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. PLASMAS AS FLUIDS




Observational Evidence

It is estimated that more than 99.9 % of matter in the
Universe exists in the form of plasma;

A plasma is a ionized gas where charged particles interact
via electromagnetic forces (electric and magnetic fields);

Examples include stars, nebulae, galaxies, supernovae,
interstellar/galactic medium, jets, accretion disks, etc..

Our knowledge limited by what we can actually observe -
emitting plasma.




From Kinetic to Fluid to MHD

Vliasov / Fokker Plank describes the time evolution, ~ >mall scales,
: . : ) high frequency
in phase space, of the plasma distribution function Vi
asov
f(x,v,t):
) , )
i+v Vx]‘+—(E+—XB) Vvf = o
ot mc ot . _
Two-fluid
Two-fluid model (ions & electrons) derived by
integrating v" f (X, v, t) over velocity space and
taking moments of increasingly higher order.
o— One-fluid
A one fluid model is derived by proper average of
the ions and electrons fluid equations.
— MHD
Magnetohydrodynamics (MHD) is a further \ 4
simplification of the one fluid model. Large scales,

low frequency



Validity of Fluid approximations

The fluid approach treats the system as a continuous medium and
considering the dynamics of a small volume of the fluid.

Meaningful to model length scales much greater than mean free path or
individual particle trajectories.

“Fluid element”: small enough that any macroscopic quantity has a
negligible variation across its dimension but large enough to contain
many particles and so to be insensitive to particle fluctuations.

Fluid equations involve only moments of the distribution function
relating mean quantities. Knowledge of f(x,v,t) is not needed".

Still: taking moments of the Vlasov equation lead to the appearance of a
next higher order moment = “loose end” > Closure.



Magetohydrodynamics: Assumptions

e |deal MHD describes an electrically conducting single fluid,
assuming:

— low frequency w <K Wp, WK We, W Vpe, WK Vep
— large scales L > wip, L> R., L> Apgp,

— Ignores electron mass and finite Larmor radius effects;

— Assume plasma is strongly collisional = L.T.E., isotropy;

— Fields and fluid fluctuate on the same time and length scales;

— Neglect charge separation, electric force and displacement current.



ldeal MIHD at Last
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(Special) Relativistic Ideal MHD

» Special relativistic MHD equations:

om
ot

(oY)
ot

+ V- (pyv) =0,

— +V - [wy’w—BB—EE]+Vp, =0,

oB
— —Vx(vxB) =0,
ot

dE
§+V-(m—pyV) =0,

e Relativistic effects:

— Bulk motion: v=c;

— Strongly magnetized rarefied plasmas: V, = ¢;

— Extremely hot plasmas: kT/m = c2.

E=wy —p+

BZ+E?

f— _)f‘\rf
2 [ !

e Both MHD and relaticistic MHD are nonlinear systems of hyperbolic PDE.




Il. THE LINEAR ADVECTION EQUATION:
CONCEPTS AND DISCRETIZATIONS




The Advection Equation: Theory

First order partial differential equation (PDE) in (x,t):
oU (x,1) a oU (x,1)
ot Ox

Hyperbolic PDE: information propagates across domain at finite speed
- method of characteristics

=0

Physical domain of dependence
\ A
L . dx t : ) Uit
Characteristic curves satisfy: E = a ! ’
o At
Along each characteristics: :
dU 8U dx OU _ 0 * U(x-at,0) ‘
i ot dtor ST x

= The solution is constant along characteristic curves.



The Advection Equation: Theory

* for constant a: the characteristics are straight parallel lines and the

solution to the PDE is a uniform shift of the initial profile:

U(x,t) =U(x — at,0)

* The solution shifts to the right (for a > 0) or to the left (a < 0):




Discretization: the FTCS Scheme

oU (x,1) oU (x,1)

Consider our model PDE + a =0
ot Ox
o U t) UM -Up
Forward derivative in time: e O(At) ni
n n >
Centered derivative in space: 8U8(5’3>t) ~ Ui+12; Uity + O(Az?) ’_I_‘ 4
46 X S
Putting all together and solving with respect to U"*! gives
C
n+1 n n n
Ui il Uz o 5 ( +1 i—l)

where C =a At/Ax is the Courant-Friedrichs-Lewy (CFL) number.
We call this method FTCS for Forward in Time, Centered in Space.

It is an explicit method.



The FTCS Scheme

At t=0, the initial condition is a square pulse with periodic
boundary conditions:

Time = 0.000; CFL = 0,10
:2‘(3 [P N T T
FTCS
------ Exact
1.5F :
g: 1.0F i
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X

Something isn’t right... why ?




FTCS: von Neumann Stability Analysis

Let’s perform an analysis of FTCS by expressing the solution as a
Fourier series.

Since the equation is linear, we only examine the behavior of a
single mode. Consider a trial solution of the form:

U= A", 0=FkAx

S : Artt C o o
Plugging in the difference formula: =1—— (e’ —e")
An 2
An—}—l 2
— | — 1+ C%sin?0 > 1
An

Indipendently of the CFL number, all Fourier modes increase in
magnitude as time advances.

This method is unconditionally unstable!




Forward in Time, Backward in Space

Let’s try a difference approach. Consider the backward formula for
the spatial derivative:

U Up-Up,
or Az

The resulting scheme is called FTBS: ‘

+0(Az) = |UM'=U-C(U!-U",)

n+1

n

Apply von Neumann stability analysis on the resulting discretized
equation:

An—}—l 2
‘ I =1—-2C(1—-C)(1 —cosb)
n+1
Stability demands 'AAn <1 = 20(1-C)>0

for a < 0 the method is unstable, but
for a > 0 the method is stable when 0<C=aAt/Ax < 1.




Forward in Time, Forward in Space

Repeating the same argument for the forward derivative

aU lfjn, . lr_n
~ 1+ 7 | O ﬁ s l ﬂH—l l 8L [ Tn l n
8513 ASC ( 513) ’ ’ C ( ol )

7

n+1
The resulting scheme is called FTFS: Q_I_‘ p

2

=14+2C(1—C)(1 — cosb)

n+1

Apply stability analysis yields

If a > 0 the method will always be unstable

However, ifa <0Oand -1 <C=aAt/Ax <0 then this method is
stable;




Stable Discretizations: FTBS, FTFS

Time = 0.000; CFL = 0,50
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The 15t Order Godunov Method

 Summarizing: the stable discretization makes use of the grid point
where information is coming from:

a>0 - a<0
( a At
urtt = gr—- — (U"-U" for a >0
o = ‘Upwind’: ) ' Y Ax (v 1)
alt
\ Uv,,}-n_i_1 — UT—E( Zn_|_1 U;n) for a <0

* This is also called the first-order Godunov method;



Conservative Form

a a
* Define the “flux” function [\, = 5 (U, + U7 — ’2—’ (U5, - U7)

so that Godunov method can be cast in conservative form

At
n+1 n n ___m
Vit =0 Az (F”% Fz_%)

ra>0 ‘ a<0—l
RYAN; a At

U+t = Up = == (Uf - ULy) Uy = U = —— (Ul = U7)

* The conservative form ensures a correct description of
discontinuities in nonlinear systems, ensures global conservation

properties and is the main building block in the development of
high-order finite volume schemes.




The CFL Condition

* Since the advection speed a is a parameter of the equation, Ax is
fixed from the grid, the previous inequality is a stability constraint
on the time step for explicit methods

Az‘<£

 la

* At cannot be arbitrarily large but, rather, less than the time taken
to travel one grid cell (CFL) condition.

* In the case of nonlinear equations, the speed can vary in the
domain and the maximum of a should be considered instead.



l1l. NONLINEAR HYPERBOLIC PDE




Nonlinear Advection Equation

We turn our attention to the scalar conservation law

ou  Of(u)

@t+ ox =0

Where f(u) is, in general, a nonlinear function of u.

To gain some insights on the role played by nonlinear effects, we
start by considering the inviscid Burger’s equation:

Ou 0 (W) _
ot oz \ 2 )




Nonlinear Advection Equation

. , . ou ou
We can write Burger’s equation also as Fm + U“@_ =0
T

In this form, Burger’s equation resembles the linear advection
equation, except that the velocity is no longer constant but it is
equal to the solution itself.

The characteristic curve for this equation is

dx (2.1) —> du ou N ou dx
dt ’ dt ot  Ox dt

=0
— u is constant along the curve dx/dt=u(x,t) = characteristics are

again straight lines: values of u associated with some fluid element
do not change as that element moves.



Nonlinear Advection Equation

0 0
* From 8—? + ua—u =0 one can predict that higher values of u will
propagate faster than lower values: = wave steepening.
/P
\_// >

e Correct answer: t
characteristic will intersect
creating a shock wave:




Nonlinear Advection Equation

e This is how the solution should look like:

1.0
0.8
0.6

0.4

0.0 .

 Such solutions to the PDE are called weak solutions.



Nonlinear Advection Equation

A

* Inthe opposite situation:  u(x)

e Here characteristic velocities [t
on the left are smaller than
those on the right >

e The proper solution is a : _
0.8 =

rarefaction (expansion) wave,

0.6 3
a honlinear self-similar wave I ]

0.4 :

that smoothly connects L/R states. ol 5

0.0l




IV. FINITE VOLUME METHODS




Finite Volume Approach

* In a finite volume discretization, the unknowns are the spatial
averages of the function itself:

. 1
1 )
n n
U), = U(x,t")dx
Az |,
. 1
'T32
where x,,, and x;,,, denote the location of the cell interfaces.
Nz i+72
i-1 i i+1

* The solution to the conservation law involves computing fluxes
through the boundary of the control volumes



Finite Volume Formulation

* The conservative form links the differential form of the equation
and its integral representation:
<6U 8F> 0

oU +2 oF / /
ot N

obtained by integrating the PDE over a time interval At = t"*! —t"

tn+1

tol»—i

and cell size Ax =x,,,, =X/,

At [ ~p+l  ~p_1
n+l n =Y n+3 2
it = - & (P - R
1 tn+1
where ~."+_§:i F(z; 1,t)dt



Finite Volume Formulation

n+1

n__ - n ~’n,—{—{l 1 t

<U>z — Az . U(:E7t )dZC FH_%Z = E t F($z+%,t)dt
i-g

Integral form <U>n+1 — <U>n At (ﬁ’n_i_% . ﬁ‘zn_%)

' t Az \ it -3
tn_—l |
% 0,
.| I
- 3 i+ 3

* Thisis an EXACT evolutionary equation for the spatial averages of U.
 The integral form does not make use of partial derivatives!
* Problem: how do we compute the flux ?



Flux computation: the Riemann Problem

] . . n+1
Since the solution is known only at t7, 1

I |
some kind of approximation is required F, U Fir g
in order to evaluate the flux through ! [ < >Z ,; [
the boundary: i | |

3 i+
n+1
S A
it = ar ), Flapt)d

This achieved by solving the so-called “Riemann Problem”, i.e.,
the evolution of an inital discontinuity separating two constant
states. The Riemann problem is defined by the initial condition:

Uy for T <1 ,
U(x,0) = —  Ulzyy1,t>0) ="

Urp for x> Tiyl



The Riemann Problem

/> Cell Interface

Left State

U,

Right State

Initial Discontinuity

| I+7%2 I+1



The Riemann Problem

t>0

\
\

Left State
U,

I’ Cell Interface

1
1

/;/> Flux = Solution on the axis

Discontinuity Breakup [\

D
&/

!/ Right State

1+15 i+ 1



The Riemann Problem

* In CFD, the solution to the Riemann problem depends on the
underlying system of conservation laws:

Density p
1 20}
12 8}
1.1 - - Density B,
- 161 1 12 -
0:2 0:4 0:6 OiE is i ] :
0.25F Tt ]
020 ;_ e 0.9
o 0.18F :
E - 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
0.10F
C 0.5
005" 0.4
0.00E ' : g 0.3
0,2 0,4 E
= 0.2
0.1
Hydrodynamics (HD), 0 o = m m—
3 waves "
Magnetohydrodynamics (MHD),
7 waves




Riemann Problem in MHD/Relativistic MHD

t

slow [S/R] A entropy  sjow [S/R]

Alfven Alfven

fast [S/R]
Fast [S/R]

U,, left state Ug, right state

7 wave pattern, A" (U(LH) - U?) =F (U(LR)> - F (Ug))
across the contact wave, for B =0, only density has a jump;
across Alfven waves, [p] = [pgas]=0 but normal velocity [v,]= 0
—>magnetic field circularly / elliptically polarized.



The Riemann Problem

 Riemann solvers generalized the concept of “upwind” to nonlinear
systems of hyperbolic PDE: the discretization is biased towards the

direction of propagation of waves.

 The Riemann problem requires the solution of nonlinear systems
of equations.

* Exact solutions are computational expensive !

— approximate methods preferred:
— Linearized solvers (Roe-like)

— approximate Riemann fan with fewer waves (more diffusive, HLL,
HLLC, HLLD, Lax-Friedrichs);



Improving spatial accuracy

* High order reconstruction can be carried inside each cell by
suitable oscillation-free polynomial interpolation:

Piecewise

constant

Piecewise . ™~ —

Linear \\/

(TVD) >

Piecewise =

Parabolic
(PPM, WENO) >




15t and 2" Order Reconstruction

Time: 0.00, First order

e 1St First-order reconstruction:

1 1 1
Q.0 0.2 0.4 0.6 0.8 1.0

e For 2M-order we use linear Time: 0.00, 2™ order
reconstrution: :

5V 1.6; :
Viz)=V; + A—x(a: — x;) 14

1 1 1
Q.0 0.2 0.4 0.6 0.8 1.0



Preventing Oscillations

Time: 3.07, 2™ order

A,
. Ay,
> .
Undesired new minimum D R v PR
* Use slope limiters to avoid spurious Tme: 0.00, 2 order (iim)
oscillations: vz = v+ VYV (w—u) |, - _:
Az i ]
1.8F ’
w== 0V; = lim (Ai_1/2, Ait1/2) 16 ]
14F .
12f ]
minmod(x,y) =< vy if |y| <|z|,zy >0 i
0 if zy<O 0'%.0 02 04 0.6 08 1.0




Reconstruct-Solve-Update

Start from volume-averages

()

7

A

Reconstruct interface values from
zone averages using a high-order \

non-oscillatory polynomial:
{ UL, = lim, - U;a),
iT3 A

R _ Tin .
U po= lim, v U,.(z),
z+12

Solve Riemann problems between
adjacent, discontinuous states.

- Compute interface flux.

Update conserved variables with
time stepping algorithm (e.g. RK2):




Numerical Diffusion

Generally, the amount of numerical diffusion is controlled by the
underlying grid resolution / numerical scheme:

— spatial reconstruction
— Riemann solver accuracy
— (marginally) time stepping

Time: 0.00, First order Time: .00, 2™ order (lim) Time: 0.00, PPM
. k ; . . 22T —— 227 : 4 .
- 2.05— 2.0S— T B
1 ief 6| ]
1 2 12f ]
. _ — I.Of_ —— 1.0 :—r ——
1 1 1 1 ] 0.8: 1 1 1 1 0.8: 1 1 1 1
0.2 0.4 0.6 0.8 1.0 Q.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

PROS: numerical diffusion has a stabilizing effect.

CONS: suppress small scale effect, may prevent growth of
instabilities



A 2D Example: Axisymmetric PWN

Pseudocolor
Var: tho
— 1.00e+02

— 5.62e-01
3.16e-03

L ) 78e-05

— 1.00e-07
Max: 5.78e+00
Min: 2.99e-09

HLLC

Time=325 (x 2 yrs)

HLL

Pseudocolor
Var: rho
— 1.00e+02

—5.62e-01
3.16e-03

B 1.78¢-05

— 1.00e-07
Max: 7.81e+00
Min: 3.32e-08




Popular MHD Open Source codes

AMR Language Relat. Main developer
MHD
Athena b4 C v J. Stone et al.
FLASH v Fortran (?) > 4 P. Tzeferacos et al.
PLUTO v C, C++ v A. Mignone et al.
Ramses v Fortran90 % R. Teyssier et al.
Pencil ? Fortran90 ® A. Brandenburg
VAC v Fortran90+Perl |V Van Der Holst /
Meliani /Porth




V. BEYOND IDEAL MHD




Beyond Ideal MHD

The range of validity of MHD can be extended by several means, at the
cost of introducing additional terms and more complex algorithms.

One will then have to deal with different time scales.

Example are:

— Dissipative effects (viscosity, Ohmic dissipation, thermal conduction, etc...)
- mixed hyperbolic / parabolic PDE.

— including generalized Ohm’s law (Hall-MHD, electron

pressure) = dispersive waves, non-homogenous PDE with stiff sources
(RMHD);

— Fluid-particles hybrid algorithms.



Diffusion Processes

Parabolic (diffusion) term describes transfer of momentum or

energy due to microscopical processes without requiring bulk

motion.

Examples: viscosity, magnetic resistivity, thermal conduction.

Op
ot

ot

Id(pv)
Ot
%+V-[(5+pt)'v— (v- B) B|

oB
E—VX(’UXB)

I(pXa)

ot

— + V- (pv)

+ V- [[)’U’UT — BB"| + Vp,

+ V- (pXav)

0

V.-7+pg

V- -lNle—=—A+pv-g
—V x (nJ)

/-) *gct

* No upwinding is required since parabolic problems have infinite
propagation speed = central differences are OK!



Explicit Scheme for Parabolic PDE

However, explicit schemes subject to restrictive constraint:

oU 0°U

In 1-D with constantD: — = D—
ot Ox?

Using FTCS: UZH_l — Uln - C(Uln_ — QUn z—H)

Where C = DAt/Ax?is the (parabolic) CFL number

Stability demands C<% 2> At< Ax?/(2D)

This is quite restrictive !



Implicit Schemes for Parabolic PDE

Using a backward in time, centered in space (BTCS):

Ut = U+ CUI = 207 + U

has no stability limit (unconditionally stable !)

However, it leads to an implicit (linear) system:
A{ U }n+ I — {U } n A E Rf\ra? X 1'\'213

This is a global operation and thus not can not be efficiently carried
out on parallel domains.

Alternative = Accelerated explicit methods 2>



Accelerated Explicit Methods

e Divide each time step At in s sub-steps based on a polynomial
sequence and require stability at the end of a cycle of s substeps:

At
Super-step
=P —Pp — —>—>—>—§
o
Sub-steps

tq

OU n n+1 1 n __
= = —MU = U"' = E(I —1,M)U" = R;U

* |n practice we require the super-step to be as large as possible,
exploiting properties of orthogonal polynomial, Chebyshev (Super
Time Stepping [STS]) or Legendre (Runge-Kutta Legendre [RKL]).

 The scheme is still explicit |



Runge-Kutta-Legendre

RKL methods show better stability properties and are preferred over STS.

Choosing s sub-steps we can cover a time step equal to

s°+5—2

At < Atexp/ 2

where At is the standard explicit method time step.

The method is easily parallelizable.

Scaling on 2D blast wave:

Algorithm Ny | Execution Time [s]
Explicit 192 1m: 13s
RKL 192 28s
Explicit 384 18m : 32s
RKL 384 5m : 19s
Explicit 768 4h:21m : 15s
RKL 768 49m : 17s
Explicit 1536 | 3d :5h:13m: 10s
RKL 1536 10h : 4m : 55s

Temperature (k)
6.3e+03 3.3e+04 1.8e+05 9.4e+05 5.0e+06




THE END




