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1. INTRODUCTION

We consider the three-dimensional incompressible Navier-Stokes
(NS) equations, in absence of boundary conditions and external
forces:

∂u

∂t
+

3∑
j=1

uj
∂

∂xj
u = ∆u−∇p, x = (x1, x2, x3) ∈ R3.

∇ · u = 0, u(·, 0) = u0.

u : R3 × [0,∞)→ R3 is the velocity field, p is the pressure and
we assume for the viscosity ν = 1 (always possible by rescaling).

In spite of considerable progress, it is still unknown whether
there are initial conditions for which the solution becomes
singular in a finite time (global regularity problem).
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1. Introduction

The singular solutions, if they exist, would have physical
relevance:

describe phenomena such as hurricanes, i.e., a
sudden concentration of energy in a small space region. There is
no effective model describing such phenomena.

For a recent contribution on the global regularity problem with
extensive literature:

T. Tao: “Finite-time blowup for an averaged three-dimensional
Navier-Stokes Equation”. arXiv:1402.0290v2 [math.AP] 6 Feb
2014,

where a blowup is proved for a modified NS equations, which
preserve the energy identity

E (t) +

∫ t

0
S(τ)dτ = E (0),

E (t) is the total energy and S(t) the total enstrophy

E (t) =
1

2

∫
R3

|u(x, t)|2dx, S(t) =

∫
R3

|∇ × u(x, t)|2dx.
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1. Introduction

In 2008 Li and Sinai proved that the NS equation in the whole
space and with no external forces with do indeed blow up after
a finite time for some class of smooth complex initial data.

Li, D. and Sinai, Ya. G. 2008. Blowups of complex solutions of
the 3D Navier-Stokes system and renormalization group method.
J. Eur. Math. Soc. 10, 267–313

Complex solutions with blow-up have been established also for
the Burgers equations and other models:

Li, D. and Sinai, Ya. G. 2010. Singularities of complex-valued
solutions of the two-dimensional Burgers system. J. Math. Phys.
51, 01525

Pauls, W. 2011. Some remarks on Li-Sinai-type solutions of the
Burgers equation. J. Phys. A: Math. Theor. 44 285209
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1. Introduction

In general, simulating solutions of the 3-d NS equations is a very
challenging task even for the last generation of supercomputers.

If we apply the ∇ operator at the NS equation:

∇ · ∂u
∂t

+∇ ·
3∑

j=1

uj
∂

∂xj
u = ∇ ·∆u−∇ · ∇p

using the incompressibility condition ∇ · u = 0

∇ ·
3∑

j=1

uj
∂

∂xj
u = −∆p

Poisson equation with Dirichlet boundary condition.
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The starting point is a reformulation of the 3-d NS equations
into a convolution integral equation,

by means of the modified
Fourier transform

v(k, t) =
i

(2π)3

∫
R3

u(x, t)e i(k,x)dx.

and

p̂(k) ≡ i

(2π)3

∫
R3

p(x, t)e i〈k,x〉dx

〈·, ·〉 is the scalar product on R3

Using the Fourier inversion theorem:

u(x, t) = −i
∫
R3

e−i〈k,x〉v(k, t)dk
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The antitrasform u(x, t) is complex in general.

If however v(k, t) is odd in k then u(x, t) is real and odd in x.
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2. Li-Sinai solutions. Theory.

Behavior of energy and enstrophy at t ↑ τ .

The total energy E (t) and the total enstrophy S(t) blow up as
t ↑ τ , with different rates for the two types α = I , II :

E (t) =
(2π)3

2

∫
R3

|v(k, t)|2dk,∼
C

(α)
E

(τ − t)βα
,

S(t) = (2π)3

∫
R3

k2|v(k, t)|2dk ∼
C

(α)
S

(τ − t)βα+2
,

where βI = 1, βII = 1
2 and C

(α)
E ,C

(α)
S are constants.
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2. Li-Sinai solutions. Theory

The rigorous results give the following predictions:

i) The solution has its main support within a thin cone along
the k3-axis, and is represented as a sum of modulated gaussian
terms concentrated around the points (0, 0, p a) and multiplied
by exp{−κ p(τ − t)} ;

ii) For large k3, the velocity field is approximately orthogonal to
the k3-axis and its direction is approximately radial;

iii) The solutions converge point-wise in k-space as t ↑ τ , while
E (t) and S(t) diverge as inverse powers of τ − t.
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3. LI-SINAI SOLUTIONS. SIMULATIONS.

The computer simulations for the complex Li-Sinai solutions
reveal important properties which are not, so far, predicted by
the theory.

Computer simulations for the Li-Sinai solutions were first
performed by Arnol’d and Khokhlov in 2009. However, due to
computational limitations, they could only get a qualitative
description of the blow-up.
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I report the results of simulations performed at CINECA
(Bologna, Italy) on the Fermi Supercomputer.

They are
obtained by implementation of a computational scheme for the
NS equations in integral form, and can be used for a class of
complex and real solutions of the NS and similar equation.

The main difficulty for the simulations are:
i) the blow-up takes place in a very short time ≈ 10−5 time
units (t.u), so that the time step has to be small;
ii) the support of the solution goes away in the k3 direction as
t ↑ τ .
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3. Li-Sinai solutions: simulations.

According to a preliminary screening on a sample of “‘good‘
initial data it appears that the “best” initial data are

v±0 (k) = ± K v̄0(k),

v̄0(k) =

(
k1, k2,−

k2
1 + k2

2

k3

)
g (3)(k− k(0))ID(k− k(0)),

where k(0) = (0, 0, a), g (3) is the standard gaussian on R3, ID is
the indicator function of the set D = {k : |k| ≤ 17}, and in all
cases a ≥ 20.

The positive constant K controls the initial energy.

We get solutions of type I for the initial data v+
0 , and of type II

(alternating signs) for v−0 .
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3. Li-Sinai solutions: simulations.

If K is large enough,

so that for the initial energy E0 > 25, 000,
the solution blows up after a time of the order 10−3 t.u. The
solutions “stays quiet” for about 10−3 t.u., with energy and
enstrophy decreasing, then both quantities increase rapidly,
leading to a blow-up in a time of the order 10−5.

Most simulations were done for solutions of type II. Their
behavior is more similar to that of the related real solutions.

The mesh R in k-space is taken with step 1:

R = [−127, 127]× [−127, 127]× [−19, L] ⊂ Z3,

where the critical parameter L takes the values 2028, 2528, 3028.
Control simulations with finer meshes confirm stability.
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3. Li-Sinai solutions: simulations.

For the description of the behavior we use the energy and
enstrophy marginals in k along the main axis

E3(k3, t) =
1

2

∫
R×R

dk1dk2|v(k, t)|2,

S3(k3, t) =

∫
R×R

dk1dk2|k|2|v(k, t)|2

and the analogous marginals Ej(kj , t), Sj(kj , t), j = 1, 2.

The marginals in x-space are denoted Ẽj(xj , t), S̃j(xj , t),
j = 1, 2, 3, with

Ẽ3(k3, t) =
1

2

∫
R×R

dx1dx2|u(x, t)|2,

S̃3(k3, t) =

∫
R×R

dx1dx2|∇u(x, t)|2,

etc.



3. Li-Sinai solutions: simulations.

For the description of the behavior we use the energy and
enstrophy marginals in k along the main axis

E3(k3, t) =
1

2

∫
R×R

dk1dk2|v(k, t)|2,

S3(k3, t) =

∫
R×R

dk1dk2|k|2|v(k, t)|2

and the analogous marginals Ej(kj , t), Sj(kj , t), j = 1, 2.

The marginals in x-space are denoted Ẽj(xj , t), S̃j(xj , t),
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3. Li-Sinai solutions: simulations.

We now illustrate some of the main features of the solutions
near the blow-up provided by the computer simulations.

- The component of v(k, t) orthogonal to the k3-axis is roughly
radial already at the beginning of the blow-up and for relatively
small k3.

- For k1 and k2 fixed the type II solutions describe, as a
function of k3 a damped oscillation with approximate period 2a
and vanish on the planes k3 ≈ (j + 1

2 )a.

- The total enstrophy S(t) starts growing much earlier than the
total energy E (t).

- The solution of type I blow up much earlier than the solutions
of type II with the same initial energy and same a.
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3. Li-Sinai solutions: simulations. The fixed point H(0)
.

Figure 1: Type II, a = 20, E0 = 5× 104. The arrows indicate the
direction of v(k, t) on a regular point lattice on a section of the plane
k3 = 100 with sides of length 100, t = 1521× 10−7. Simulation range
k3 ∈ [−19, 2528]. Magnitude refers to |v(k, t)|. In the grey external
region |v(k, t)| < 10−6.



3. Li-Sinai solutions: simulations. Oscillations type I.
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Figure 2: Type I, a = 20, E0 = 5× 104. Enstrophy marginal density
S3(k3, t) at the beginning of the blow-up. t = 900× 10−7. Simulation
range k3 ∈ [−19, 2528].



3. Li-Sinai solutions: simulations. Oscillations type II.
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Figure 3: Type II, a = 20, E0 = 5× 104. Enstrophy marginal density
S3(k3, t) at the beginning of the blow-up. t = 1125× 10−7. The zeroes
are approximately periodic with period a. Simulation range
k3 ∈ [−19, 2528].



3. Li-Sinai solutions: simulations. Oscillations type II.
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Figure 4: Type II , a = 20, E0 = 5× 104. v1(k, t) vs k3 for k1, k2 fixed, at
the times t × 107 = 1342, 1500, 1544, 1574, 1600. The amplitudes
increase as time grows, and tend to a limit. Simulation range
k3 ∈ [−19, 3028].



3. Li-Sinai solutions: simulations. Type I: compared growth.
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Figure 5: Type I , a = 20, E0 = 5× 104. Compared growth of the total
enstrophy S(t) and the total energy E (t). Simulation range
k3 ∈ [−19, 2528].



3. Li-Sinai solutions: simulations. Type II: compared growth
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Figure 6: Type II , a = 20, E0 = 5× 104. Compared growth of the total
enstrophy S(t) and the total energy E (t). Simulation range
k3 ∈ [−19, 2528].



3. Li-Sinai solutions: simulations. Enstrophy distribution
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Figure 7: Type I , a = 20, E0 = 5× 104. Plot of the marginal enstrophy
density S3(k3, t) on the whole simulation range −19 ≤ k3 ≤ 2528, at
t · 107 = 1060, 1075, 1080.



3. Li-Sinai solutions: simulations. Enstrophy distribution
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Figure 8: Type II , a = 20, E0 = 5× 104. Plot of the marginal enstrophy
density S3(k3, t) on the whole simulation range −19 ≤ k3 ≤ 2528, at
t · 107 = 1521, 1544, 1560.



3. Li-Sinai solutions: simulations. Enstrophy distribution.
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Figure 9: Type II , a = 20, E0 = 5× 104. Plot of the marginal enstrophy
density S1(k1, t) at t · 107 = 1521, 1544, 1560. Simulation range
k3 ∈ [−19, 2528].



3. Li-Sinai solutions: simulations. Critical time

The divergence of E (t),S(t) is due to the large k3 modes, and it
is hard to follow on the computer.

In fact, while S(t) shows a significant growth before the
significant support gets out of the simulation region, the growth
of E (t) is hard to follow with the present computer resources.

The best way of estimating the critical time τ is based on the
fact that, as predicted by the theory, the high k3-modes fall off
exponentially fast in k3 with a rate proportional to (τ − t).

Already at times relatively far from the critical time, the decay
rate of the marginal energy density E3(k3, t) in the region
k3 > 400 turns out to be exponential decreasing in time with
great accuracy.

The results are remarkably stable with respect to the
longitudinal simulation range.
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3. Li-Sinai solutions: simulations. Decay rate.
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Figure 10: Type II , a = 20, E0 = 5× 104. Plot of log(E3(k3, t)), where
E3 is the marginal energy density along the k3-axis for k3 ≥ 400 at two
different times. The dots represent the local maxima of the oscillations of
E3(k3, t). Simulation range k3 ∈ [−19, 2028].



3. Li-Sinai solutions: simulations. Critical time.
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Figure 11: Type I , a = 20, E0 = 5× 104. Exponential decay rate for the
marginal density E3(k3, t), taken for k3 ≥ 400, vs magnified time t × 107,
with linear regression (dashed line). Simulation range k3 ∈ [−19, 2528].



3. Li-Sinai solutions: simulations. Critical time.
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Figure 12: Type II , a = 20, E0 = 5× 104. Exponential decay rate for the
marginal density E3(k3, t), taken for k3 ≥ 400, vs magnified time t × 107,
with linear regression (dashed line). Simulation range k3 ∈ [−19, 2528].



3. Li-Sinai solutions: simulations. Critical time.

The estimates for the critical time obtained from the previous
plots (case a = 20 and E0 = 5× 104) are:

τ ≈ 1110× 10−7 for type I and τ ≈ 1630 for type II .

Quite recently we obtained more computer time in the
framework of the european project PRACE, which allows us to
study the dependence of the critical time on the parameter a
and on the initial energy E0.

Observe that the parameter a controls the initial enstrophy
S(0) independently of the initial energy E0.

The data show that when we increase a the excitation of the
high k3-modes is accelerated and the critical time decreases (at
least in the range we considered).
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least in the range we considered).



3. Li-Sinai solutions: simulations. Critical time.

The estimates for the critical time obtained from the previous
plots (case a = 20 and E0 = 5× 104) are:

τ ≈ 1110× 10−7 for type I and τ ≈ 1630 for type II .

Quite recently we obtained more computer time in the
framework of the european project PRACE, which allows us to
study the dependence of the critical time on the parameter a
and on the initial energy E0.

Observe that the parameter a controls the initial enstrophy
S(0) independently of the initial energy E0.

The data show that when we increase a the excitation of the
high k3-modes is accelerated and the critical time decreases (at
least in the range we considered).



3. Li-Sinai solutions: simulations. Critical time.

The estimates for the critical time obtained from the previous
plots (case a = 20 and E0 = 5× 104) are:

τ ≈ 1110× 10−7 for type I and τ ≈ 1630 for type II .

Quite recently we obtained more computer time in the
framework of the european project PRACE, which allows us to
study the dependence of the critical time on the parameter a
and on the initial energy E0.

Observe that the parameter a controls the initial enstrophy
S(0) independently of the initial energy E0.

The data show that when we increase a the excitation of the
high k3-modes is accelerated and the critical time decreases (at
least in the range we considered).



3. Li-Sinai solutions: simulations. Critical time.

The estimates for the critical time obtained from the previous
plots (case a = 20 and E0 = 5× 104) are:

τ ≈ 1110× 10−7 for type I and τ ≈ 1630 for type II .

Quite recently we obtained more computer time in the
framework of the european project PRACE, which allows us to
study the dependence of the critical time on the parameter a
and on the initial energy E0.

Observe that the parameter a controls the initial enstrophy
S(0) independently of the initial energy E0.

The data show that when we increase a the excitation of the
high k3-modes is accelerated and the critical time decreases

(at
least in the range we considered).



3. Li-Sinai solutions: simulations. Critical time.

The estimates for the critical time obtained from the previous
plots (case a = 20 and E0 = 5× 104) are:

τ ≈ 1110× 10−7 for type I and τ ≈ 1630 for type II .

Quite recently we obtained more computer time in the
framework of the european project PRACE, which allows us to
study the dependence of the critical time on the parameter a
and on the initial energy E0.

Observe that the parameter a controls the initial enstrophy
S(0) independently of the initial energy E0.

The data show that when we increase a the excitation of the
high k3-modes is accelerated and the critical time decreases (at
least in the range we considered).



3. Li-Sinai solutions: simulations. Critical time.

a=15

a=20

a=25

a=30

1000 1200 1400 1600 1800 2000 2200 2400
t*107

-0.4

-0.3

-0.2

-0.1

Figure 13: Type II , E0 = 5× 104. Behavior of the exponential decay rates
of E3(k3, t) vs. magnified time t × 107 for a = 15, 20, 25, 30. Simulation
range k3 ∈ [−19, 3028]



3. Li-Sinai solutions: simulations.

Once we have an estimate τ∗ of the critical time, we can check
the power-law divergence of E (t) and S(t).

For the growth of E (t) the computer data are insufficient,
because the significant growth at the blow-up is mainly due to
excitation of the k3-modes outside the integration range.

For S(t) we get results that are compatible with the prediction.
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Figure 14: Type I , a = 20, E0 = 5× 104. Log-plot of the total enstrophy
S(t) vs log 1

τ∗−t , at times near the blow-up, with linear regression
(dashed line, the prediction for the slope is 3.0). Simulation range
k3 ∈ [−19, 2528].



For the behavior in x-space the data show convergence
everywhere as t ↑ τ , except for a singularity at the origin for
type I solutions

and at two points

x
(0)
± = (0, 0,±x (0)

3 ), x
(0)
3 ≈ π

a

for the solutions of type II.
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3. Li-Sinai solutions: simulations. x-space.
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Figure 15: Type I , a = 20, E0 = 5× 104. Plot of the marginal energy
density Ẽ3(x3, t) at t · 107 = 1021 (dotted line) and t × 107 = 1044
(continuous line). Simulation range k3 ∈ [−19, 2528].



3. Li-Sinai solutions: simulations. x-space.
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Figure 16: Type II , a = 20, E0 = 5× 104. Plot of the marginal energy
density Ẽ3(x3, t) at t · 107 = 1521 (continuous line) and t × 107 = 1544
(dotted line). Simulation range k3 ∈ [−19, 2528]



3. Li-Sinai solutions: simulations. x-space.
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Figure 17: Type II , a = 20, E0 = 5× 104. Plot of the marginal energy
density Ẽ1(x1, t) at t · 107 = 1521 (continuous line), and t · 107 = 1544
(dotted line). Simulation range k3 ∈ [−19, 2528].



4. REAL SOLUTIONS.

Assuming antisymmetric initial data Av0(k)

v0(k) = v±0 (k)− v±0 (−k),

where v±0 are as above, we get a real solution. (The choice ±
amounts to a change of sign.) v0(k) has support in two separate
regions around the points ±(0, 0, a).
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4. Real solutions.

We can predict that some properties of the complex solutions
still hold:

- The support in k-space restricted to a thin (double) cone
around the main axis,

- The solution shows modulated oscillations along the k3-axis,
as the complex solutions of type II .
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The simulation show, if the initial energy is large enough, that:

- The total enstrophy S(t) grows, reaches a maximum at a time
t∗ (which for a fixed depends on E0), then falls;
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4. Real solutions.
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Figure 18: Plot of the total enstrophy S(t) vs. magnified time
t × 3.2× 107. Initial energy Ē0 = 2.5× 104, a = 20.



- The large k3 modes fall off exponentially fast, with a rate
decreasing in absolute value up to t ≈ t∗, then stays constant.



4. Real solutions.
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Figure 19: Logarithmic plot of the marginal density Ẽ3(k3, t) at the
(magnified) times t × 3.2× 107 = 100, 200, 300, 400, 500. Initial energy
Ē0 = 2.5× 104, a = 20.



- At the time t∗, the energy and the enstrophy concentrate in
two (pseudo)-spikes, close to the singularities of the complex
solution of type II with the same a.



4. Real solutions.
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Figure 20: Plot of the marginal density S̃3(x3, t) at t = 1.27× 10−5.
Initial energy Ē0 = 2.5× 104, a = 20.


