680.81 MPI
USR 349,512 658,864 65600.23 65.9 99565.67 USR
COM 228,456 609,216 11915.29 12.0 19558.40 COM

128 processes

ALL 2,104,704 5,178,720 152831.16 100.0 29511.38 ALL
MPI 1,526,736 2,644,608 54731.92 35.8 20695.66 MPI
USR 349,512 1,315,680 83500.89 54.6 63465.96 USR
COM 228,456 1,218,432 14598.34 9.6 11981.25 COM

MPI functions overview

type max_buf[B] visits time[s] time[%] time/visit[us] region

32 processes

MPI 1,369,824 576,768 1396.63 1.8 2421.47 MPI_Sendrecv
MPI 143,298 80,280 4962.52 6.5 61815.12 MPI_Allreduce
MPI 3,888 1,068 4182.50 5.5 3916196.38 MPI_File_write_all
MPI 1,938 164 29.30 0.0 178661.71 MPI_Bcast
...

64 processes

MPI 1,369,824 1,153,536 3202.97 3.2 2776.66 MPI_Sendrecv
MPI 143,298 160,560 7719.17 7.8 48076.52 MPI_Allreduce
MPI 3,888 2,136 9732.89 9.8 4556595.41 MPI_File_write_all
MPI 1,938 328 1051.28 1.1 3205114.76 MPI_Bcast
...

128 processes

MPI 1,369,824 2,307,072 8423.17 5.5 3651.02 MPI_Sendrecv
MPI 143,298 321,072 24903.02 16.3 77562.10 MPI_Allreduce
MPI 3,888 3,096 18083.24 11.8 5840841.00 MPI_File_write_all
MPI 1,938 392 2610.34 1.7 6659024.05 MPI_Bcast
...

The next step

I Increasing the scalability
I Increasing the parallelism
I Hybrid parallelism (MPI-OpenMP)

