Turbulence in wall-bounded flows

Sergio Pirozzoli

Matteo Bernardini

Paolo Orlandi

Dipartimento di Ingegneria Meccanica ed Aerospaziale "Sapienza" Universita' di Roma

HPC methods for Computational Fluid Dynamics and Astrophysics November 2-4 2016, Bologna

sergio.pirozzoli@uniroma1.it

- ► All simulations carried out using PRACE resources
 - PRACE 3rd call
 - PRACE 5th call
 - PRACE 7th call
 - PRACE 10th call
 - PRACE 12th call
- Thanks to CINECA staff!

- Flow over solid surfaces most often turbulent
- ► Turbulent flow ~→ large increase of drag and heat transfer as compared to laminar state
- Drag and heat transfer prediction critical for efficient design of aircraft, cars, pipelines, ...
- Practical impact: 1% drag reduction of A340 would result in fuel savings of about 100,000 Euros per aircraft per year
- Robust physical insight definitely needed

Wall turbulence: how it looks like

Side view of turbulent flow over smooth horizontal surface ($Re_{\tau} \approx 4000$)

Wall turbulence: how it looks like

Wall-parallel view of turbulent flow over smooth horizontal surface ($Re_{\tau} \approx 4000$)

Wall turbulence: a cartoon

- Two velocity scales
 - 1. U_0 (outer scale) 2. $u_{\tau} = (\tau_w/\rho)^{1/2}$ (inner scale)
- Two length scales
 - 1. δ (outer scale) 2. $\delta_v = \nu/u_{\tau}$ (inner scale)
 - 2. $\sigma_v = \nu / u_\tau$ (inner scale)
- Ratio of outer to inner length scales is an important parameter

$$Re_{\tau} = \delta u_{\tau} / \nu = \delta / \delta_v$$

Wall turbulence: what we know

► (Approximately) universal near-wall behavior in inner scales, i.e.

$$u^+ := \overline{u}/u_\tau = f(y^+), \quad y^+ := y/\delta_v$$

Logarithmic meso-layer of mean velocity (Prandtl 25)

$$u^+ = 1/k \log y^+ + C, \quad k = 0.41, C \approx 5$$

Logarithmic layer of wall-parallel velocity variances (Townsend 76)

$$\overline{u'^2}/u_\tau^2 = -A\log y/\delta + B$$

• The latter implies that peak velocity variances grow as $\log Re_{\tau}$

- ▶ High $Re_{\tau} \rightsquigarrow$ outer eddies become more energetic
- Inner-outer layer interactions become more important
- Corrections to classical representation

$$u^+ = f(y^+, \operatorname{Re}_{\tau})$$

- Asymptotic limit as $Re_{ au} \rightarrow \infty$?
- Subject of several recent reviews (Jimenez 2013, Smits et al. 2011, Marusic et al. 2010)

- Experiments limited in near-wall resolution, and difficulty to get 'clean' data (e.g. derivatives of flow statistics)
- Revert to Direct Numerical Simulation (DNS), i.e. solve full Navier-Stokes equations in 3D unsteady version by resolving all scales of motion
- However, DNS of wall turbulence hampered by stringent computational requirements
- ► As $\Delta \sim \delta_v$, simulating flows at high Re_τ requires about $(\delta/\Delta)^3 = Re_\tau^3$ points (in fact, $N_{\text{pts}} \sim Re_\tau^{11/4}$)
- ▶ Some effects (e.g. logarithmic scaling) only manifest themselves as $Re_{\tau} \sim 10^3 10^4 \rightsquigarrow O(10^9 10^{12})$ points are required

DNS of wall turbulence

State-of-the-art

DNS of wall turbulence

Projection

• $Re_{\tau} \approx 10^4$ likely to yield 'asymptotic' wall turbulence (Jimenez 2012)

- DNS of incompressible wall-bounded flows (M = 0)
 - Poiseuille flow up to ${\it Re}_{\tau} \approx 4000$
 - Couette flow up to ${\it Re}_{\tau} pprox 1000$
 - Passive scalars in Poiseuille flow
 - Channel flow with unstable stratification
- ► DNS of compressible wall-bounded flows: see next talk

Governing equations

Navier-Stokes-Boussinesq model

$$\frac{\partial u_j}{\partial x_j} = 0, \quad \frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \beta g \theta \delta_{i2} + \Pi \delta_{i1} + \nu \frac{\partial^2 u_i}{\partial x_j \partial x_j}$$
$$\frac{\partial \theta}{\partial t} + \frac{\partial \theta u_j}{\partial x_j} = \alpha \frac{\partial^2 \theta}{\partial x_j \partial x_j}$$

Controlling parameters

- Convection: bulk Reynolds number $Re_b = 2hu_b/\nu$
- Buoyancy: bulk Rayleigh number $Ra = \beta g \Delta \theta (2h)^3 / (\alpha \nu)$
- ► Buoyancy/convection: bulk Richardson number $Ri_b = Ra/Re_b^2 = 2\beta g\Delta\theta h/u_b^2$
- $\blacktriangleright \ \textit{Pr} = \nu / \alpha \equiv 1$

Numerical method

Orlandi 2000

- Projection method with direct Poisson solver based on Fourier expansions (Kim & Moin 87)
- Second-order approximation of space derivatives on staggered mesh (Harlow & Welch 65)
- Discrete conservation of total kinetic energy and scalar variance
- Implicit treatment of wall-normal viscous terms
- ► Third-order low-storage Runge-Kutta time stepping by A. Wray
- ► Pencil decomposition for efficient parallel implementation

Incompressible NS equations

$$\frac{\partial u_j}{\partial x_j} = 0, \quad \frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j \partial x_j}$$

- Projection method to satisfy divergence-free constraint
- Semi-implicit discretization in time

$$\frac{v^* - v^n}{\Delta t} = N^{n+1/2} + \frac{1}{2} \left(L(v^*) + L(v^n) \right) - Gp^n \quad (\mathbf{1})$$

- \blacktriangleright In general, v^* is not divergence-free
- ► For that purpose, a correction step is implemented

$$\frac{v^{n+1} - v^*}{\Delta t} = -G\varphi \quad (\mathbf{2})$$

with φ TBD

Take discrete divergence of previous equations

$$G \cdot G\varphi = -\frac{G \cdot (v^{n+1} - v^*)}{\Delta t} = \frac{G \cdot v^*}{\Delta t}$$

- Discrete Poisson equation
- ► Relation between \u03c6 and pressure can be derived by combining steps (1) and (2)

$$p^{n+1} = p^n + \varphi + \frac{1}{2}L\varphi$$

▶ The latter relation is used to feed step (1)

Computational issues

► Inviscid 1D case

$$\frac{v_j^{n+1} - v_j^*}{\Delta t} = -D\varphi_j \rightsquigarrow D \cdot D\varphi = \frac{Dv^*}{\Delta t}$$

• Assume
$$D = C2$$

$$\varphi_{j-2} - 2\varphi_j + \varphi_{j+2} = h \, \frac{v_{j+1}^* - v_{j-1}^*}{2\Delta t}$$

► The stencil (j - 2, j, j + 2) only contains odd or even indices ~→ decoupling of discrete pressure field

Avoiding odd-even decoupling

► Staggered grid arrangement (MAC method, Harlow & Welch 65)

Avoiding odd-even decoupling

 \blacktriangleright Connection with skew-symmetric form \rightsquigarrow discrete energy conservation

$$\begin{split} \left[\frac{\partial u^2}{\partial x} \right]_{i+1/2,j} &\approx \quad \frac{\left(u_{i+1/2,j} + u_{i+3/2,j} \right)^2 - \left(u_{i-1/2,j} + u_{i+1/2,j} \right)^2}{4\Delta x} \\ &= \quad \frac{u_{j+3/2}^2 - u_{j-1/2}^2}{4\Delta x} + u_{i+1/2} \frac{u_{i+3/2,j} - u_{i-1/2,j}}{2\Delta x} \\ &\approx \quad \frac{1}{2} \frac{\partial u^2}{\partial x} + u \frac{\partial u}{\partial x} \end{split}$$

Solution of Poisson equation for φ

 $G\cdot G\varphi = G\cdot v^*/\Delta t$

- ► In general requires iterative solvers ~→ impractical for DNS
- Direct solvers available in the presence of two periodic/symmetric directions (Kim & Moin 87)
- Fourier expansion in homogeneous directions (say x, z)

$$\varphi(x, y, z) = \sum_{\ell, m} \hat{\varphi}_{\ell, m}(y) e^{ik_{\ell}x} e^{ik_{m}z}$$

 $k_{\ell} = 2\pi\ell/L_x, \ k_m = 2\pi m/L_z$ $\blacktriangleright \text{ Set } f = G \cdot v^*/\Delta t$

$$-\hat{\varphi}_{\ell,m}\left(\tilde{k}_{x_2}+\tilde{k}_{z_2}\right)+D_{y2}\hat{\varphi}_{\ell,m}=\hat{f}_{\ell,m}$$

- ► \tilde{k}_{x_2} , \tilde{k}_{z_2} are MWN for the second space derivative, e.g. $\tilde{k}_{x_2} = 2(1 - \cos(k_\ell \Delta x))/\Delta x^2$, $\tilde{k}_{z_2} = 2(1 - \cos(k_m \Delta z))/\Delta z^2$
- \blacktriangleright Standard tridiagonal system in y direction must be solved $\forall \ell,m$

- Linear analysis not necessarily the 'ultimate word'
- Simple exercise: consider Burgers vortex model
- Representative for small-scale vortex tubes (Jimenez 93)

$$u_{\theta}(x) \sim \frac{1}{\xi} \left(1 - e^{-\xi^2} \right)$$

$$\xi=x/r_b,\,r_b=3.94\eta$$

► We evaluate a single derivative as in MAC method

$$\frac{u_{j+3/2}^2 - u_{j-1/2}^2}{4\Delta x} + u_{i+1/2} \frac{u_{i+3/2,j} - u_{i-1/2,j}}{2\Delta x} \approx \frac{1}{2} \frac{\partial u^2}{\partial x} + u \frac{\partial u}{\partial x}$$

Accuracy

Error analysis

• L_2 error norm

- ▶ Practical DNS of wall turbulence use typical grid spacings in the wall-parallel direction $\Delta x/\eta \gtrsim 5$, $\Delta z/\eta \gtrsim 3$
- ► FD formulas still far from reaching the asymptotic convergence limit
- ► The additional computational cost may not be justified
- ► MAC scheme successfully used for DNS of many wall-bounded flows

FD vs. spectral

- Plane channel at $Re_{\tau} = 2000$
- ► Lines: second-order finite differences (Bernardini et al. 14); symbols: pseudo-spectral method (Hoyas & Jimenez 06)

 $\blacktriangleright\,$ Max difference about < 2% in turbulence intensity

Parallel implementation

Slab vs. pencil decomposition

- Operations in x z plane can be carried out locally
- Operations in y (e.g. tridiagonal matrix inversion in Poisson solver) are global, requiring data transposition
- \blacktriangleright Main limitation: given N^3 mesh, max N processors can be used
- ▶ E.g. 10^9 points can be (inefficiently) handled on 1000 MPI processes
- ► Number of halo cells gets higher as # of cores increases

Parallel implementation

Pencil decomposition

- ▶ The limit on the number of processes is now $N_p = N^2$
- ► Size of the halo cells on every core decreases with increasing # cores
- Example of work flow: solution of Poisson equation
 - 1. transpose (a) \rightarrow (b), then take real FT in z
 - 2. transpose (b) \rightarrow (c), then take complex FT in x
 - 3. transpose (c) \rightarrow (a), then solve tridiagonal system in $y \rightsquigarrow$ Fourier coefficients
 - 4. Transpose (a) \rightarrow (c), then take inverse FT in x
 - 5. Transpose (c) \rightarrow (b), then take inverse FT in z to get physical solution
 - 6. Transpose (b) \rightarrow (a) to have solution in original arrangement

Parallel scalability

Weak scaling

DNS setup

Flow case	Line style	Re_b	$Re_{ au}$	N_x	N_y	N_z	Δx^+	Δz^+	Tu_{τ}/h
CH1	Dashed	20063	546	1024	256	512	10.0	6.7	36.3
CH2	Dash-dot	39600	999	2048	384	1024	9.2	6.1	26.9
CH3	Dash-dot-dot	87067	2012	4096	768	2048	9.3	6.2	14.9
CH4	Solid	191333	4079	8192	1024	4096	9.4	6.2	8.54

• Computational box $L_x = 6\pi h$, $L_z = 2\pi h$

DNS at $Re_{\tau} = 4000$: contour lines of u'

low-speed and high-speed

Mean velocity

Mean velocity Comparison with experiments

Mean velocity

Overlap layer

• Log-law fit $u^+ = 4.30 + \log y^+ / 0.386$

• Recent estimates yield $k \approx 0.37, C = 3.7$ (Nagib PoF 2008)

Diagnostic function $\Xi = y^+ d\overline{u}^+/dy^+$

No range with flat behavior

Diagnostic function $\Xi = y^+ d\overline{u}^+/dy^+$ Generalized log law

• Refined overlap arguments (Afzal 1976) suggest $\Xi = \frac{1}{k} + \alpha \frac{y}{h} + \frac{\beta}{Re_{\tau}}$

 \blacktriangleright We get $k=0.41,~\alpha=1.15,~\beta=180$ (close to Jimenez & Moser 2007)

► Experiments by Shultz & Flack (2013)

- Townsend attached-eddy hypothesis:
- $\overline{u_i'^2}/u_\tau^2 \approx B_i A_i \log(y/h)$
- Typically quoted values $A_1 \approx 1.26$, $B_1 \approx 1.7$
- We find $A_3 \approx 0.44$, $B_3 \approx 0.95$

Reynolds stress peaks Trend with Re_{τ}

- \blacktriangleright Clear logarithmic growth of u and w
- \blacktriangleright Sub-logarithmic growth of v

Spectral densities (pre-multiplied)

 $\boldsymbol{u}, \text{ inner scaling}$

Production excess over dissipation

• Equilibrium hypothesis clearly violated at sufficiently high Re_{τ}

DNS setup

Flow case	Line style	Re_c	$Re_{ au}$	N_x	N_y	N_z	Δx^+	Δz^+	$Tu_{ au}/h$
C1	Dashed	3000	171	1280	192	896	7.55	4.80	113.9
C2	Dash-dot	4800	260	2048	256	1280	7.18	5.10	72.2
C3	Dash-dot-dot	10133	507	4096	384	2560	7.00	4.99	74.9
C4	Solid	21333	986	8192	512	5120	6.80	4.84	54.1

• Computational box $L_x = 18\pi h$, $L_z = 6\pi h$

DNS at $Re_{\tau} = 1000$: contour lines of u'

low-speed and high-speed

DNS at $Re_{\tau} = 1000$: contour lines of u'

low-speedand high-speed

Mean velocity

Mean velocity

• Log-law fit $u^+ = 5.0 + \log y^+ / 0.41$

Diagnostic function $\Xi = y^+ d\overline{u}^+/dy^+$

► No apparent tendency to log law !

- \blacktriangleright Logarithmic decrease of w^\prime
- Emergence of outer peak of \boldsymbol{u}'

Reynolds stress peaks Trend with Re_{τ}

- \blacktriangleright Clear logarithmic growth of u and w
- \blacktriangleright No growth of v

Spectral densities (pre-multiplied)

Inner scaling

Production excess over dissipation

• Equilibrium hypothesis clearly violated at sufficiently high Re_{τ}

Coherent part of stresses

Rollers responsible for significant fraction of Reynolds stresses

DNS of unstably stratified flows

Computational set-up

- ► Channel ≠ boundary layer
- Confined domain
- No rotation
- ► No roughness
- Imposed $\Delta \theta$

Effects of unstable stratification

Streets of cumulus clouds

- Grid selected so as to simultaneously satisfy
 - ► Spacing restriction for Rayleigh-Bénard convection (Shishkina et al. 2010)
 - Grid spacing restrictions for forced convection $\Delta x^+ \approx \Delta z^+ \approx 4.5$
 - \blacktriangleright For all simulations, $\Delta/\eta \lesssim 3$ throughout
- ▶ Box size is a sensitive issue (reminiscent of Couette flow) ...
- We eventually went for $L_x = 16h$, $L_z = 8h$

Flow cases

Flow case	Re_b	Ra	Rib	h/L	Re_{τ}	Nu	C_{f}	N_x	N_y	N_z
RUN_Ra9_Re0	0	10^{9}	∞	∞	0	63.172	NA	6144	768	3072
RUN_Ra9_Re4.5	31623	10^{9}	1	4.44264	946.41	60.255	7.16E-3	6144	768	3072
RUN_Ra8_Re0	0	10^{8}	∞	∞	0	30.644	NA	2560	512	1280
RUN_Ra8_Re3	1000	10^{8}	100	214.136	96.166	30.470	7.39E-2	2560	512	1280
RUN_Ra8_Re3.5	3162	10^{8}	10	30.0932	179.12	27.672	2.56E-2	2560	512	1280
RUN_Ra8_Re4	10000	10^{8}	1	3.67709	351.01	25.443	9.85E-3	2560	512	1280
RUN_Ra8_Re4.5	31623	10^{8}	0.1	0.44134	864.24	45.584	5.97E-3	2560	512	1280
RUN_Ra7_Re0	0	10^{7}	∞	∞	0	15.799	NA	1024	256	512
RUN_Ra7_Re2.5	316.2	10^{7}	100	167.716	38.690	15.541	1.20E-1	1024	256	512
RUN_Ra7_Re3	1000	10^{7}	10	24.4576	70.992	14.000	4.03E-2	1024	256	512
RUN_Ra7_Re3.5	3162	10^{7}	1	3.01888	134.98	11.880	1.46E-2	1024	256	512
RUN_Ra7_Re3.5_LA	3162	10^{7}	1	2.99729	136.12	12.094	1.48E-2	2048	256	1024
RUN_Ra7_Re3.5_SM	3162	10^{7}	1	2.85494	136.60	11.642	1.49E-2	512	256	256
RUN_Ra7_Re3.5_NA	3162	10^{7}	1	2.50569	142.59	11.622	1.62E-2	256	256	128
RUN_Ra7_Re4	10000	10^{7}	0.1	0.37257	307.01	17.250	7.54E-3	1024	256	512
RUN_Ra7_Re4.5	31623	10^{7}	0.01	0.04243	823.19	37.871	5.42E-3	2560	512	1280
RUN_Ra6_Re0	0	10^{6}	∞	∞	0	8.2884	NA	512	192	256
RUN_Ra6_Re2	100	10^{6}	100	114.745	16.436	8.1528	2.16E-1	512	192	256
RUN_Ra6_Re2.5	316.2	10^{6}	10	16.0776	30.527	7.3180	7.45E-2	512	192	256
RUN_Ra6_Re3	1000	10^{6}	1	1.94472	58.894	6.3560	2.77E-2	512	192	256
RUN_Ra6_Re3.5	3162	10^{6}	0.1	0.29783	112.47	6.7801	1.02E-2	512	192	256
RUN_Ra6_Re4	10000	10^{6}	0.01	0.02906	298.92	12.419	7.15E-3	1024	256	512
RUN_Ra6_Re4.5	31623	10^{6}	0.001	0.00349	817.63	30.508	5.35E-3	2560	512	1280
RUN_Ra5_Re3.5	3162	10^{5}	0.01	0.02262	108.48	4.6190	9.41E-3	512	192	256
RUN_Ra5_Re4	10000	10^{5}	0.001	0.00284	297.86	12.013	7.10E-3	1024	256	512
RUN_Ra4_Re3	1000	10^{4}	0.01	0.01508	45.731	2.3073	1.67E-2	512	192	256
RUN_Ra4_Re3.5	3162	10^{4}	0.001	0.00225	107.22	4.4345	9.19E-3	512	192	256
RUN_Ra0_Re3.5	3162	0	0	0	106.78	4.4836	9.12E-3	512	192	256
RUN_Ra0_Re4	10000	0	0	0	297.78	12.009	7.09E-3	1024	256	512
RUN_Ra0_Re4.5	31623	0	0	0	815.60	29.757	5.32E-3	2560	512	1280

Flow cases

DNS at Ri = 1: contour lines of θ' cold and hot

Spectra

Channel centerplane

Spectra

Near-wall plane $(y = y_P)$

Free convection ($Ri_b \rightarrow \infty$)

Expectations

- ► Prandtl (32):
 - the typical vertical velocity scale of buoyant plumes is $v_P = (\beta g Q y)^{1/3}$
 - ► the associated temperature scale is $\theta_P = Q^{2/3} (\beta g y)^{-1/3}$
 - $\Pr_t \approx \text{const.}$
- Consequences
 - Scaling of mean velocity and temperature

$$\frac{\overline{\theta}(y) - \theta_0}{\theta_\tau} = 3B_\theta \left[(y/L)^{-1/3} - (y_0/L)^{-1/3} \right]$$

$$\frac{\overline{u}(y) - u_0}{u_\tau} = -3B_u \left[(y/L)^{-1/3} - (y_0/L)^{-1/3} \right]$$

- Velocity fluctuations to scale as $\overline{v'^2}/u_{ au}^2 \sim (y/L)^{2/3}$
- Temperature fluctuations to scale as $\overline{\theta'^2}/\theta_{\tau}^2 \sim (y/L)^{-2/3}$

Flow statistics

Free convection: power-law diagnostics

Kader & Yaglom 90: u' should depend on h-sized eddies $\sim (y/L)^{-2/3}$

Forced convection

Mixed convection

Mean profiles

Flow statistics

Fluxes and correlations

 Obukhov 46, Monin & Obukhov 54: single length scale encapsulating effect of shear and buoyancy

$$L = \frac{u_\tau^3}{Q\beta g}$$

- Flow fully characterized by u_{τ} , L
- Constancy of total stress and total heat flux

$$-\overline{u'v'}\approx\tau_w,\quad -\overline{v'\theta'}\approx Q$$

Universal representation

$$\frac{y}{\theta_{\tau}} \frac{\mathrm{d}\overline{\theta}}{\mathrm{d}y} = \varphi_h \left(\frac{y}{L}\right), \quad \frac{y}{u_{\tau}} \frac{\mathrm{d}\overline{u}}{\mathrm{d}y} = \varphi_m \left(\frac{y}{L}\right)$$
$$\frac{\overline{u_i'^2}^{1/2}}{u_{\tau}} = \varphi_i \left(\frac{y}{L}\right), \quad \overline{\frac{\theta'^2}{\theta_{\tau}}}^{1/2} = \varphi_\theta \left(\frac{y}{L}\right), \quad \frac{-\overline{u'\theta'}}{Q} = \varphi_{u\theta} \left(\frac{y}{L}\right)$$

Asymptotic behavior discussed by Kader & Yaglom 90

Parametrizations

► Unstable stratification: Businger 71, Dyer 74

$$\varphi_h = \frac{1}{k_{\theta}} \left(1 + \gamma_h y/L \right)^{\alpha_h}, \quad \varphi_m = \frac{1}{k} \left(1 + \gamma_m y/L \right)^{\alpha_m},$$

► Typical choice (Paulson 70): $k = k_{\theta} = 0.35$, $\gamma_m = \gamma_h = 16$, $\alpha_h = -1/2$, $\alpha_m = -1/4$

Quantity	k_{DNS}	γ_{DNS}	α_{DNS}	α_{KY}	α_{BDP}
φ_h	0.375	5.67	-0.538	-1/3	-1/2
φ_m	0.399	14.6	-0.145	-1/3	-1/4
φ_1	0.498	0.830	0.361	1/3	/
φ_2	1.03	0.638	0.452	1/3	1/3
$\varphi_{ heta}$	0.318	4.08	-0.420	-1/3	/
$\varphi_{u\theta}$	0.214	6.70	-0.690	-2/3	/
<u> </u>	0.1/	00 D	<u> </u>	6	

 $\overline{\text{KY}} \rightsquigarrow \text{Kader \& Yaglom 90, BDP} \rightsquigarrow \text{Businger-Dyer-Panofsky}$

- ► Account for deviations from alleged free-convection scaling
- Widely used as wall models for LES of atmospheric BL (e.g. Khanna & Brasseur 97, 98)

DNS data

Solid: KY, Dashed: BDP; Chained: DNS fit

DNS data

Solid: KY, Dashed: BDP; Chained: DNS fit

DNS data

Solid: KY, Dashed: BDP; Chained: DNS fit

Summary

- ► DNS of canonical flows starting to approach Re_τ typical of 'asymptotic' wall turbulence
- ► Near log layer found for mean velocity
- Significant flow-dependent deviations: $Re_{ au}
 ightarrow \infty$ limit unclear
- Logarithmic growth of velocity variances confirmed: unbounded growth in wall units?
- ▶ Rollers form in wide variety of flow conditions $(0.01 \le Ri_b \le 100)$
- ► Aspect ratio 2 at least
- Strong modulation of near-wall region
- Prandtl scaling for natural convection does not show up
- Monin-Obukhov scaling applies to bulk flow, but not to individual profiles
- ► Significant deviations in light-wind regime
- DNS data available at http://newton.dma.uniroma1.it/channel/ http://newton.dma.uniroma1.it/couette/ http://newton.dma.uniroma1.it/scalars/