
HPC Numerical Libraries

26-28 April 2016

CINECA – Casalecchio di Reno (BO)

Massimiliano Guarrasi– m.guarrasi@cineca.it
Super Computing Applications and Innovation Department

� Random numbers are useful for a variety of purposes

� A random number is one that is drawn from a set of
possible values, each of which is equally probable, i.e., a
uniform distribution.

� When discussing a sequence of random numbers, each
number drawn must be statistically independent of the
others. others.

� However, surprising as it may seem, it is difficult to get
a computer to do something by chance.

� A computer follows its instructions blindly and is
therefore completely predictable. (A computer that
doesn't follow its instructions in this manner is broken.)

� Simulation
� In many scientific and engineering fields, computer simulations of

real phenomena are essential to understanding. When the real
phenomena are affected by unpredictable processes, such as radio
noise or day-to-day weather, these processes must be simulated
using random numbers.

� Statistical Sampling
� Statistical practice is based on statistical theory which, itself is � Statistical practice is based on statistical theory which, itself is

founded on the concept of randomness. Many elements of statistical
practice depend on the emulation of randomness through random
numbers.

� Analysis
� Many experiments in physics rely on a statistical analysis of their

output. For example, an experiment might collect X-rays from an
astronomical source and then analyze the result for periodic signals.

� Computer Programming
� Most computer programming languages include functions or library

routines that purport to be random number generators. They are
often designed to provide a random byte or word, or a floating point
number uniformly distributed between 0 and 1.

� Cryptography
� A ubiquitous use of unpredictable random numbers is in

cryptography which underlies most of the attempts to provide cryptography which underlies most of the attempts to provide
security in modern communications (e.g., confidentiality,
authentication, electronic commerce, etc.).

� Decision Making
� There are reports that many executives make their decisions by

flipping a coin or by throwing darts, etcIt is important to make a
completely "unbiased" decision. Randomness is also an essential part
of optimal strategies in the theory of games.

� There are many different methods for generating random
data. These methods may vary as to how unpredictable or
statistically random they are, and how quickly they can
generate random numbers.

� Before the advent of computational random number
generators, generating large amount of sufficiently random
numbers required a lot of work. Results would sometimes numbers required a lot of work. Results would sometimes
be collected and distributed as random number tables.

� Random numbers should not be generated with a method
chosen at random - Donald Knuth

� There are two main approaches to generating random
numbers using a computer:

� Pseudo-Random Number Generators (PRNGs)

� True Random Number Generators (TRNGs).

� Pseudo-random numbers are not random in the way you
might expect, at least not if you're used to dice rolls or
lottery tickets.

� Essentially, PRNGs are algorithms that use mathematical
formula or simply precalculated tables to produce
sequences of numbers that appear random.

� A good deal of research has gone into pseudo-random � A good deal of research has gone into pseudo-random
number theory, and modern algorithms for generating
pseudo-random numbers are so good that the numbers
look exactly like they were really random.

� Effectively, the numbers appear random, but they are really
predetermined.

� PRNGs are

� Efficient (can produce many numbers in a short time)

� Deterministic (a given sequence of numbers can be
reproduced)

� Periodic (the sequence will eventually repeat itself)

� These characteristics make PRNGs suitable for applications
where many numbers are required and where it is useful where many numbers are required and where it is useful
that the same sequence can be replayed easily.

� Popular examples of such applications are simulation and
modeling applications.

� PRNGs are not suitable for applications where it is
important that the numbers are really unpredictable, such
as data encryption and gambling.

� In comparison with PRNGs, TRNGs extract randomness
from physical phenomena and introduce it into a computer

� A really good physical phenomenon to use is a radioactive
source. The points in time at which a radioactive source
decays are completely unpredictable, and they can quite
easily be detected and fed into a computer .

� Another suitable physical phenomenon is atmospheric � Another suitable physical phenomenon is atmospheric
noise, which is quite easy to pick up with a normal radio.

� A common technique is hashing a frame of a video stream
from an unpredictable source.

� Most notable perhaps was Lavarand which used images of
a number of lava lamps.

� Lithium Technologies uses a camera pointed at the sky on
a windy and cloudy day.

Characteristic
Pseudo-Random Number

Generators
True Random Number

Generators

Efficiency Excellent Poor

Determinism Determinstic Nondeterministic

Periodicity Periodic Aperiodic

Application
Most Suitable
Generator

Lotteries and Draws TRNG

Games and Gambling TRNG

Random Sampling (e.g., drug screening) TRNGRandom Sampling (e.g., drug screening) TRNG

Simulation and Modelling PRNG

Security (e.g., generation of data encryption
keys)

TRNG

� It is quite common finding random number generators that
creates uniformly distributed between 0 and 1.

� It is always possible to transform a random number (or a
series) that follow a particular distribution in another one
that follow a complete different distribution.

� We will see in the following the most common methods
to make this.to make this.

� In the following slides we will see some of the most
common (and used, of course) algorithms to generate a
series of pseudo-random numbers uniformly distributed:

� Linear Congruental generator (LCG)

� Lagged Fibonacci Generator (LFG)

� Blum Blum Shoub (BBS)

� Linear congruential generators (LCGs) represent one of the
oldest and best-known pseudorandom number generator
algorithms.

� It generates an uniform distributed sequelce of random
number between 0 and M

� LCGs are defined by the recurrence relation:

� Where xn is the sequence of random values and A, C and M
are generator-specific integer constants.

� Xn is an external seed
� A is a multiplier

� C is a shift factor

� M is the modulus

() ()MCAxx ii mod1 +=+

� The period of a general LCG is at most M, and in most
cases less than that. The LCG will have a full period if:

� C and M are relatively prime

� A-1 is divisible by all prime factors of M.

� A-1 is a multiple of 4 if M is a multiple of 4

� M > max (A, B, V0)

� A > 0, B > 0

� Neither this, nor any other LCG should be used for
applications where high-quality randomness is critical.

� They should also not be used for cryptographic
applications

� LCGs may be the only option in an embedded system, the
amount of memory available is often very severely limited

Output:

Fortran 90 C

� This class of random number generator is aimed at being an
improvement on the 'standard' linear congruential generator. These
are based on a generalisation of the Fibonacci sequence.

� Fibonacci sequence is defined as:

� The Lagged Fibonacci Algorithm is:









>−+−
=
=

=
1)2()1(

11

00

)(

nnfnf

n

n

nf

() ()mSSS knjnn ∗= −− mod

� In which case, the new term is some combination of any two previous
terms.

� m is usually a power of 2 (m = 2M).

� The operator denotes a general binary operation. This may be either
addition, subtraction, multiplication, or the bitwise arithmetic
exclusive-or operator (XOR).

� The theory of this type of generator is rather complex, and it may not
be sufficient simply to choose random values for j and k.

� These generators also tend to be very sensitive to initialization.

kj <<0

� Blum Blum Shub (BBS) is a pseudorandom number
generator proposed in 1986 by Lenore Blum, Manuel Blum
and Michael Shub.

Where M=pq is the product of two large primes p and q.

()()() ()Mxx qp
i

i

mod11mod2
0

−−=
� Where M=pq is the product of two large primes p and q.

� The generator is not appropriate for use in simulations,
only for cryptography, because it is not very fast.

� The method of Inversion method of Inversion method of Inversion method of Inversion (or the inverse inverse inverse inverse cdfcdfcdfcdf methodmethodmethodmethod as it is
sometimes called) can be used to obtain transformations
for many distributions.

� Consider the problem of generating a random variable C
from a cumulative dinstribution function F, and suppose
that F is continuous and strictly increasing and F-1(u) is
well-defined for 0 ≤ u ≤ 1. If U is a random variable from well-defined for 0 ≤ u ≤ 1. If U is a random variable from
U(0,1), then it can be shown that X = F-1(U) is a random variable
from the distribution F.

� Useful only if the function can be easily inverted.

� Start writing the PDF: f(x) where A < x < B
� Generate the Cumulative Distribution Function (CDF):

� Create the inverse function:

() ∫==
x

A

dxxfxFu)(

() xuF =−1
� Create the inverse function:

� Generate a series of uniformly distributed random number:

� is a series of random number that follow the
PDF f(x)

() xuF =−1

()1,0Uui ∈

()ii uFx 1−=

� From U(0,1) to f≡U(A,B)

� Clearly f is:

� The corresponding CDF is:





 ≤≤

−=
otherwhise

x
ABf

0

10
1

)(
1

AX
AB

u −
−

=

� The inverse function F-1(u) is:

� If

uABAx)(−+=

()1,0Uui ∈

),()(BAUuABAx ii ∈−+=

� From U(0,1) to
� The corresponding CDF is:

� The inverse function F-1(u) is:

� If

xeu λ−−=1

()ux −−= 1log
1

λ
()1,0Uui ∈

() xexff λλ −=→+∞)(,0

� If ()1,0Uui ∈

() ()+∞∈−−= ,01log
1

fux ii λ

� To use this method the PDF need to be:

� Continuous

� With CDF

� strictly increasing

� F-1(u) is well-defined

� If not, the method is not valid.If not, the method is not valid.

� Some other method can be used! E.g.:

� Box-Muller (only for Normal distribution)

� Rejection Methods (always valid, but computational
expensive)

� If U1, U2 are two independently distributed U(0,1) random
variables, then it can be proved that:

� Are independent Standard Normal random Variables, i.e.:

� Follow the PDF:

() ()
() ()





−=
−=

212

211

2coslog2

2sinlog2

UUX

UUX

π
π

() ℜ∈=
−

xexN
x

2

2

1

π

� In order to change the centre and the amplitude of the
Normal distribution, i.e.:

� You can apply a corollary of the inversion method:

�

() ℜ∈= xexN
2π

()
()

ℜ∈=
−−

xexN
xx

2

2
0

2

2

1 σ

πσ

()
()




∈+=
∈+=

σσ
σσ
,

,

02202

01101

xNYXxY

xNYXxY

� Suppose it is required to generate a random variable froma
a distribution with density f(x).

� Let g(y) be another variable defined in the support of f that
f(x) ≤ c·g(x), where c > 1is a known constant, hold for all x
in the support.

� REJECTION ALGHOIRITHM:REJECTION ALGHOIRITHM:REJECTION ALGHOIRITHM:REJECTION ALGHOIRITHM:

� RepeatRepeatRepeatRepeat� RepeatRepeatRepeatRepeat

� Generate y from g(y)Generate y from g(y)Generate y from g(y)Generate y from g(y)

� Generate u from U(0,1)Generate u from U(0,1)Generate u from U(0,1)Generate u from U(0,1)

� UntilUntilUntilUntil

� U U U U ≤ f(y)/[c ⋅⋅⋅⋅g(y)]
� Return X = yReturn X = yReturn X = yReturn X = y

� Always feasible

� Computational intensive

� FORTRAN

� RAND (GNU extension):

� RAND(FLAG) returns a pseudo-random number from a uniform distribution between 0 and 1. If
FLAG is 0, the next number in the current sequence is returned; if FLAG is 1, the generator is
restarted by CALL SRAND(0); if FLAG has any other value, it is used as a new seed with
SRAND.

� Syntax:
RESULT = RAND(I)

� Example:
program test_randprogram test_rand

integer,parameter :: seed = 86456

call srand(seed)

print *, rand(), rand(), rand(), rand()

print *, rand(seed), rand(), rand(), rand()

end program test_rand

� FORTRAN
� IRAND (GNU extension):

� IRAND(FLAG) returns a pseudo-random number from a uniform distribution between 0 and a
system-dependent limit (which is in most cases 2147483647). If FLAG is 0, the next number in
the current sequence is returned; if FLAG is 1, the generator is restarted by CALL SRAND(0); if
FLAG has any other value, it is used as a new seed with SRAND.

� Syntax:
� RESULT = IRAND(I)

� Example:
program test_irand

integer,parameter :: seed = 86456 integer,parameter :: seed = 86456

call srand(seed)

print *, irand(), irand(), irand(), irand()

print *, irand(seed), irand(), irand(), irand()

end program test_irand

� SRAND (GNU extension):
� reinitializes the pseudo-random number generator called by RAND and IRAND. The new seed

used by the generator is specified by the required argument SEED.
� Syntax:

CALL SRAND(SEED)

� See RAND and IRAND for Examples
� NOTE: The Fortran 2003 standard specifies the intrinsic RANDOM_SEED to initialize the

pseudo-random numbers generator and RANDOM_NUMBER to generate pseudo-random
numbers. Please note that in GNU Fortran, these two sets of intrinsics (RAND, IRAND and
SRAND on the one hand, RANDOM_NUMBER and RANDOM_SEED on the other hand)
access two independent pseudo-random number generators.

� FORTRAN
� RANDOM_NUMBER (F95 standard)

� Returns a single pseudorandom number or an array of pseudorandom numbers from the
uniform distribution over the range 0 \leq x < 1. The runtime-library implements George
Marsaglia's KISS (Keep It Simple Stupid) random number generator (RNG). This RNG
combines:

� The congruential generator x(n) = 69069 \cdot x(n-1) + 1327217885 with a period of
2^32,

� A 3-shift shift-register generator with a period of 2^32 - 1,
� Two 16-bit multiply-with-carry generators with a period of 597273182964842497 > 2^59.

� The overall period exceeds 2^123.
� Please note, this RNG is thread safe if used within OpenMP directives, i.e., its state will be

consistent while called from multiple threads. However, the KISS generator does not create consistent while called from multiple threads. However, the KISS generator does not create
random numbers in parallel from multiple sources, but in sequence from a single source. If an
OpenMP-enabled application heavily relies on random numbers, one should consider employing
a dedicated parallel random number generator instead.

� Syntax:
RANDOM_NUMBER(HARVEST)

� Arguments:
� HARVEST : Shall be a scalar or an array of type REAL.

� Example:
program test_random_number

REAL :: r(5,5)
CALL init_random_seed() ! see example of RANDOM_SEED
CALL RANDOM_NUMBER(r)

end program

� RANDOM_SEED (F95 standard)

� Restarts or queries the state of the pseudorandom number generator used by RANDOM_NUMBER. If
RANDOM_SEED is called without arguments, it is initialized to a default state. The example below
shows how to initialize the random seed with a varying seed in order to ensure a different random
number sequence for each invocation of the program. Note that setting any of the seed values to zero
should be avoided as it can result in poor quality random numbers being generated.

� Syntax:
� CALL RANDOM_SEED([SIZE, PUT, GET])

� Arguments:

� SIZE (Optional): Shall be a scalar and of type default INTEGER, with INTENT(OUT). It specifies SIZE (Optional): Shall be a scalar and of type default INTEGER, with INTENT(OUT). It specifies
the minimum size of the arrays used with the PUT and GET arguments.

� PUT (Optional): Shall be an array of type default INTEGER and rank one. It is INTENT(IN) and
the size of the array must be larger than or equal to the number returned by the SIZE argument.

� GET (Optional): Shall be an array of type default INTEGER and rank one. It is INTENT(OUT)
and the size of the array must be larger than or equal to the number returned by the SIZE
argument.

� Example:

� See: https://gcc.gnu.org/onlinedocs/gfortran/RANDOM_005fSEED.html#RANDOM_005fSEED

� This section describes the random number functions that are part of the ISO C
standard.

� To use these facilities, you should include the header file stdlib.h in your
program.

� Macro: int RAND_MAXRAND_MAX :

� The value of this macro is an integer constant representing the
largest value the rand function can return.

� Function: intintintint randrandrandrandrandrandrandrand (void) (void) (void) (void) :

� The rand function returns the next pseudo-random number in
the series. The value ranges from 0 to RAND_MAX. the series. The value ranges from 0 to RAND_MAX.

� Function: void void void void srandsrandsrandsrandsrandsrandsrandsrand (unsigned (unsigned (unsigned (unsigned intintintint seed) seed) seed) seed) :

� This function establishes seed as the seed for a new series of
pseudo-random numbers.

� If you call rand before a seed has been established with srand, it
uses the value 1 as a default seed.

� To produce a different pseudo-random series each time your
program is run, do srand (time (0)).

� Function: intintintint rand_rrand_rrand_rrand_rrand_rrand_rrand_rrand_r (unsigned (unsigned (unsigned (unsigned intintintint *seed) *seed) *seed) *seed) :
� This function returns a random number in the range 0 to RAND_MAX just

as rand does.

� However, all its state is stored in the seed argument.

� This means the RNG’s state can only have as many bits as the type
unsigned int has. This is far too few to provide a good RNG.

� Random number generation subroutines generate uniformly distributed random
numbers or normally distributed random numbers using one of the following
algorithms:

� SIMD-oriented Mersenne Twister algorithm

� Multiplicative congruential methods

� Polar methods

� Tausworthe exclusive-or algorithm

SubrouitineSubrouitineSubrouitineSubrouitine DescriptiveDescriptiveDescriptiveDescriptive Name and LocationName and LocationName and LocationName and Location

INITRNG INITRNG (Initialize Random Number Generators)

ShortShortShortShort----Precision Precision Precision Precision
SubroutineSubroutineSubroutineSubroutine

LongLongLongLong----Precision Precision Precision Precision
SubroutineSubroutineSubroutineSubroutine

Descriptive Name and LocationDescriptive Name and LocationDescriptive Name and LocationDescriptive Name and Location

SURNG DURNG SURNG and DURNG (Generate a Vector of Uniformly Distributed Pseudo-
Random Numbers)

SNRNG DNRNG SNRNG and DNRNG (Generate a Vector of Normally Distributed Pseudo-
Random numbers)

SURAND DURAND SURAND and DURAND (Generate a Vector of Uniformly Distributed
Random Numbers)

SNRAND DNRAND SNRAND and DNRAND (Generate a Vector of Normally Distributed
Random Numbers)

SURXOR* DURXOR* SURXOR and DURXOR (Generate a Vector of Long Period Uniformly
Distributed Random Numbers)

*This subroutine is provided for migration from earlier releases of ESSL and is
not intended for use in new programs

� INITRNG

� FORTRAN:

� CALL INITRNG (CALL INITRNG (CALL INITRNG (CALL INITRNG (ioptioptioptiopt, , , , irepeatirepeatirepeatirepeat, , , , iseediseediseediseed, , , , liseedliseedliseedliseed, , , , istateistateistateistate, , , , listatelistatelistatelistate))))

� C or C++:

� initrnginitrnginitrnginitrng ((((ioptioptioptiopt, , , , irepeatirepeatirepeatirepeat, , , , iseediseediseediseed, , , , liseedliseedliseedliseed, , , , istateistateistateistate, , , , listatelistatelistatelistate););););

� Arguments:

� IoptIoptIoptIopt::::

� Admitted value:1 or 2.

� Indicates the random number generator desired for use, where:

� If iopt = 1, a single-precision, SIMD-oriented Mersenne Twister pseudo-random number generator with a period of 219937-1 is used.

� If iopt = 2, a long-precision, SIMD-oriented Mersenne Twister pseudo-random number generator with a period of 219937-1 is used.

� IrepeatIrepeatIrepeatIrepeat::::

� Admitted value: 0 or 1

� Indicates whether repeatable or non-repeatable pseudo-random number sequences will be generated, where:

� If irepeat = 0, the pseudo-random number generator uses values from iseed to generate repeatable pseudo-random number sequences.

� If irepeat = 1, the pseudo-random number generator uses hardware-generated values to generate non-repeatable pseudo-random number
sequences.sequences.

� IseedIseedIseedIseed::::

� If irepeat = 0, iseed is an array containing the initial seed values to use in initializing the pseudo-random number generator to generate repeatable pseudo-
random number sequences.

� If irepeat = 1, iseed is ignored.

� Specified as: a one-dimensional integer array of (at least) length max(1,liseed).

� liseedliseedliseedliseed::::

� Is the number of elements in array ISEED, where:

� If irepeat = 0, liseed is determined as follows:

� 32-bit integer environment: liseed ≥ 624

� 64-bit integer environment: liseed ≥ 312

� If irepeat = 1, liseed is ignored.

� istateistateistateistate::::

� Is an array containing information about the current state of the pseudo-random number generator.

� listatelistatelistatelistate::::

� If listate ≠ -1, listate is the number of elements in the array istate

� For further information, please see: http://www-
01.ibm.com/support/knowledgecenter/SSFHY8_5.4.0/com.ibm.cluster.essl.v5r4.essl100.doc/am5gr_initrng.htm%23am5gr_initrng?lang=it

� SURNG (short precision) and DURNG (double precision)
� These subroutines generate a repeatable or non-repeatable vector x of uniform pseudo-random

numbers uniformly distributed over the interval [a, b].

� For the initial call to these subroutines, you must initialize the pseudo-random number generator with a
preceding call to INITRNG.

� FORTRAN:

� CALL SURNG (n, a, b, x, CALL SURNG (n, a, b, x, CALL SURNG (n, a, b, x, CALL SURNG (n, a, b, x, istateistateistateistate, , , , listatelistatelistatelistate)))) or CALL DURNG (n, a, b, x, CALL DURNG (n, a, b, x, CALL DURNG (n, a, b, x, CALL DURNG (n, a, b, x, istateistateistateistate, , , , listatelistatelistatelistate))))

� C or C++:

� surngsurngsurngsurng | | | | durngdurngdurngdurng (n, a, b, x, (n, a, b, x, (n, a, b, x, (n, a, b, x, istateistateistateistate, , , , listatelistatelistatelistate);););); or surngsurngsurngsurng | | | | durngdurngdurngdurng (n, a, b, x, (n, a, b, x, (n, a, b, x, (n, a, b, x, istateistateistateistate, , , , listatelistatelistatelistate););););

� Arguments:

� n:n:n:n:

� Is the number of pseudo-random numbers to be generated. Specified as: an integer; n ≥ 0.

� a:a:a:a:� a:a:a:a:

� Is the mean value of the distribution.

� b:b:b:b:
� Is the standard deviation value of the distribution.

� x:x:x:x:

� Is a vector of length n, containing the uniformly distributed pseudo-random numbers. Returned as:
a one-dimensional array of (at least) length n

� istateistateistateistate::::

� Is an array containing information about the current state of the pseudo-random number generator.

� listatelistatelistatelistate::::
� is the number of elements in the array istate and depends on both the environment the subroutine

is running in and the value of iopt specified on the previous call to INITRNG

� For further information, please see: http://www-
01.ibm.com/support/knowledgecenter/SSFHY8_5.4.0/com.ibm.cluster.essl.v5r4.essl100.doc/am5gr_sd
urng.htm%23am5gr_sdurng?lang=it

� SNRNG (short precision) and DNRNG (double precision)
� These subroutines generate a repeatable or non-repeatable vector x of normally distributed pseudo-

random numbers normally distributed with a mean of rmean and a standard deviation of sigma, using
the BoxMuller2 method.

� For the initial call to these subroutines, you must initialize the pseudo-random number generator with a
preceding call to INITRNG

� FORTRAN:

� CALL SNRNG(n, CALL SNRNG(n, CALL SNRNG(n, CALL SNRNG(n, rmeanrmeanrmeanrmean, sigma, x, , sigma, x, , sigma, x, , sigma, x, istateistateistateistate, , , , listatelistatelistatelistate)))) or CALL DNRNG (n, CALL DNRNG (n, CALL DNRNG (n, CALL DNRNG (n, rmeanrmeanrmeanrmean, sigma, x, , sigma, x, , sigma, x, , sigma, x, istateistateistateistate, , , , listatelistatelistatelistate))))

� C or C++:

� SNRNG(n, SNRNG(n, SNRNG(n, SNRNG(n, rmeanrmeanrmeanrmean, sigma, x, , sigma, x, , sigma, x, , sigma, x, istateistateistateistate, , , , listatelistatelistatelistate);););); or SNRNG(n, SNRNG(n, SNRNG(n, SNRNG(n, rmeanrmeanrmeanrmean, sigma, x, , sigma, x, , sigma, x, , sigma, x, istateistateistateistate, , , , listatelistatelistatelistate););););

� Arguments:

� n:n:n:n:

� Is the number of pseudo-random numbers to be generated. Specified as: an integer; n ≥ 0.� Is the number of pseudo-random numbers to be generated. Specified as: an integer; n ≥ 0.

� rmeanrmeanrmeanrmean ::::

� Is the left boundary of the interval [a, b].

� sigma :sigma :sigma :sigma :
� Is the right boundary of the interval [a, b].

� x:x:x:x:

� s a vector of length n, containing the normally distributed pseudo-random numbers. Returned as: a
one-dimensional array of (at least) length n

� istateistateistateistate::::

� Is an array containing information about the current state of the pseudo-random number generator.

� listatelistatelistatelistate::::
� is the number of elements in the array istate and depends on both the environment the subroutine

is running in and the value of iopt specified on the previous call to INITRNG

� For further information, please see: http://www-
01.ibm.com/support/knowledgecenter/SSFHY8_5.4.0/com.ibm.cluster.essl.v5r4.essl100.doc/am5gr_sd
nrng.htm%23am5gr_sdnrng?lang=it

� Intel MKL VS routines are used to generate random numbers with different types of distribution.

� Continuous Distribution Generators:

Type ofType ofType ofType of DistributionDistributionDistributionDistribution Data TypesData TypesData TypesData Types BRNG BRNG BRNG BRNG DataTypeDataTypeDataTypeDataType DescriptionDescriptionDescriptionDescription

vRngUniform s, d s, d Uniform continuous distribution on the interval [a,b)

vRngGaussian s, d s, d Normal (Gaussian) distribution

vRngGaussianMV s, d s, d Multivariate normal (Gaussian) distribution

vRngExponential s, d s, d Exponential distribution

vRngLaplace s, d s, d Laplace distribution (double exponential distribution)

vRngWeibull s, d s, d Weibull distributionvRngWeibull s, d s, d Weibull distribution

vRngCauchy s, d s, d Cauchy distribution

vRngRayleigh s, d s, d Rayleigh distribution

vRngLognormal s, d s, d Lognormal distribution

vRngGumbel s, d s, d Gumbel (extreme value) distribution

vRngGamma s, d s, d Gamma distribution

vRngBeta s, d s, d Beta distribution

� Intel MKL VS routines are used to generate random numbers with different types of distribution.

� Discrete Distribution Generators:

Type ofType ofType ofType of DistributionDistributionDistributionDistribution Data TypesData TypesData TypesData Types BRNG BRNG BRNG BRNG DataTypeDataTypeDataTypeDataType DescriptionDescriptionDescriptionDescription

vRngUniform i d Uniform discrete distribution on the interval [a,b)

vRngUniformBits i i Underlying BRNG integer recurrence

vRngUniformBits32 i i Uniformly distributed bits in 32-bit chunksUniformly
distributed bits in 64-bit chunks

vRngUniformBits64 i i Uniformly distributed bits in 64-bit chunks

vRngBernoulli i s Bernoulli distribution

vRngGeometric i s Geometric distribution

vRngBinomial i d Binomial distribution

vRngHypergeometric i d Hypergeometric distribution

vRngPoisson i s (for
VSL_RNG_METHOD_POI
SSON_POISNORM)
s (for distribution
parameter λ≥ 27) and
d (for λ < 27) (for
VSL_RNG_METHOD_POI
SSON_PTPE)

Poisson distribution

vRngPoissonV i s Poisson distribution with varying mean

vRngNegBinomial i q Negative binomial distribution, or Pascal distribution

� Where to Get SPRNG

� The main web site for SPRNG is located at
URLs: http://sprng.cs.fsu.edu or
http://www.sprng.org

� Many versions available.

� Latest version 4.0 which is C++Latest version 4.0 which is C++

� The 4.0 page gives info pages to 4.0 page info:

� Quick Start

� Quick Reference

� User’s Guide

� Reference Manual

� Examples

� How to Build SPRNG:

� zcat sprng4.tar.gz | tar xovf -

� cd sprng4

� Run

� ./configure

� Run makeRun make

� NB: Sometimes ’make’ has errors on some parts which
can be ignored. In these cases, ’make -k’ can be used
to continue compiling even if there are errors.

� The MPI programs sometimes need special configuring.

� How to check the build:

� Go to directory check, and run ./checksprng

� This program checks to see if SPRNG has been correctly
installed.

� The check folder contains a single program which
generates known sequences and checks this against a
data filedata file

� How SPRNG is Structured:

� Directories in SPRNG

� SRC - Source code for SPRNG

� EXAMPLES - Examples of SPRNG usage. All MPI examples
are placed in subdirectory mpisprng. If MPI is installed on
your machine, then all MPI examples will be automatically
installed.

TESTS - Empirical and physical tests for SPRNG generators. � TESTS - Empirical and physical tests for SPRNG generators.
All MPI tests are stored in subdirectory mpitests. If MPI is
installed on your machine, then all MPI tests will be
automatically installed.

� Check - contains executables ./checksprng and
./timesprng.

� Lib – contains SPRNG library libsprng after sucessful
installation.

� include – SPRNG header files.

� Types of generators:

� 0: Modified Lagged-Fibonacci Generator (lfg)

� 1: 48-Bit Linear Congruential Generator w/Prime
Addend (lcg)

� 2: 64-Bit Linear Congruential Generator w/Prime
Addend (lcg64)

3: Combined Multiple Recursive Generator (cmrg)� 3: Combined Multiple Recursive Generator (cmrg)

� 4: Multiplicative Lagged-Fibonacci Generator (mlfg)

� 5: Prime Modulus Linear Congruential Generator
(pmlcg)

� The number represents the type of generator in the Class
interface

� lfg: Modified-Lagged Fibonacci Generator (the default
generator)

� zn = xn XOR yn

� xn = xn-k + xn-l(mod M)

� yn = yn-k + yn-l(mod M)

� lcg: 48-Bit Linear Congruential Generator w/Prime Addend

� xn = axn-1 + p(mod M)� xn = axn-1 + p(mod M)

� p is a prime addend

� a is the multiplier

� M for this generator is 248

� lcg64: 64-Bit Linear Congruential Generator w/Prime
Addend

� The 48-bit LCG, except that the arithmetic is modulo
264

� The multipliers and prime addends for this generator
are different from those for the 48-bit generator

� cmrg: Combined Multiple Recursive Generator

� zn = xn + yn*232(mod 264)

� xn is the sequence generated by the 64 bit Linear
Congruential Generator

� yn s the sequence generated by the following prime modulus
Multiple Recursive Generator

mlfg: Multiplicative Lagged-Fibonacci Generator� mlfg: Multiplicative Lagged-Fibonacci Generator

� xn = xn-k * xn-l(mod M)

� l and k are called the lags of the generator, with
convention that l > k

� M is chosen to be 264

� pmlcg: Prime Modulus Linear Congruential Generator

� xn = a*xn-1(mod 261-1)

� Default Interface:

� Sprng(int streamnum, int nstreams, int seed,int param)
(Constructor)

� double sprng() - The next random number in [0,1) is
returned

� int isprng() - The next random number in [0,231) is
returnedreturned

� Simple Interface:

� int * init_sprng(int seed, int param, int rng_type = 0)

� double sprng() - The next random number in [0;1) is
returned

� int isprng() - The next random number in [0;231) is
returned

� Random Number Parameters:

� Parameter is the number of predefined families defined

� Modified Lagged Fibonacci Generator – 11

� 48 Bit Linear Congruential Generator – 7

� 64 Bit Linear Congruential Generator – 3

� Combined Multiple Recursive Generator – 3Combined Multiple Recursive Generator – 3

� Multiplicative Lagged Fibonacci Generator – 11

� Prime Modulus Linear Congruential Generator - 1

#define PARAM SPRNG_LFG

int gtype = 1;

seed = make_sprng_seed();

Sprng *gen1;

gen1 = SelectType(gtype);

gen1->init_sprng(0,ngens,seed,PARAM);gen1->init_sprng(0,ngens,seed,PARAM);

int random_int = gen1->isprng();

double random_float = gen1->get_rn_flt_simple();

gen1->free_sprng();

#define PARAM SPRNG_LFG

int gtype = 1;

seed = make_sprng_seed();

gen = init_sprng(seed, PARAM, gtype);

int random_int = isprng();

double random_float = get_rn_flt_simple();double random_float = get_rn_flt_simple();

� Examples Folder Examples Folder

� convert.cpp - Used to be an example of converting old
code to new, but mostly empty

� pi-simple.cpp - Compute pi using Monte Carlo
integration

� spawn.cpp - Small sample program to get you started

Fortran versions as well� Fortran versions as well

� Tests Folder:

� Statistical Tests

� chisquare.cpp - Chi-Square and Kolmogorov-
Smirnov Probability Functions

� collisions.cpp - Collision test

� coupon.cpp - Coupon test

� equidist.cpp - Equidistribution test

� Other Tests

� fft.cpp – FFT test

� metropolis.cpp - Metropolis Algorithm

� random_walk.cpp - Random Walk Algorithm

� M. Mascagni and H. Chi (2004)]

Parallel Linear Congruential Generators with Sophie-
Germain Moduli,

Parallel Computing,30: 1217–1231.

� [M. Mascagni and A. Srinivasan (2004)]

Parameterizing Parallel Multiplicative Lagged-Fibonacci
Generators,Generators,

Parallel Computing,30: 899–916.

� [M. Mascagni and A. Srinivasan (2000)]

Algorithm 806: SPRNG: A Scalable Library for
Pseudorandom Number Generation,

ACM Transactions on Mathematical Software,26: 436–46

Thank you for your attention

